Simulation and physics modelling of Active Target TPCs (and solenoidal spectrometers)

Yassid Ayyad (IGFAE - Universidade de Santiago de Compostela)

Cofinanciado por la Unión Europea

- Why active target time projection chambers (AT-TPC)?
- Low-energy nuclear physics with AT-TPC's.
- Key aspects for simulation and analysis.
- Some examples with different setups.
- Outlook.

Why active target time projection chambers?

Direct reactions in inverse kinematics

- An essential probe of nuclear structure.
- Small momentum transfer.
- Large impact parameter (surface).
- Cross section focused on forward direction.
- Very short time scale (~10⁻²² s).
- Energies, angular momentum, overlaps.
- Particle identification, ΔE-E techniques more challenging at low energies.
- Strong energy dependence with respect to laboratory angle.
- Typically leading to poor resolution (100s of keV).
- ... and beams a few to 10^6 orders of magnitude weaker.

- Next-generation Solenoidal Spectrometer
- Study of direct reactions with radioactive ion beams.
- Two modes of operation: Si array for highresolution studies of direct reactions and AT-TPC for reactions with weak (most exotic) beams.

Active Target Time Projection Chamber (AT-TPC)

- High luminosity and large dynamic range.
- High resolution (in principle better than solid state detectors).
- Pure elemental gases.
- Cylindrical configuration: large thickness with moderate cost for electronics.
- Versatile setup for different type of reactions.
- Magnetic field enables rigidity measurement.
- Kinematics reconstruction not trivial…

Gaseous Detector with Germanium Tagging II (GADGET II) Spokesperson: C. Wrede (Michigan State University and FRIB)

- Used to measure β -delayed charged particles and γ -rays with in-flight radioactive beams at FRIB for nuclear astrophysics
- Compact TPC thermalizes beam and measures charged particles (protons, α particles, ...)
- Surrounded by various high-purity germanium arrays for high-resolution γ -ray detection
- First experiment FRIB E21072 ran November, 2022

Key aspects for simulation and analysis

ATTPCROOTv2 data analysis and simulation framework

Servicing many detectors in the low-energy physics community!

Analysis techniques for Active Target Time Projection **Chambers**

Yassid Ayyad^a, Tyler Wheeler^b, Ruchi Mahajan^b, Michelle P Kuchera^c, Raghuram Ramanujan^c, Andreas Ceulemans^d, Tan Ahn^e, Jaspreet Randhawa^e, Juan Carlos Zamora^b, Nabin Rijal^b, Curtis Hunt^b, Chris Wrede^{f,b}, Bruno Olaizola^g, Adam Anthony^{f,b}, Christoph Dalitz^h, Juliane Arningh, Alexandros Kapnidish

¹⁰Be + d scattering at 10A MeV

THE EUROPEAN PHYSICAL JOURNAL A

cial Article - New Tools and Techniques

Kinematics reconstruction in solenoidal spectrometers operated in active target mode

Yassid Ayyad^{1,a}, Adam K. Anthony^{2,3,7}, Daniel Bazin^{2,3}, Jie Chen⁴, Gordon W. McCann³, Wolfgang Mittig^{2,3}, Benjamin P. Kay⁵, David K. Sharp⁶, Juan Carlos Zamora²

E field distortion!Energy (MeV $\frac{ \text{Counds} \; 1/100 \; \text{keV}^1}{\vec{c}_\omega}$ $10²$ 10 50 60 80 90 70 0 6 8 Angle (deg) **Excitation Energy (MeV)**

Experiment

Simulation (no cross sections!)

- Energy (MeV) Counts 1/100 keV $10³$ 15 $\mathbf{0}^2$ 10 10 5 80 50 60 65 75 55 70 2 4 6 8 10 Angle (deg) **Excitation Energy (MeV)**
- ¹⁰Be 10A MeV provided by ReA6 in stand-alone mode. Around 2000 pps!.
- ¹⁰Be material provided by the PSI (Switzerland)
- Pure target of $D₂$ 600 torr.
- Study of negative parity states of ¹¹Be

10

Simulation details

- Large dE/dx dynamic range: beam (1-100 GeV) and reaction products (few MeV).
- Slow drift velocities for gases such as hydrogen or deuterium.
- Two Monte Carlo Engines: Geant4 and a proprietary energy loss manager (multiple scattering).
- Modular detector geometry.
- Generators: two body, decay, fission, fusion...
- Digitalization: Single-electron drift taking diffusion into account (under magnetic field)
- Realistic management of charge spreading in the pad plane.
- Amplification stage NOT simulated in real time (usually Multilayer THGEM and Micromegas, including resistive mode)
- Response of the pad plane: Micromegas coupled with GET electronics.

3.125 # Real value is 6.25 MHz

1000 # Gain of the GET electronics in fC

720 # Electronic peaking time in ns

SamplingRate:Int_t

GETGain:Double t

PeakingTime:Int_t

Reconstruction of simulated data

- Non-linear trajectories.
- Reconstruction using Kalman filter adapted to a large energy loss scenario.
- Improving resolution requieres a precise implementation of multiple scattering and straggling effects of heavy ions.
- What about charge exchange?

Deducing physics using the simulation

Efficiency correction function for the ¹⁰Be+d elastic scattering

Angular distribution of the ¹⁰Be + d elastic scattering corrected by efficiency. The solid circles and the solid line are the experimental data and the DWBA theoretical distribution.

Nuclear Inst. and Methods in Physics Research, A 1051 (2023) 168213

S. Giraud^{a,}", J.C. Zamora^{a,"}, R.G.T. Zegers^{a,b}, Y. Ayyad^c, D. Bazin^{a,b}, W. Mittig^{a,b}, A. Carls^{a,b}, M. DeNudt^{a,b}, Z. Rahman^{a,b}

* Facility for Rare Isotope Beams, Michigan State University, East Lansing, MI 48824, USA
* Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48824-1321, US [«] IGFAE, Universidade de Santiago de Compostela, E-15782 Santiago de Compostela, Spain

AT-TPC + S800 spectrometer (FRIB)

D_{2} gas **¹⁵N beam 10⁵ pps**

 200

100

 -100

 -200

 ${\bf Y}$ [mm]

β ⁺ Gamow-Teller Strengths from Unstable ¹⁴O via the (d, ²He) **Reaction in Inverse Kinematics**

S. Giraud®,^{1,2,3,*} J. C. Zamora,¹ R. G. T. Zegers,^{1,2,3,†} D. Bazin,^{1,3} Y. Ayyad,^{4,1} S. Bacca,^{5,6} S. Beceiro-Novo,^{3,7} B. A. Brown,^{1,2,3} A. Carls,^{1,2,3} J. Chen,^{1,8} M. Cortesi,¹ M. DeNudt,^{1,2,3} G. Hag

Recombination loss and electron-ion production rate in a deuterium gas at 500 Torr and 500 V/cm. Three different beams were assumed at 100 MeV/u and 10^5 pps.

⁴⁶K beam at an energy of 4.6 MeV/u

Simulation with Maxwell + Garfield

Beam

Electron drift

 $\overline{2}$ $\overline{\mathbf{3}}$ $\overline{4}$

 $\frac{1}{x}$ (mm)

 -3 -4

 $\overline{1}$

 (a)

 z (cm)

Pad-plane

 $250 -$

 $200 -$

Beam with

profile (in x and y)

Gaussian

 $\frac{15}{6}$ 150-
 $\frac{150}{100}$

 -3 -2

Beam projection

on pad-plane

 \overline{a} -4 -5 -5

 -4

 $\frac{-1}{x}$ (cm)

Electron re-attachment maximum in this region

Full geometry and physics integrated in ATTPCROOTv2, including TPC and Ge arrays (eg. SeGA and DeGAi below)

R. Mahajan, T. Wheeler *et al***., submitted, arXiv:2401.01904 Figure credit and g-ray simulations: A. Andalib**

Development of 3D Optical Active Target

β-delayed two neutron emission

Two proton radioactivity

- First measurement done at FRIB using a MTHGEM and a Timepix3 camera with 30 torr pure CF_{4} (USC-ANL-FRIB collaboration).
- Development of a simulation framework for Optical TPCs (USC-WIS collaboration). Include optical photons.
- Experiment approved at TRIUMF: Implantdecay of ${}^{16}C$ and ${}^{9}C$.
- Future: OTPC for neutron scattering studies.

Thank you!

Collaboration

Facility for Rare Isotope Beams: Daniel Bazin, Marco Cortesi, Wolfgang Mittig, Juan Carlos Zamora, Chris Wrede, Tyler Wheeler, Ruchi Mahajan, Arian Andalib.

Osaka University (RCNP): Tatsuya Furuno, Takahiro Kawabata, Sojo Sakajo.

Argonne National Lab: Ben Kay.

USC- IGFAE: Yassid Ayyad, Cristina Cabo.

UDC: Saul Beceiro, Harriet Kumi.

WIS : Maryna Borysova, Ryan Felkai.

High Point University: Adam Anthony.

OF SCIENCE

