Chung-Ang University High Energy Physics Center Workshop, Gwangju, Dec. 28, 2023

Probing Dark Matter with Small Scale Astrophysical Structures

Jeong Han Kim

(Chungbuk Natl. U.)

Based on :

Sehwan Lim, Jeong Han Kim, Kyoungchul Kong, Jong Chul Park - [arXiv:2312.07660]
Kenji Kadota, Jeong Han Kim, Pyungwon Ko, and Xing-Yu Yang - [arXiv:2306.10828]
Saurabh Bansal, Jeong Han Kim, Christopher Kolda, Matthew Low, and Yuhsin Tsai - [JHEP 05 (2022) 050]

Cosmic Probes of Dark Sector

χ

?

 $\overline{\chi}$

BBN

 $\bar{\chi}$

?

Big Bang

Dark

Sector

- What is a hidden dynamics of a dark sector?
- What are useful cosmological data to illuminate them?
- Use the gravitational • interaction as a main source to probe the dark sector.

χ

 $\overline{\chi}$

9

SM

X

Decoupling

SM

O(1) GeV

Structure Formation of the Universe

redshift $z \simeq [0, 2]$

- LSS provides a wide range of opportunities to probe gravitational interactions of DM.
- It has a larger amount of Fourier modes (3D data).
- It enables us to probe much smaller scales where new physics may be lurking around. 3

The Kilo-Degree Survey: KiDS-1000

(near-infrared survey)

VIKING

Beyond CMB Measurements

redshift $z \simeq [0, 2]$

- CMB contains many constraints that make it hard to get a robust measurement.
- CMB measurements are largely constrained due to a cosmic variance.
- CMB is a 2D surface which limits the amount of Fourier modes that we can measure.

Abundant Observational Data

- The power spectrum or N-point correlation functions to study density perturbations.
- At much smaller scales, we can study the density profiles of subhalos.
- We can study statistical distributions of subhalo masses.
- Weak lensing data, peak statistics, ... and so on

Benchmark Dark Matter Models

Z. Chacko, H. Goh, R. Harnik [2005] Z. Chacko, D. Curtin, M. Geller, Y. Tsai [2018] ... S. Bansal, J.H. Kim, C. Kolda, M. Low, Y. Tsai [2022]

 χ_1, χ_2, \cdots Multi-component Model [See the talk by Prof. Seodong Shin]

Ultra-light Self-Interacting Dark Matter

Benchmark Dark Matter Models

1. Two-Component Dark Matter

How Does the Structure Formation Change?

Sehwan Lim, J. H. Kim, K.C. Kong, J. Park [2023]

13

• There seem to be fewer subhalos in the two-component Universe.

(For fixed $\sigma_{11\to 11}/m_{\chi_1} = 1 \text{ cm}^2/\text{g}, m_{\chi_2} = 30 \text{ MeV}, m_{\chi_1} = 5 \text{ MeV}$)

Perturbed Boltzmann Equations

- Use the FRW metric with the following convention $ds^{2} = -(1 + 2\Psi)dt^{2} + (1 - 2\Phi)a(t)^{2}\delta_{ii}dx^{i}dx^{j}$
- Density contrasts δ_{χ_i} dictate amount of matter perturbations. $\rho_{\chi_i} = \bar{\rho}_{\chi_i} (1 + \delta_{\chi_i}) \quad (\text{with } i = 1, 2)$
- Perturbed velocities \vec{v}_{χ_i} of dark matters.

 $\theta_{\chi_i} = \nabla \cdot \vec{v}_{\chi_i}$

• Perturbation equations for χ_2 . See a

See also the lecture by Lam Hui

Sehwan Lim, J. H. Kim, K.C. Kong, J. Park [2023]

(number density)

$$n_{\chi_i,\text{eq}} \simeq g_{\chi_i} e^{-m_{\chi_i}/T} \left(\frac{m_{\chi_i}}{2\pi}\right)^{3/2}$$

(energy density)

$$\rho_{\chi_i, eq} \simeq m_{\chi_i} n_{\chi_i, eq}$$

(perturbation for $\rho_{\chi_i,eq}$)

$$\delta_{\chi_i,\text{eq}} = \frac{n_{\chi_i,\text{eq}}}{\bar{n}_{\chi_i,\text{eq}}} - 1$$

$$\frac{d\delta_{\chi_2}}{dt} + \frac{\theta_{\chi_2}}{a} - 3\frac{d\Phi}{dt} = \frac{\langle \sigma v \rangle_{22 \to 11}}{m_{\chi_2}\bar{\rho}_{\chi_2}} \left(-\Psi\left(\bar{\rho}_{\chi_2}^2 - \frac{\bar{\rho}_{\chi_2,\text{eq}}^2}{\bar{\rho}_{\chi_1,\text{eq}}^2}\bar{\rho}_{\chi_1}^2\right) - \bar{\rho}_{\chi_2}^2\delta_{\chi_2} + \frac{\bar{\rho}_{\chi_2,\text{eq}}^2}{\bar{\rho}_{\chi_1,\text{eq}}^2}\bar{\rho}_{\chi_1}^2 \left(2\delta_{\chi_2,\text{eq}} - \delta_{\chi_2} - 2\delta_{\chi_1,\text{eq}} + 2\delta_{\chi_1}\right) \right)$$

$$\frac{d\theta_{\chi_2}}{dt} + H\theta_{\chi_2} + \frac{\nabla^2 \Psi}{a} = \frac{\langle \sigma v \rangle_{22 \to 11}}{m_{\chi_2} \bar{\rho}_{\chi_2}} \frac{\bar{\rho}_{\chi_2,eq}^2}{\bar{\rho}_{\chi_1,eq}^2} \bar{\rho}_{\chi_1}^2 \left(\theta_{\chi_1} - \theta_{\chi_2}\right)$$

$$\frac{\nabla^2 \vartheta_{\chi_2}}{\sigma_{\chi_2}} = \frac{\nabla^2 \vartheta_{\chi_2}}{a}$$
We neglect the sound speed of χ_2

$$T_{\chi_2} \simeq 0$$
 (same as CDM)

• And two independent Einstein equations.

Perturbed Boltzmann Equations

Sehwan Lim, J. H. Kim, K.C. Kong, J. Park [2023]

When $T \ll m_{\chi_i}$ (at around matter-dominated era) •

$$\frac{d^{2}\delta_{2}}{dt^{2}} + \left(2H + \frac{\langle \sigma v \rangle_{22 \to 11}}{m_{2}} \bar{\rho}_{2}\right) \frac{d\delta_{2}}{dt} - \left(\frac{\langle \sigma v \rangle_{22 \to 11}}{m_{2}} H + 4\pi G\right) \bar{\rho}_{2}\delta_{2} = \left(\text{terms of gravity}\right) + \left(\text{coupled terms with } \delta_{1}\right)$$
Friction caused by
 χ_{2} annihilation
$$10^{6} \int_{0}^{10^{4}} \frac{\text{Solid} : \delta_{2}, \text{ Dashed } : \delta_{1}}{\sigma_{\text{self1}}/m_{1} = 1 \text{ cm}^{2}/g, m_{2} = 30 \text{ MeV}, m_{1} = 5 \text{ MeV}}{k = 50 \text{ Mpc}^{-1}}$$

$$\approx 10^{6} \int_{10^{-6}}^{10^{-6}} \frac{10^{-7}}{10^{-6}} \frac{10^{-5}}{10^{-5}} \frac{10^{-4}}{10^{-4}} \frac{10^{-3}}{10^{-2}} \frac{10^{-1}}{10^{-1}} \frac{10^{0}}{10^{0}}$$

Perturbed Boltzmann Equations

• When $T \ll m_{\chi_i}$ (at around matter-dominated era)

Sehwan Lim, J. H. Kim, K.C. Kong, J. Park [2023]

Friction caused by
$$\chi_1$$
 annihilation

$$\frac{d^2\delta_1}{dt^2} + \left(2H + 2\frac{\langle \sigma v \rangle_{22 \to 11}}{m_2} \frac{\bar{p}_2^2}{\bar{p}_1} + \frac{\langle \sigma v \rangle_{11 \to \text{SMSM}}}{m_1} \bar{p}_1\right) \frac{d\delta_1}{dt} - \left(\frac{\langle \sigma v \rangle_{22 \to 11}}{m_2} \frac{\bar{p}_2^2}{\bar{p}_1} H + \frac{\langle \sigma v \rangle_{11 \to \text{SMSM}}}{m_1} \bar{p}_1 H + 4\pi G \bar{p}_1 - c_{\chi_1}^2 \frac{k^2}{a^2}\right) \delta_1$$

$$= \left(\text{terms of gravity}\right) + \left(\text{coupled terms with } \delta_2\right)$$
Negative: δ_{χ_1} oscillates
Positive: δ_{χ_1} oscillates
$$\int_{\sigma_2}^{10^6} \frac{\delta_2}{10^7} \int_{\sigma_1}^{10^6} \delta_2 \int_{\sigma_2}^{10^7} \int_{\sigma_1}^{10^6} \delta_1 \int_{\sigma_2}^{10^7} \int_{\sigma_1}^{10^6} \int_{\sigma_1}^{10^7} \int_{\sigma_1}^{10^6} \int_{\sigma_1}^{10^7} \int_{\sigma_1}^{10^6} \int_{\sigma_1}^{10^7} \int_{\sigma_2}^{10^7} \int_{\sigma_1}^{10^6} \int_{\sigma_1}^{10^7} \int_{\sigma_$$

Linear Matter Power Spectrum

Sehwan Lim, J. H. Kim, K.C. Kong, J. Park [2023]

Including Non-Linear Effects

Including Non-Linear Effects

Sehwan Lim, J. H. Kim, K.C. Kong, J. Park [2023]

Observational Constraints

Maximum Circular Velocity Distribution

Sehwan Lim, J. H. Kim, K.C. Kong, J. Park [2023]

The data prefers the Universe with mixed two-component DM.

The data disfavors large masses m_{χ_1} and m_{χ_2} .

- The data prefers a larger $\sigma_{11 \rightarrow 11}/m_{\chi_1}$.
- ACDM model is strongly disfavored.

Observational Constraints

Sehwan Lim, J. H. Kim, K.C. Kong, J. Park [In Progress]

We perform a chi-square test using the maximum circular velocity distribution

- Single-component limits $(r_1 \sim 1 \text{ or } r_1 \sim 0)$ are excluded.
- The data prefers a larger $\sigma_{11 \rightarrow 11}/m_{\chi_1}$.

Observational Constraints

Sehwan Lim, J. H. Kim, K.C. Kong, J. Park [2023]

We perform a chi-square test using the maximum circular velocity distribution

- Single-component limits $(r_1 \sim 1 \text{ or } r_1 \sim 0)$ are excluded.
- The data prefers a larger $\sigma_{11 \rightarrow 11}/m_{\chi_1}$.

Future Studies

Sehwan Lim, J. H. Kim, K.C. Kong, J. Park [In Progress]

- How does the bound change for different masses, m_{χ_1} and m_{χ_2} ?
- How does the bound change if we include the self-interaction of χ_2 ?
- How does the bound change if we include baryons in the simulation ?
- Is the bound compatible with direct detection experiments?
 - What are other observables in the small scale structure?

Density Profiles of Halos

Sehwan Lim, J. H. Kim, K.C. Kong, J. Park [In Progress]

• Heavy χ_2 displays a cusp shape of halo.

Light χ_1 displays a core shape of halo.

2. Ultra Light Self-Interacting Dark Matter

Ultra-Light Scalar DM

• Let's consider a scalar ultra-light DM :

$$\mathscr{L} = -\frac{1}{2}g^{\mu\nu}\partial_{\mu}\phi\partial_{\nu}\phi - \frac{m^2}{2}\phi^2$$

Fuzzy DM (= Wave DM)

• Including a self-interaction :

$$\mathscr{L} = -\frac{1}{2}g^{\mu\nu}\partial_{\mu}\phi\partial_{\nu}\phi - \frac{m^2}{2}\phi^2 - \frac{\lambda}{4}\phi^4$$

 $\lambda > 0$ (repulsive)

quantum pressure gravity

Ultra-light Self-interacting DM (SIDM)

 $\lambda < 0$ (attractive) (cf.)

(cf. axion)

Smaller soliton

S. Park, D. Bak, J. Lee, I. Park [2022]

K. Kadota, J. H. Kim, Pyungwon Ko, Xing-yu Yang [2306.10828]

• The shape of DM overdensities can influence the evolution of a binary system.

• The dense region of DM can lead to the dephasing of GWs which can be detected by a future observation by LISA.

• The dynamical friction and accretion of the black hole due to DM should be carefully taken into account.

K. Kadota, J. H. Kim, Pyungwon Ko, Xing-yu Yang [2306.10828]

• To simplify the analysis, we consider a large mass ratio limit $m_2/m_1 \ll 1$.

K. Kadota, J. H. Kim, Pyungwon Ko, Xing-yu Yang [2306.10828] Power of energy loss due to a dynamical friction. $m_2 = 1 M_{\odot}$ Dynamical friction $c_s^2 = \frac{3 \ \lambda \ \rho_{\text{halo}}}{4m^4}$ (sound speed of SIDM medium) 15 $m_1 = 10^4 M_{\odot}$ medium with a sound speed c_s 10 $\sim F_{\rm GW}$ $\frac{dE_{\text{orb}}}{dt} = P_{\text{GW}} + \frac{P_{\text{DF}}}{\rho_{\text{F}}} + P_{\text{Ac}}$ $P_{\text{DF}} = v F_{\text{DF}} = \frac{4\pi (Gm_2)^2 \rho_{\text{halo}}}{v} I(\mathcal{M}, \Lambda)$ 5 CDM 0 0 2 6 8 4 10

 v/c_s

K. Kadota, J. H. Kim, Pyungwon Ko, Xing-yu Yang [2306.10828]

• Power of energy loss due to an accretion.

• The accretion rate of SIDM is much larger than the CDM case.

$$\frac{P_{\rm Ac}({\rm CDM})}{P_{\rm Ac}({\rm SIDM})} \sim \frac{v^2}{c^2} \ll 1$$

Dephasing of GWs

K. Kadota, J. H. Kim, Pyungwon Ko, Xing-yu Yang [2306.10828]

• The evolution of the forces contributed by GWs, dynamical friction, and accretion.

 τ [yr] (remaining time to merge)

Dephasing of GWs

K. Kadota, J. H. Kim, Pyungwon Ko, Xing-yu Yang [2306.10828]

• Dephasing of the gravitational waveform in the presence of DM halo.

• The dephasing effect is maximal when the distance is farther away from the r_s .

K. Kadota, J. H. Kim, Pyungwon Ko, Xing-yu Yang [2306.10828]

- GW probes on the DM model will be able to shed light on the uncharted parameter space.
- Distinguishing different DM models from GWs will be interesting future works.
- Another complementary handle to probe the dark sector.

Summary

Back-up

Coupled Background Boltzmann Equations

A. Kamada, H. Kim, J. Park, S. Shin [2021]

• Cosmological background evolutions are governed by coupled Boltzmann equations for χ_1 and χ_2 .

$$\frac{\chi_{2}\bar{\chi_{2}} \rightarrow \chi_{1}\bar{\chi_{1}}}{dt} + \frac{d\rho_{\chi_{2}}}{dt} + \frac{3H\rho_{\chi_{2}}}{dt} = -\frac{\langle \sigma v \rangle_{22 \rightarrow 11}}{m_{\chi_{2}}} \left(\rho_{\chi_{2}}^{2} - \frac{\rho_{\chi_{2}}^{2}eq}{\rho_{\chi_{1}}^{2}eq}\rho_{\chi_{1}}^{2}\right) \qquad (\text{where } \langle \sigma v \rangle_{22 \rightarrow 11} \simeq 0.2 \left(\frac{5 \times 10^{-26} \text{cm}^{3}/\text{s}}{\Omega_{\chi_{2}}}\right))$$
Hubble friction
$$\frac{(1 + 3H\rho_{\chi_{2}})}{(1 + 3H\rho_{\chi_{2}})} = -\frac{\langle \sigma v \rangle_{22 \rightarrow 11}}{m_{\chi_{2}}} \left(\rho_{\chi_{2}}^{2} - \frac{\rho_{\chi_{2}}^{2}eq}{\rho_{\chi_{1}}^{2}eq}\rho_{\chi_{1}}^{2}\right) \qquad (\text{where } \langle \sigma v \rangle_{22 \rightarrow 11} \simeq 0.2 \left(\frac{5 \times 10^{-26} \text{cm}^{3}/\text{s}}{\Omega_{\chi_{2}}}\right))$$

$$\frac{(1 + 3H\rho_{\chi_{2}})}{(1 + 3H\rho_{\chi_{2}})} = -\frac{\langle \sigma v \rangle_{22 \rightarrow 11}}{m_{\chi_{2}}} \left(\rho_{\chi_{2}}^{2} - \frac{\rho_{\chi_{2}}^{2}eq}{\rho_{\chi_{1}}^{2}eq}\rho_{\chi_{1}}^{2}\right) \qquad (\text{where } \langle \sigma v \rangle_{22 \rightarrow 11} \simeq 0.2 \left(\frac{5 \times 10^{-26} \text{cm}^{3}/\text{s}}{\Omega_{\chi_{2}}}\right)$$

2.
$$\frac{d\rho_{\chi_1}}{dt} + 3H\rho_{\chi_1} = -\frac{\langle \sigma v \rangle_{11 \to \text{SM SM}}}{m_{\chi_1}} \left(\rho_{\chi_1}^2 - \rho_{\chi_1,\text{eq}}^2\right) + \frac{m_{\chi_1}}{m_{\chi_2}} \frac{\langle \sigma v \rangle_{22 \to 11}}{m_{\chi_2}} \left(\rho_{\chi_2}^2 - \frac{\rho_{\chi_2,\text{eq}}^2}{\rho_{\chi_1}^2,\text{eq}}\rho_{\chi_1}^2\right)$$

• Here, $SM = e^-, e^+, \gamma, \cdots$ denotes relativistic particles.

• We consider the *p*-wave cross section $\chi_1 \overline{\chi_1} \to SM SM$ (not to screw CMB, BAO, ...).

$$\langle \sigma v \rangle_{11 \to \text{SM SM}} = \frac{g'^2 g_e^2 (2m_{\chi_1}^2 + m_e^2) \sqrt{m_{\chi_1}^2 - m_e^2}}{6m_{\chi_1} (m_{\gamma'}^2 - 4m_{\chi_1}^2)^2 \pi} v^2 + \mathcal{O}(v^3)$$

Dark photon mass

$$\chi_{1} \qquad e^{-1}$$

$$g'\gamma^{\mu}\gamma^{5} \qquad g_{e}\gamma^{\mu}$$

$$\bar{\chi}_{1} \qquad (\text{with } Q'_{\chi_{1}} = 1) \qquad e^{+1}$$

Coupled Background Boltzmann Equations

A. Kamada, H. Kim, J. Park, S. Shin [2021]

• Large $\langle \sigma v \rangle_{11 \rightarrow \text{SM SM}}$ can significantly affect the CMB at the 0th-order.

- The energy injection to the SM plasma can change the ionization history, Compton scattering, ...
 D. Green, P.D. Meerburg, J. Meyers [2018] N. Padmanabhan, D.P. Finkbeiner [2005]
- With the *p*-wave cross section $\langle \sigma v \rangle_{11 \to \text{SM SM}}$, we can evade this constraint.

See also other way around, P.J. Fitzpatrick, H. Liu, T.R. Slatyer, Y.D. Tsai [2011]

• In this work, we focus on the evolution of DM matter densities, and neglect the effect of "3" in the structure formation of the Universe. (future study)

Matter Power Spectrum

Sehwan Lim, J. H. Kim, K.C. Kong, J. Park [In Progress]

Initial Conditions

	@ Initial Conditions
Recall	For adiabatic perturbations, the fluctuations in all components are related by
	$\delta_{\gamma} = \delta_{\nu} = \frac{4}{3} \delta_{cDM} = \frac{4}{3} \delta_{b} = -2 \Phi_{i} (\text{with } \overline{\Phi_{i}} \simeq \overline{\Phi_{i}})$
	where $\overline{\Phi}_{\overline{i}}$ is the primordial potential which is given by $\overline{\Phi}_{\overline{i}} = \frac{2}{3} \overline{R}_{\overline{i}}$
	Where Ri is the gauge-invariant curvature perturbation. It connects between the era of end of inflation and a deep radiation-dominated era.
Remark	From the above initial conditions, we are able to write dow the photon and matter fluctuations as (In denotes a matter density contrast)
	$\delta_{r} = \frac{4}{3} \delta_{m} = -2 \Phi_{i} = -\frac{4}{3} R_{i}$
<u>Kecq11</u>	The curvature perturbation R_i is determined by $\Delta_R^2(k) = \frac{k^3}{2\pi^2} \left[\frac{R_i(k)}{k} \right]^2 = A_s \left(\frac{k}{k_*} \right)^{N_s - 1}$
	Scalar amplitude $A_s = \frac{1}{8\pi^2} \frac{1}{\xi_*} \frac{H_*^2}{M_{pl}^2}$ All these quantities are Spectral index $h_* = 1 - 2\xi - K_*$
	of horizon exit

$$\left\langle \sigma v \right\rangle_{\chi_{1},X} = \frac{c_{a}^{2} e_{v}^{2} m_{\chi_{1}} m_{e} (3m_{\chi_{1}}^{2} + 2m_{\chi_{1}} m_{e} + m_{e}^{2})}{2(m_{\chi_{1}} + m_{e})^{2} m_{\gamma'}^{4} \pi} \qquad \qquad \gamma_{\chi_{1}} \mathrm{sm} = \frac{\delta E}{T} n_{\mathrm{sm}} \left\langle \sigma v \right\rangle_{\chi_{1},sm}$$

$$\left\langle \sigma v \right\rangle_{11 \to \text{SM SM}} = \frac{g'^2 g_e^2 (2m_{\chi_1}^2 + m_e^2) \sqrt{m_{\chi_1}^2 - m_e^2}}{6m_{\chi_1} (m_{\gamma'}^2 - 4m_{\chi_1}^2)^2 \pi} v^2 + \mathcal{O}(v^3) \qquad \begin{array}{c} \chi_1 & q' \\ g' \gamma^{\mu} \gamma^5 & \chi_1 & g' \gamma^{\mu} \gamma^5 \\ \bar{\chi}_1 & (\text{with } Q'_{\chi_1} = 1) & q^+ \end{array}\right.$$

$$\langle \sigma v \rangle_{\chi_1, \text{SM} \to \chi_1, \text{SM}} = \frac{3g'^2 g_e^2 m_{\chi_1}^2 m_e^2}{\pi m_{\gamma'}^4 (m_{\chi_1} + m_e)^2 \pi} v + \mathcal{O}(v^3)$$

