

Simulation of Signal Propagation in Thin-Gap RPCs

Zirui Liu, Xiangyu Xie, Pingxin Zhang, Chunhao Tian, Yongjie Sun

Based on NIMA Paper:

Simulation of the signal propagation for thin-gap RPC in the ATLAS Phase-II upgrade

For DRD1 WG4 31 Jan 2024

>Introduction

Transmission simulation

Measurements & Validation

Discussions

>Introduction

Transmission simulation
 Measurements & Validation
 Discussions

RPC prototype in this talk

Basic information

- LHC-ATLAS muon-spectrometer component detector
- To be installed at next upgrade
- Thin-gap RPC
 - o 1 mm gas gap
- Panel layout
 - 25 mm strip width + 2 mm spacing
 - o 0.8 mm guard strip

Multiplicity in RPC readout

- Current configuration to limit multiplicity:
 - Higher graphite layer resistivity
 - Guard strip
 - Optimized termination
- Potential improvements:
 - More delicate impedance matching
 - Crosstalk mitigation
 - Transmission simulation provides guidance

Lossless Multi-conductor transmission line (MTL) for RPC

Transmission model

• Induced charge treated as a point-like current source I_0 on the fired strip:

$$\vec{I}(t, z_0) = \begin{pmatrix} 0\\I_0(t)\\0\\0 \end{pmatrix}$$

• Collected signal at frontend distorted:

$$\vec{I}(t,L) = \begin{pmatrix} I_1(t) \\ I_2(t) \\ I_3(t) \\ I_4(t) \end{pmatrix}$$

- Issues of interest
 - Calculate signal distortions using PRC modelling
 - Reflection and crosstalk
 - Find distortion mitigation methods

Theory assumptions: ✓ 'Transparent' graphite layer ✓ Resistance of copper ignored

MTL simulation tools

• Fundamental formulae:

$$\frac{d^2}{dz^2}\vec{V}(z,t) = \hat{L}\hat{C}\frac{d^2}{dt^2}\vec{V}(z,t)$$
$$\frac{d^2}{dz^2}\vec{I}(z,t) = \hat{C}\hat{L}\frac{d^2}{dt^2}\vec{I}(z,t)$$

• \hat{C} , \hat{L} : capacitance and inductance matrices of parallel readout strips

•
$$\hat{C} = \begin{pmatrix} C_{gnd} & -C_m \\ -C_m & C_{gnd} \end{pmatrix}$$
; $\hat{L} = \begin{pmatrix} L_{gnd} & L_m \\ L_m & L_{gnd} \end{pmatrix}$

- Given by Maxwell
- $\vec{V}(z,t), \vec{I}(z,t)$: vectors of signal
 - $\vec{V} = \hat{Z}\vec{I}, \hat{Z}$ impedance matrix
 - Solved using Mathematica

MAXWELL

≻Introduction

Transmission simulation

Measurements & Validation

Discussions

Maxwell-2D setup

	Layer	Material	Thickness [mm]	Relative permittivity
	Gas gap	Gas mixture	1.0	1
Gas chamber	Electrode	Bakelite	1.2	<mark>5.2</mark>
	Insulator	PET	0.2	3.7
	Extra air layer	Air	0.15	1
Readout	Filler	Foam	3.1	1
panel	Ground panel/Strips	Copper	0.05	N/A

• Permittivity measurement

- Conductor with bakelite medium
- V_1 , V_2 connected to oscilloscope
- $\Rightarrow \varepsilon_r(bakelite) = 5.2$

Maxwell-2D setup

	Layer	Material	Thickness [mm]	Relative permittivity
	Gas gap	Gas mixture	1.0	1
Gas chamber	Electrode	Bakelite	1.2	5.2
	Insulator	PET	0.2	3.7
	Extra air layer	Air	<mark>0.15</mark>	1
Readout	Filler	Foam	3.1	1
panel	Ground panel/Strips	Copper	0.05	N/A

- Spacer indicator
 - Thickness: 0.15 mm
 - Air layer between readout strips and gas chamber

Maxwell results: \hat{C} ; \hat{L} ; \hat{Z} matrices

• Simplest case: One-direction (η) parallel readout

$$\hat{C} = \begin{pmatrix} 229.5 & -12.4 & 0 \\ -12.4 & 229.5 & -12.4 \\ 0 & -12.4 & 229.5 \end{pmatrix} [pF/m]$$

$$\hat{L} = \begin{pmatrix} 153.9 & 5.4 & 0 \\ 5.4 & 153.9 & 5.4 \\ 0 & 5.4 & 153.9 \end{pmatrix} [nH/m]$$

$$\hat{V} = \hat{M}^{-1}\hat{C}\hat{L}\hat{M}; \hat{Z} = \hat{L}\hat{M}\hat{v}\hat{M}^{-1}$$

$$\hat{V} = \begin{pmatrix} 237 & 0 & 0 \\ 0 & 240 & 0 \\ 0 & 0 & 243 \end{pmatrix} [mm/ns]$$

$$\hat{V} = 240 \text{ mm/ns}; \Delta v = 3 \text{ mm/ns}$$

$$\hat{Z} = \begin{pmatrix} 18.3 & 0.8 & 0.04 \\ 0.8 & 18.3 & 0.8 \\ 0.04 & 0.8 & 18.3 \end{pmatrix} [\Omega]$$

Counterparts in experiment

- Leading order elements:
 - $\circ \quad C_{11} ; L_{11} \Rightarrow Z_{11}, \text{ impedance}$
 - Impedance decides matching resistors

•
$$\hat{Y} = \hat{Z}^{-1}, \hat{R} = \begin{pmatrix} (\sum_{i} Y_{1i})^{-1} & \cdots & -(Y_{1N})^{-1} \\ \vdots & \ddots & \vdots \\ -(Y_{N1})^{-1} & \cdots & (\sum_{i} Y_{Ni})^{-1} \end{pmatrix}$$

• $\hat{R} = \begin{pmatrix} 20 & 400 & 400,000 \\ 400 & 20 & 400 \\ 400,000 & 400 & 20 \end{pmatrix} [\Omega]$

- Sub-leading order elements:
 - \circ \mathcal{C}_{12} ; $L_{12} \Longrightarrow \Delta v$, dispersion
 - Dispersion decides the level of crosstalk

Mathematica results in time-domain

• Example setup:

- 3 strips, middle strip fired
- Input 1.22 ns FWHM gaussian pulse
- Matching resistor $r = 20 \Omega$ on both ends
- No guard strips equipped

	Normalized Charge	Normalized Amplitude
Original	1	1
Transmitted	95.6%	95.3%
Crosstalk	0	6.0%
Reflected	4.4%	3.9%

Introduction Transmission simulation Measurements & Validation Discussions

Leading order: impedance measurement

- Device: Tektronix DSA8300
 - As TDR (Time Domain Reflectometry)
- Experiment setup:
 - Thin-gap RPC size: 1 m × 0.5 m
 - Far-end grounded

Leading order validation results

• Case 1: bare strip

- Case 2: assembled RPC
 - Only η panel
 - \circ 110 kg/m² pressure

Impedance [Ω]	Bare strip	Assembled
Measurement	32.2	18.5
Simulation	32.3	18.3 ± 0.4

 Good agreement between simulation & measurement

Sub-leading order: crosstalk & S-parameter

 Crosstalk sensitive to off-diagonal elements

$$\hat{C} = \begin{pmatrix} C_{11} & -C_{12} \\ -C_{21} & C_{22} \end{pmatrix}; \ \hat{L} = \begin{pmatrix} L_{11} & L_{12} \\ L_{21} & L_{22} \end{pmatrix}$$

$$C_{12} \ll C_{11}$$
; $L_{12} \ll L_{11} \Rightarrow Z \approx \sqrt{L_{11}/C_{11}}$

• S-parameter definition:

 $S_{13}(f) = \frac{Amp_3(f)}{Amp_1(f)}$

- $Amp_3 \rightarrow$ neibouring strip collected signal
- $Amp_1 \rightarrow \text{fired strip collected signal}$
- Note: phase information ignored
- $S_{13}(f)$ represents crosstalk level

- S-parameter property
 - Equals 0 when f << the characteristic frequency f_c of the system
 - Not dependent on signal shape or amplitude
 - Reflection on the fired strip also included in calculation

Collected

Input

Sub-leading order validation results

• Experiment setup

Measurement and simulation roughly consistent

Introduction
 Transmission simulation
 Measurements & Validation
 Discussions

Zirui Liu

31 January 2024

Discussion: $\eta - \eta$ readout

Potential readout for ATLAS Phase II upgrade

- From time difference to position
- Capacitance matrix:

 $\hat{C}_{\eta-\eta} = \begin{pmatrix} 228.9 & -115.1 \\ -115.1 & 228.9 \end{pmatrix}$

- C_{12} , C_{21} : face-to-face capacitance
- Impedance:

	$\eta-\phi$	$\eta - \eta$
Geometry	Adjacent	Face-to-face
Impedance	$\hat{Z} = \begin{pmatrix} 18.3 & 0.8\\ 0.8 & 18.3 \end{pmatrix}$	$\hat{Z} = \begin{pmatrix} 22 & 10\\ 10 & 22 \end{pmatrix}$
Termination network	$\widehat{R} = \begin{pmatrix} 20 & 400\\ 400 & 20 \end{pmatrix}$	$\widehat{R} = \begin{pmatrix} 32 & 42 \\ 42 & 32 \end{pmatrix}$

First order termination would be insufficient

Discussion: different geometry designs

Guard strip

- Strip impedance 18.3 Ω , guard strip impedance 100 Ω (simulated)
- Crosstalk amplitude drops from $6\% \rightarrow 5.1\%$
 - 1.22 ns FWHM gaussian pulse
 - 1 m transmission distance

✓ Guard strip slightly reduces crosstalk

- Pitches and electrode thickness
 - Different pitch (2 mm spacing kept)

Width [mm]	Crosstalk amplitude (no guard strip)	Impedance [Ω]
35	3.8%	14.4
31	4.2%	16.0
27	6.0%	18.3
23	6.8%	21.2
20	7.5%	23.4

Bakelite thickness

Thickness [mm]	Crosstalk amplitude (no guard strip)	Impedance [Ω]
1.2	6.0%	18.3
1.4	6.8%	18.7

>MTL simulation method and its validation is presented

- Leading order: simulated impedance agrees with measurement
- > Sub-leading order: S-parameter simulation roughly agrees with measurement

Suitable for matching resistors selection

Different readout schemes could be investigated via this method

31 January 2024

Zirui Liu

Key reference:

$$\vec{V}_{T}(t) = \frac{1 + \hat{\Gamma}_{0}}{2} \sum_{j=0}^{\infty} (\hat{\Gamma}_{D} \hat{\Gamma}_{0})^{j} \begin{cases} \hat{Z}_{c} \hat{M} \begin{pmatrix} \hat{M}_{1n}^{-1} I \left(t - \frac{y_{0} + 2jL}{v_{1}} \right) \\ \vdots \\ \hat{M}_{Nn}^{-1} I \left(t - \frac{y_{0} + 2jL}{v_{N}} \right) \end{cases}$$

Credit: <u>Signal coupling and signal</u> <u>integrity in multi-strip resistive plate</u> <u>chambers used for timing applications</u> Diego Gonzalez-Diaz et al.

$$\left\{ \hat{H}_{n}^{2} = \hat{H}_{n}^{2} \hat{H}_{n}^{-1} \left\{ \hat{H}_{n}^{-1} I \left(t - \frac{2(j+1)D - y_{0}}{v_{1}} \right) \\ \vdots \\ \hat{H}_{Nn}^{-1} I \left(t - \frac{2(j+1)D - y_{0}}{v_{N}} \right) \right\}$$

where $\vec{V}_T(t)$ is the *N*-dimensional array of voltages measured by a readout system placed at y=0 when the *N*-strip structure is excited along line *n* by a current I(t) originated at position $y = y_0$. The sum extends over all *j* reflections. The reflection matrices at the near-end (y=0) and at the far-end (y=D) are defined as

$$\Gamma_{0} = \frac{\hat{Z}_{0} - \hat{Z}_{c}}{\hat{Z}_{0} + \hat{Z}_{c}}, \quad \Gamma_{D} = \frac{\hat{Z}_{D} - \hat{Z}_{c}}{\hat{Z}_{D} + \hat{Z}_{c}}.$$
(11)

(10)

Backup

$\eta - \eta$ readout

• S-parameter

- Characteristic frequency $f_c \cong 100 \text{ MHz}$
 - Crosstalk is comparable with main signal
- Ill matching at only leading-order termination

Countermeasure

- Include next-to-leading-order termination
 - Connect face-to-face strips with r' $r = 32 \ \Omega$; $r' = 42 \ \Omega$
- Consider the minus current source on the other strip
 - *I*⁺ and *I*⁻ together contribute to the total collected current

$\eta - \phi$ readout

- Pulse signal test
 - 2 ns width pulse from waveform generator
 - 1 m transmission distance

Results

- Crosstalk amplitude is about 6.6%
- $\circ \quad \eta \phi \text{ readout crosstalk amplitude is} \\ \underset{\text{not significantly higher than single } \eta \\ \underset{\text{readout}}{\text{readout}}$
 - Note: the lower limit of the pulse width of this waveform generator is 2 ns
- $\circ \quad \eta \phi \text{ scheme introduces a more complex shape in crosstalk}$

