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l. Introduction to Astrophysics Lab.
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Group leader:
— Gungwon Kang

Members:

— Yeong-Bok Bae (Dr. to be
joined)

« Topics:
— Jiyoon Sun (Ms, 2n9)

— Numerical relativity
— Yeongll Kim (Ms, 1st)

— Gravitational wave physics
— Quantum gravity
— Dongchan Kim (Ms, Oth) — Etc.

— Hyungwook Son (Ms, 0") . Grant:

— Yejun Han (U, 3rd)



ll. Research works in 2023

« Jiyoon Sun
GW data analysis: cWB+GMM
« Dongchan Kim

Numerical relativity: BH simulation

« Kim Hyungwook Son

General relativity: Light bending



* Yeongll Kim: Numerical studies on geodesic

motions

Schwarzchild Metric
Planet Precession d52 _ (1 _ %) dt2 n (1 . %)

1
dr? + r?2(d6? + sin? 8 dg?)

Newtonian Gravity

/ G.R. effect
General Relativity

M I2 MI?
Verr =—7+

r 213 r3




lell

Orbit

$un

Mercury | Menus Farth

Mars

Sdsch Spweyt

dobs References

42,9781  43.105

43.098 + 0.503 (Nambuya 2010; Pitjeva and Pitjev 2013; Pitjev and Pitjeva 2013)

43.20 + 0.86 (Shapiro et al., 1972)

43.11 £ 0.22 (Shapiro, Counselmann III and King, 1976)
43.11 + 0.22 (Anderson et al. 1978)

42.98 + 0.09 (Shapiro et al., 1990)

43.13 £ 0.14 (Anderson et al. 1991)

42.98 + 0.04 (Nobili and Will 1986; Will, 2006)
43.03 £ 0.00 (Clemence, 1964)

43.11 £+ 0.45 (Duncombe 1956; Morton 1956)

Effective Apsidal Precession in Oblate Coordinates 2018 Abraao J. S. Capistrano
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Precession Observed Analytic Sol RK4 Sol Error
- 7 z ,, [Analytic &
[“/century] [“/century] [“/century] [“/century] RK4]
Mercury 42.9799 42.9900 43.0025 0.0291 %
Venus 8.6247 8.6265 8.6983 0.8323 %
Earth 3.8387 3.8395 3.8222 0.4506 %
Mars 1.3624 1.3512 1.3549 0.2738 %




* Yejoon Han: Numerical construction for orbital

motions in the solar system

2-Body Simulation Runge-Kutta 4t order :

dx h
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N-Body Simulation in 3-Dimensional Space
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Github link : https://github.com/Cat-yejun/numerical_simulation_on_Solar_System.git



N-Body Simulation in 3-Dimensional

Solar System View

Space
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N-Body Simulation in 3-Dimensional Space

Sky View
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N-Body Simulation in 3-Dimensional Space

Geocentric Motion (Red : Earth, Blue : Sun)



« Main works

= Waveform modeling:
- Arbitrary eccentricity
- 3PM EOB Hamiltonian
= Black hole encounters:
- BH captures: Formation of BBHs
- Hyperbolic encounters: Scattering angles

- Close encounters

SOGRO
= QOthers



v" Ringdown radiation has been known well in
binary black hole mergers:
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v' Tidal-driven ringdown GWs and Quasi-normal modes:
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“Ringdown wave” without merger!!
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Ringdown gravitational waves from close scattering of two black holes

P

Yeong-Bok Bae,!* Young-Hwan Hyun,?* and Gungwon Kang3: T

! Particle Theory and Cosmology Group, Center for Theoretical Physics of the Universe,
Institute for Basic Science (IBS), Daejeon 34126, Republic of Korea
2Korea Astronomy and Space Science Institute (KASI), Daejeon 34055, Republic of Korea
3 Department of Physics, Chung-Ang Universily, Seoul 06974, Republic of Korea
(Dated: November 2, 2023)

We have numerically investigated close scattering processes of two black holes (BHs). Our careful
analysis shows for the first time a non-merging ringdown gravitational wave induced by dynamical
tidal deformations of individual BHs during their close encounter. The ringdown wave frequencies
turn out to agree well with the quasi-normal ones of a single BH in perturbation theory, despite its
distinctive physical context from the merging case. Our study shows a new type of gravitational
waveform and opens up a new exploration of strong gravitational interactions using BH encounters.

arXiv: 2310.18686 In review at PRL



Uy = Z AEP_MI (t=At) cos(wg)(t — At;))

+ +C,
(t — AtT)p
RD Frequencies ng:z) Mwl(l:m ng::?’) wal:?’)
Perturbation Theory 0.3737 0.0890 0.5994 0.0927

NR (b=8) single-mode  0.3915(91) (+4.8%) 0.0906(45) (+1.8%) - -

=8 double-mode  0.3798(11) (+1.6%)  0.0894(4) (+0.5%)  0.5965(234) (—0.5%)  0.0617(234) (—33.4 %)
NE (b = 10) single-mode ~ 0.3738(14) (4+0.0 %) 0.0737(68) (—17.2%) - -

=10) Gouble-mode  0.3741(25) (+0.1%)  0.0826(31) (—=7.2%)  0.6498(541) (+8.4%)  0.0549(778) (—40.7 %)




v SOGRO:
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A superconducting tensor detector for mid-frequency
gravitational waves: its multi-channel nature and main

astrophysical targets

Yeong-Bok Bae'!, Chan Park'', Edwin J. Son'?, Sang-Hyeon Ahn?®,
Minjoong Jeong?, Gungwon Kang'®, Chunglee Kim*®, Dong Lak Kim’,
Jaewan Kim® Whansun Kim?, Hyung Mok Lee”?, Yong-Ho Lee!”, Ronald S.

Norton'!, John J. Oh?, Sang Hoon Oh?, and Ho Jung Paik!!

Mid-frequency band gravitational-wave detectors will be complementary for the existing
Earth-based detectors (sensitive above 10 Hz or so) and the future space-based detectors such
as LISA, which will be sensitive below around 10 mHz. A ground-based superconducting omni-
directional gravitational radiation observatory (SOGRO) has recently been proposed along with
several design variations for the frequency band of 0.1 to 10 Hz. For three conceptual designs
of SOGRO (e.g., pSOGRO, SOGRO and aSOGROQO), we examine their multi-channel natures,
sensitivities and science cases. One of the key characteristics of the SOGRO concept is its
six detection channels. The response functions of each channel are caleulated for all possible
gravitational wave polarizations including scalar and vector modes. Combining these response
functions, we also confirm the omnidirectional nature of SOGRO. Hence, even a single SOGRO
detector will be able to determine the position of a source and polarizations of gravitational

raves, if detected. Taking into account SOGRO’s sensitivity and technical requirements, two
main targets are most plausible: gravitational waves from compact binaries and stochastic
backgrounds. Based on assumptions we consider in this work, detection rates for intermediate-
mass binary black holes (in the mass range of hundreds up to 10* M) are expected to be
0.0014 — 2.5 yr~ 1. In order to detect stochastic gravitational wave background, multiple detec-
tors are required. Two aSOGRO detector networks may be able to put limits on the stochastic
background beyond the indirect limit from cosmological observations.

Subject Index Gravitational waves, Observational astronomy, Black holes, Superconducting, Cryogenic

arXiv: 5263785 In review at PTEP
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v' Qutreach:

Lecture series on Gener
al Relativity at the KAOS
Foundation
https://www.youtube.co
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https://www.youtube.com/watch?v=mtHOUsdyxSY&t=5s

[1l. Outlook in 2024

Many interesting topics associated with

the tidal-driven ringdown radiation.

Develop further the collaboration with

Glasgow group on S231123.

Educate and train the students

Work hard......(?)



2024 KGWG General Assembly

Jan 22 — 23, 2024 Q
Yonsei University
Asia/Seoul timezone

Overview

Timetable 2024 KGWG General Assembly p—
Registration M T%

<
We are pleased to announce the 2024 KGWG General Assembly which <
will be held from January 22 (Mon) to January 23 (Tue), 2024 at Yonsei

University, Seoul.
In light of the recovery from the COVID-19 pandemic and the rapid
resumption of all research activities in 2023, we will reflect on the past

year and look forward to exploring new research topics during this
two-day meeting.

Participant List

We have prepared a program that includes dedicated sessions for working groups to encourage focused
discussions and presentations related to your respective research areas. We encourage all members to
actively participate in discussions and presentations within their relevant working groups.

https.//indico.kgwg.org/event/58/
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