### Generalized Symmetries

Jeonghak Han

- 1. What is Generalized Symmetry?
- 2. Form and SDO
- 3. How does SDO act?
- 4. Example: Pure Maxwell theory





Form and SDO





How does SDO act?



Example: Pure Maxwell theory

$$S = \frac{1}{2g^2} \int F \wedge *F = -\frac{1}{4g^2} \int F_{\mu\nu} F^{\mu\nu}$$

2 types of current are exist.



## Higgs inflation with non-minimal coupling (Review of Higgs inflation)

CAU HEP center workshop 23.12.27

JoonSik Yu THEP group undergraduate research student yuyuyu7020@gmail.com





### Abstract

In the early universe, theory, f(R) gravity. inflation fits in observational result.



- There are several inflation model based on f(R) gravity. One of most proper inflation model is Higgs inflation since Higgs
- So we can regard Higgs field as inflaton field which involves
- non-minimal coupling between gravity and inflaton.
- This paper shows that prediction of Higgs inflation.



## Inflationary comology



Exponential expansion in the early universe

## Higgs mechanism

$$V(\phi)=-\frac{1}{2}\mu^2\phi^2-\frac{\lambda}{4!}\phi^4$$



Spontaneous Symmetry Breaking

#### How we describe the inflation?

To explain the era of inflation, we need to modify the ordinary gravity theory

$$S_{EH} = \int (\frac{M_{pl}^2}{2}R + L_{matter})\sqrt{-g}d^4x. \qquad \longrightarrow \qquad S = \int (\frac{M_{pl}}{2}R + L_{matter})\sqrt{-g}d^4x.$$

 $\frac{M_{pl}^2}{2}f(R) + L_{matter})\sqrt{-g}d^4x.$ 

## Inflation model

### We can regard Higgs field as inflaton field







## **Higgs Inflation**

Action that leads to inflation :

$$S = \int \left[\frac{M_{pl}^2}{2}(1 + \frac{\xi}{M_{pl}^2}\phi^2)R - \frac{1}{2}\partial_\mu\phi\partial^\mu\phi - \frac{\lambda}{4}\phi^4\right]\sqrt{-g}d^4$$

non-minimal coupling term between gravity and scalar field







### **Conformal transformation**



$$\begin{split} \hat{g}_{\mu\nu} &= \Omega^2 g_{\mu\nu}, \ g^{\hat{\mu}\nu} = \frac{1}{\Omega^2} g^{\mu\nu}, \ \sqrt{-\hat{g}} = \Omega^4 \sqrt{-g} \\ \Gamma^{\hat{\mu}}_{\alpha\beta} &= \Gamma^{\mu}_{\alpha\beta} + \frac{1}{\Omega} (\delta^{\mu}_{\beta} \partial_{\alpha} \Omega + \delta^{\mu}_{\alpha} \partial_{\beta} \Omega - g_{\alpha\beta} \partial^{\mu} \Omega) \\ \hat{R}^{\rho}_{\sigma\mu\nu} &= \partial_{\mu} \hat{\Gamma}^{\rho}_{\nu\sigma} - \partial_{\nu} \hat{\Gamma}^{\rho}_{\mu\sigma} + \hat{\Gamma}^{\rho}_{\mu\lambda} \hat{\Gamma}^{\lambda}_{\nu\sigma} - \hat{\Gamma}^{\rho}_{\nu\lambda} \hat{\Gamma}^{\lambda}_{\mu\sigma} \end{split}$$

### **Conformal transformation**

$$\begin{split} S &= \int (\frac{1}{2}M_{pl}^2 f(\phi)R - \frac{1}{2}\partial_\mu \phi \partial^\mu \phi - V(\phi) \\ & \clubsuit \\ S &= \int (\frac{1}{2}M_{pl}^2 \hat{R} - \frac{1}{2}g^{\hat{\mu}\nu}\partial_\mu \hat{\phi}\partial_\nu \hat{\phi} - V(\phi) \\ \end{split}$$

With, 
$$\frac{\partial \hat{\phi}}{\partial \phi} \equiv \sqrt{\frac{6M_{pl}^2}{\Omega^2}} (\frac{\partial \Omega}{\partial \phi})^2 + \frac{1}{\Omega^2}, V(\hat{\phi}) \equiv \frac{1}{2}$$

 $(\phi))\sqrt{-g}d^4x$  : Jordan frame

 $\phi))\sqrt{-\hat{g}}d^4x$ 

: Einstein frame

$$\frac{V(\phi)}{\Omega^4}$$





### Potential in Jordan frame



#### Potential in Einstein frame



## Cosmological parameter

From potential

$$r = 16\varepsilon_{\nu} = \frac{\mathsf{V}_{12}}{N^2}, n_s = 1 + 2\eta_{\nu} - 6\varepsilon_{\nu} = 1 - \frac{2}{N} - \frac{9}{2N^2}$$

Inflation condition requires that number of e-folds N=60

 $r=0.0033,\,n_s\approx 0.967$ 





This figure is predictions from the inflationary models and the Planck satellite observed bounds. We can check that Higgs inflation(green star) fits in observational constraints.



Conclusion

I was able to check that Higgs inflation fits in observational constraint from CMB measurement successfully.

# Further discussion

That action really gives the inflationary solution? Gauge invariance of observational quantitiy etc.







### Reference

- Dhong Yeon Cheong, Sung Mook Lee, and Seong Chan Park. Progress in higgs inflation. Journal of the Korean Physical Society, 78(10):897–906, feb 2021.
- Fedor Bezrukov. The higgs field as an inflaton. Classical and Quantum Gravity, 30(21):214001, oct 2013.
- [3] J. M. Fernández Cristóbal. Weyl invariance in metric f(R) gravity. Rev. Mex. Fis., 64(2):181– 186, 2018.
- [4] David I. Kaiser. Conformal transformations with multiple scalar fields. Physical Review D, 81(8), apr 2010.
- [5] Erik Schildt. Higgs inflation, 2018.
- [6] Ross N. Greenwood, David I. Kaiser, and Evangelos I. Sfakianakis. Multifield dynamics of higgs inflation. *Physical Review D*, 87(6), March 2013.







### PQ Inflation

CAU HEP Workshop THEP MyeongJung Seong 27 Dec 2023

### Contents

- Inflation
- Axion
- PQ inflation

Peccei-Quinn Inflation at the Pole and Axion Kinetic Misalignment arXiv: 2310.17710

### Inflation

- To solve cosmological problems
   ex) Horizon problem
   Flatness problem
- Universe expands very fast
- Inhomogenity also can be explained by quantum fluctuation.
- First introduced by Alan Guth (1979)
- Need enough time for inflation
- Observational result (Planck)





### Inflation



### Axion

- QCD Lagrangian has two independent CP violating source
- Sum of two constants should be very small by Nedm experiment
- Introduce new dynamical scalar
- PQ symmetry: axion
- First Introduced by Peccei & Quinn (1977)
- Non-zero initial velocity to enhance abundance: Kinetic

$$\mathcal{L}_{QCD} = -\frac{1}{4} G_{\mu\nu} G^{\mu\nu} + \bar{q}(iD)q - \bar{q}m e^{-\theta_Y \gamma^5} q + \theta_{QCD} \frac{g^2}{16\pi^2} G\tilde{G}$$
CP violation
Neutron Electric Dipole Moment:  $\theta = \theta_{QCD} + \theta_Y \le 10^{-10}$ 
New scalar field a: Axion -  $\bar{\theta} = \theta + \frac{a}{f} \to 0$ 
V( $\Theta$ )
 $\dot{\theta}_i = 0$ 
V( $\Theta$ )
 $\dot{\theta}_i = 0$ 
V( $\Theta$ )
 $\dot{\theta}_i \neq 0$ 
 $\dot{\theta}_i \neq 0$ 

**Misalignment** 

1

**Kinetic Misalignment** 

### PQ Inflation

- Higgs pole inflation with PQ symmetry
- Radial motion, PQ conserving-> inflaton (Black)
- Angular motion, PQ violatingaxion (Blue)
- Explain inflation and Strong CP
- Reheating after inflation also can be explained

$$\begin{aligned} \frac{\mathcal{L}_E}{\sqrt{-g_E}} &= -\frac{1}{2}M_P^2 R + \frac{1}{2}(\partial_\mu \phi)^2 + 3M_P^2 \sinh^2\left(\frac{\phi}{\sqrt{6}M_P}\right)(\partial_\mu \theta)^2 - V_E(\phi,\theta) \\ V_E(\phi,\theta) &= V_{PQ}(\phi) + V_{PQV}(\rho,\theta) \\ V_{PQ}(\phi) &= V_0 + \frac{1}{4}\lambda_\Phi \Big(6M_P^2 \tanh^2\left(\frac{\phi}{\sqrt{6}M_P}\right) - f_a^2\Big)^2, \\ V_{PQV}(\rho,\theta) &= 3^{n/2}M_P^4 \tanh^n\left(\frac{\phi}{\sqrt{6}M_P}\right)\sum_{k=0}^{[n/2]}|c_k|\cos\left((n-2k)\theta + A_k\right) \end{aligned}$$







### PQ Inflation



# Muon g-2 and proton decay in the minimal SU(5) GUT with split particle masses

**Theoretical High Energy Physics Group** SungBo Sim

CAU HEP Center Workshop, Dec 27, 2023







# Outline

- Muon g-2
- SUSY
  - Gauge mediation
- Proton decay
- Gauge coupling unification

# Muon g-2

$$H = \frac{\vec{p}^2}{2m} + V(r) + \frac{e}{2m}\vec{B}\cdot(\vec{L} + g\vec{S})$$

- In the tree-level, the Dirac equation implies g = 2
- By the late 1940s there were experimental data that could be partially explained by the electron having an anomalous magnetic moment,  $a_{\mu} = \frac{g-2}{2}$



Muon G-2 experiment. UCL g-2. (n.d.). https://www.hep.ucl.ac.uk/muons/g-2/

In the non-relativistic limit, the Dirac equation in the presence of an external magnetic field produces a Hamiltonian,



(Aguillard et al., Measurement of the positive muon anomalous magnetic moment to 0.20 PPM, 2023)

New physics beyond the Standard Model?



# SUSY & its contribution to the muon g-2

- We extend the Standard Model by introducing supersymmetry.
- In this scenario, we have supersymmetric pairs for each Standard Model particles.
- New interactions resulting from new symmetry can contribute to the muon g-2.



we need light slepton and gaugino.

To address the current muon g-2 anomaly, we need to constrain the parameter space of the sparticle masses. In particular,

# SUSY breaking - (Ordinary)Gauge mediation

- The hidden sector is parameterized by a singlet field X which is a spurioun for SUSY breaking
- N pairs of messenger fields  $\phi_i, \tilde{\phi}_i$
- The messengers interact with X via Yukawa-like couplings,  $W = \lambda_{ij} X \phi_i \tilde{\phi}_j$





# SUSY breaking - (Ordinary)Gauge mediation

The MSSM gauginos obtain masses from the 1-loop diagram

$$M_i = \frac{\alpha_i}{4\pi} \Lambda N_i$$

- The gaugino mass ratios  $M_1: M_2: M_3 = \alpha_1: \alpha_2: \alpha_3 \approx 1:2:6$ 

• The scalars of the MSSM gets a squared mass given by

$$m_{\tilde{f}}^2 = 2$$

- C<sup>i</sup> is the corresponding quadratic Casimir invariants.

We can split the masses of sparticles!

, Where  $\Lambda \equiv \langle F \rangle / \langle X \rangle$ 



In this diagram, S corresponds to the X





# Proton decay

•

$$W_{5} = \frac{1}{2M_{H_{C}}}QQQL + \frac{1}{M_{H_{C}}}u^{c}e^{c}u^{c}d^{c}$$

$$\sin^{4} 2\beta \times \left(\frac{F(\mu_{H}, M_{\tilde{q}}^{2}, m_{\tilde{l}}^{2})^{-1}}{10^{2}TeV}\right)^{2} \left(\frac{M_{H_{C}}}{10^{16}GeV}\right)$$

$$u_{L}(q_{L})$$

$$u_{L}(q_{$$

Proton decay lifetime can be obtained  $\bullet$ 

$$W_{5} = \frac{1}{2M_{H_{c}}}QQQL + \frac{1}{M_{H_{c}}}u^{c}e^{c}u^{c}d^{c}$$
If by
$$\tau_{p} \simeq 10^{35} \times \sin^{4} 2\beta \times \left(\frac{F(\mu_{H}, M_{\tilde{q}}^{2}, m_{\tilde{l}}^{2})^{-1}}{10^{2}TeV}\right)^{2} \left(\frac{M_{H_{c}}}{10^{16}GeV}\right)$$

$$\downarrow_{L}(\tilde{q}_{L})$$

$$\downarrow_{L}(\tilde{q})$$

$$\downarrow_{L}(\tilde{q})$$



Feynman diagrams for  $p \rightarrow$ 

From the Baryon and Lepton number violating superpotential, proton decay can be expected in the SUSY SU(5) scenario.

# Gauge coupling unification

- Under GUT scenario, we expect gauge couplings to be unified at GUT scale(  $\sim 10^{16} GeV$ )  $\bullet$
- The running of gauge coupling in on loop is given by  $\alpha_i^-$
- $\bullet$ they are as follows:



$$a_{i}^{1}(\mu_{2}) = \alpha_{i}^{-1}(\mu_{1}) - \frac{b_{i}}{4\pi} \ln\left(\frac{\mu_{2}^{2}}{\mu_{1}^{2}}\right)$$
, where  $\mu_{2} > \mu_{1}$ 

 $b_i$ 's are the 1-loop beta function coefficients which are derived from group theory. According to the mass spectrum we have,

$$\frac{3}{5}, -6$$
),  $b_i'' = \left(\frac{27}{5}, -\frac{1}{6}, -4\right), b_i^{MSSM} = \left(\frac{33}{5}, 1, -3\right)$   
wino, higgsino,  
and gluino  
Squarks

# Summary

- There exist an anomalous magnetic moment which can't be explained by a standard model
- Supersymmetry is a leading candidate for the extension of standard model
- With the split mass spectrum, SUSY SU(5) can address the muon g-2 anomaly
- With this model, expected proton decay lifetime is compatible with the experimental bound, and it can unify the gauge couplings well.

### Non-Thermal Leptogenesis in Peccei-Quinn Inflation

Theoretical High Energy Physics Group Jun Ho Song CAU Hep Workshop

### What is leptogenesis?

• Leptogenesis is a model that can explain baryon asymmetry of the current universe through the seesaw model

# What is different about using the PQ inflation model?

• Non zero Initial number density of RHN!

### Leptogenesis

 $\mathcal{L} \supset i\overline{N}_R \gamma^\mu \partial_\mu N_R + h\overline{l}_L H N_R + M_N \overline{N}_R^c N_R + h.c$  Seesaw Type-1



 $i\mathcal{M} = h_{1i} + h_{ij}^* h_{kj} h_{ki} F_N$ 

$$\epsilon_{1} = \frac{\Gamma(N_{1} \to \overline{l}_{L}H) - \Gamma(N_{1} \to l_{L}H^{*})}{\Gamma(N_{1} \to \overline{l}_{L}H) + \Gamma(N_{1} \to l_{L}H^{*})} \simeq -\frac{3}{16\pi} \frac{1}{(hh^{\dagger})_{11}} \sum_{j=2,3} \text{Im}[(hh^{\dagger})_{1j}^{2}] \frac{M_{N_{1}}}{M_{N_{j}}}$$

 $N_1(t_e < t < t_{RH}) \cong 0,$  $t_e$ : end of inflation

### Initial number density of RHN

$$N_1(t_e < t < t_{RH}) \cong 0,$$
  
 $t_e$ : end of inflation

Thermal leptogenesis scenario

$$N_1(t_e < t < t_{RH}) \neq 0,$$
  
 $t_e$ : end of inflation

Non-Thermal leptogenesis scenario (Our assumption)

 $M_{RHN} \gg T_{RH}$ 



### Initial number density of RHN

 $N_1(t_e < t < t_{RH}) \neq 0,$  $t_e$ : end of inflation

Non-Thermal leptogenesis scenario (Our assumption)

 $M_{RHN} \gg T_{RH}$ 



### Gravitational Production of RHN

$$\sqrt{-g}L_{int}^{1} = \frac{1}{2M_{P}}h_{\mu\nu}\left(T_{SM}^{\mu\nu} + T_{\phi}^{\mu\nu} + T_{N}^{\mu\nu}\right).$$

$$g_{\mu\nu} \cong \eta_{\mu\nu} + \frac{h_{\mu\nu}}{M_{P}}$$

$$\phi$$

$$M_{I}$$

$$|\mathcal{M}_{n}^{\phi^{k}}|^{2} = \frac{2\rho_{\phi}^{2}}{M_{P}^{4}} \frac{m_{N}^{2}}{s} \left[1 - \frac{4m_{N}^{2}}{s}\right] |(\mathcal{P}^{k})_{n}|^{2}$$

$$\frac{dY_{N_1}^{\phi^k}}{da} = \frac{\sqrt{3}M_P}{\sqrt{\rho_{RH}}} a^2 \left(\frac{a}{a_{RH}}\right)^{\frac{3k}{k+2}} R_{N_1}^{\phi^k}(a)$$



### Interaction

Sub-dominant about Reheating dominant about Reheating 
$$\mathcal{L}_{Q,\text{int}} = -y_Q \Phi \bar{Q}_R Q_L + \text{h.c.} \qquad \Delta V_E = \lambda_{H\Phi} |\Phi|^2 |H|^2 \qquad \mathcal{L}_{\text{int}} = -\frac{1}{2} \lambda_{\Phi} \phi^2 a^2$$

$$\mathcal{L}_{gluons} = \frac{g_s^2}{32\pi^2} \left( \bar{\theta} + \xi \frac{a}{f_a} \right) G^a_{\mu\nu} \tilde{G}^{a\mu\nu}$$
Due to Strong CP problem!
$$\frac{\Gamma_{\phi\phi\to aa}}{\Gamma_{\phi\phi\to HH}} \simeq \frac{\lambda_{\Phi}^2}{2\lambda_{H\Phi}^2}$$

$$\lambda_{H\Phi} \gtrsim \frac{1}{\sqrt{2}} \lambda_{\Phi} \quad \text{Reheating condition}$$





### Positivity Bounds on Higgs-Portal DM Freeze-out vs. Freeze-in

SeongSik Kim<sup>1</sup>, Hyun Min Lee<sup>1</sup>, and Kimiko Yamashita<sup>2</sup> (Chung-Ang University<sup>1</sup>, Ibaraki University<sup>2</sup>) *JHEP* 11 (2023) 119 & *JHEP* 06 (2023) 124

### Dark Matter and Higgs



- Most of the nature of Dark Matter (DM) is currently unknown, their origin and interactions especially.
- Higgs is the last particle discovered in the Standard Model (SM).
   Within our current understanding, Higgs is the most probable particle in the SM sector interacting with DM.

### Dark Matter and Higgs



- Effective Field Theory (EFT) allows us to investigate the theory of DM without knowing their identity exactly, up to the cutoff scale.
- Thus, it is natural to think EFT of Higgs interacts with DM.
- This possibility is called Higgs-portal.
- In EFT, dim-4, dim-6, dim-8, ... operators contribute the process.

### **Positivity Bounds**

$$\mathcal{L}_{\dim-8} \supset \frac{4}{6\Lambda^4} \frac{d'_2}{4} \lambda_H |H|^4 (\partial_\mu \varphi)^2 + \frac{2}{6\Lambda^4} \frac{d'_4}{4} \lambda_H |H|^4 |\partial_\mu H|^2 \quad \text{(2-derivative operators)}$$

$$\mathcal{L}_2 = \frac{C_{H^2 \varphi^2}^{(1)}}{\Lambda^4} O_{H^2 \varphi^2}^{(1)} + \frac{C_{H^2 \varphi^2}^{(2)}}{\Lambda^4} O_{H^2 \varphi^2}^{(2)} + \frac{C_{H^2 \varphi^2}^{(2)}}{\Lambda^4} O_{H^2 \varphi^2}^{(2)} + \frac{C_{\Psi^4}^{(3)}}{\Lambda^4} O_{\Psi^4}^{(3)} + \frac{C_{\Psi^4}^{(1)}}{\Lambda^4} O_{H^4}^{(1)} + \frac{C_{H^4}^{(2)}}{\Lambda^4} O_{H^4}^{(2)} + \frac{C_{H^4}^{(3)}}{\Lambda^4} O_{H^4}^{(3)} \right\} \text{(4-derivative operators)}$$

- Axioms of Quantum Field Theory may restrict the form of EFT.
- One of the known restrictions is <u>Positivity Bounds</u>, which <u>restricts the coefficient of interaction terms</u>.

Especially coefficients of dim-8 operator are restricted

### **Positivity Bounds**

From the Forward (t = 0) Scattering Cross-section



Positive property of cross-section argues positive coefficient.

### Positivity Analysis for Higgs-DM

Positivity Constraints are obtained from 2→2 scattering amplitude

$$u_{i}v_{j}u_{k}^{*}v_{l}^{*}\frac{d^{2}}{ds^{2}}M(ij \rightarrow kl)(s, t = 0)\Big|_{s \rightarrow 0} \geq 0 \quad \left(u_{i}, v_{i}: \begin{array}{c} |a\rangle = \sum_{i=1}^{5} u_{i}|i\rangle, |b\rangle = \sum_{i=1}^{5} v_{i}|i\rangle \\ |H\rangle = \frac{1}{\sqrt{2}} \begin{pmatrix} |1\rangle + i|2\rangle \\ |3\rangle + i|4\rangle \end{pmatrix} \quad |\varphi(\mathsf{DM})\rangle = |5\rangle \right)$$

Valid coefficient space for Higgs-Singlet DM model

$$\begin{split} C_{H^4}^{(1)} + C_{H^4}^{(2)} &\geq 0, & C_{H^2\varphi^2}^{(1)} \geq 0, \\ C_{H^4}^{(1)} + C_{H^4}^{(2)} + C_{H^4}^{(3)} \geq 0, & C_{\varphi^4} \geq 0, \\ C_{H^4}^{(2)} &\geq 0, & 4\sqrt{(C_{H^4}^{(1)} + C_{H^4}^{(2)} + C_{H^4}^{(3)})C_{\varphi^4}} \geq \left| C_{H^2\varphi^2}^{(1)} + 2C_{H^2\varphi^2}^{(2)} \right| - C_{H^2\varphi^2}^{(1)}. \end{split}$$

$$\mathcal{L}_{2} = \frac{C_{H^{2}\varphi^{2}}^{(1)}}{\Lambda^{4}}O_{\mu^{2}\varphi^{2}}^{(1)} + \frac{C_{H^{2}\varphi^{2}}^{(2)}}{\Lambda^{4}}O_{H^{2}\varphi^{2}}^{(2)} + \frac{C_{H^{2}\varphi^{2}}^{(2)}}{\Lambda^{4}}O_{H^{2}\varphi^{2}}^{(2)} + \frac{C_{H^{2}\varphi^{2}}^{(2)}}{\Lambda^{4}}O_{H^{2}\varphi^{2}}^{(2)} + \frac{C_{H^{2}\varphi^{2}}^{(2)}}{\Lambda^{4}}O_{H^{4}}^{(2)} + \frac{C_{H^{4}}^{(2)}}{\Lambda^{4}}O_{H^{4}}^{(2)} + \frac{C_{H^{4}}^{(3)}}{\Lambda^{4}}O_{H^{4}}^{(2)} + \frac{C_{H^{4}}^{(3)}}{\Lambda^{4}}O_{H^{4}}^{(3)} + \frac{C_{H^{4$$

### DM Analysis : Relic Abundance





- DM was thermally equilibrated with SM until it decouples.
- DM-fermion interaction is strongly restricted by phenomenological constraint.
- Relativity Low Cutoff Allowed, for instances,  $\mathcal{O} \sim 1 \text{TeV}$
- DM are annihilate to SM particles.

### DM Analysis : Relic and Positivity

#### Freeze-in (FIMP)





- In the FIMP scenario, Higher  $m_{\varphi}$  leads to restrictive parameter space and limited interaction with Higgs.
- In the WIMP scenario, in contrast, Higher  $m_{\varphi}$  leads to more free parameter space and allows more interaction with Higgs.
- Positivity forbids half or greater coefficient spaces.

Colored region stands for overabundance, which cannot explain current observation. -10

#### Freeze-out (WIMP)



### Conclusion of this work

- We investigated positivity bound for general Higgs portal scalar DM model. And we combine it to phenomenological bounds.
- We discussed two scenarios, Freeze-in and Freeze-out.
- Both scenario shows different DM mass preference.
  - Parameter spaces are more open to low DM mass for FIMP, and high DM mass for WIMP.
- In FIMP scenario, DM mainly produced at the reheating epoch.
- And positivity forbids almost half (or more) of coefficient spaces.