Introduction to WG3: Gas and Material Studies

B. Alvarez Gonzalez (University of Oviedo - ICTEA) B. Mandelli (CERN) G. Morello (INFN Frascati) A. Pastore (INFN Bari) D. Piccolo (INFN Frascati) F. Renga (INFN Roma) S. Roth (RWTH Aachen University)

drd1-wg3-convenors@cern.ch

DRD1 Collaboration Meeting at CERN 31st January 2024

1

Topics covered by the WG3: gas and material studies

Address common key issues related to gas and materials in the development of existing and future gaseous detectors

- Gas Properties (e.g. cross-section, chemical characterization, measurements)
- Eco-gases studies
- Light emission in gas
- Gas recuperation and recirculation systems
- Gas systems

Gas

Systems

Materials

-ong-term

operation

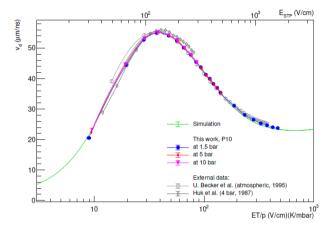
- Sealed detectors and systems
 - Resistive electrodes
 - Solid converters
- Photocathodes (novel, aging, protection)
- Novel materials (e.g. nanomaterials)
- Material properties for detector and infrastructures
 - Light (low material budget) materials
- Precise mechanics
- Ageing
- Outgassing
- Radiation hardness

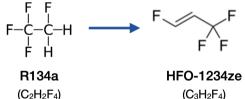
Synergies and common aspects between technologies

Some topics have been identified as being of major interest for most of the gaseous detector communities, where synergies can also be found

GWP 1430

Gas properties


- Common topic for all technologies
- Gas measurements (cross sections, drift velocity, diffusion for electrons and ions, etc.)
- Common database
- Gas simulation
- Gas analysis
- Eco-friendly gases


Eco gases

- Common topic for all technologies
- Studies on new gases
- Chemical characterisation
- Detector ageing

Gas systems

- Common topic for all technologies
- Gas recirculation systems
- Development of recuperation systems
- Development of small recirculation systems for laboratories, facilities, test-beam, etc.
- Gas purity

(C₃H₂F₄) **GWP 6**

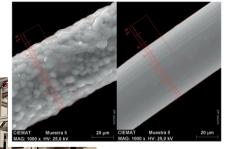
Synergies and common aspects between technologies

Resistive material

- Common topic for MPGD and RPC
- Common development of new materials
- Use of same tools/facilities to construct/test materials

Precise mechanics and material properties

- Common topic for all technologies
- Mechanical tests
- Outgassing tests
- Radiation hardness


Ageing studies

- Common topic for all technologies
- Experience in common
- Material studies
- Radiation hardness studies
- Analysis: gas and material

Assets that the collaboration can support

It is fundamental to have common infrastructures and facilities, that would help in the execution of the projects in a more coherent and economical way as well as they would allow a better sharing of knowledge in the different fields

Gas properties

- simulation (support of software and training to the community): Garfield, Geant4, etc —> WG4
- database common for the different technologies

Material studies and development

 Common tools/facilities to develop and prepare materials —> WG6

Ageing studies

- facilities needed to perform ageing studies (for example GIF++) —> WG7
- infrastructure necessary to run the test (for example trigger system, etc) —> WG7

Outgassing, radiation hardness and material studies

 common facilities can be useful for all technologies —> WG7

ECFA challenges and links with WG3 topics

(0000	2025-	2040-2045	Muon system Proposed technologies: RPC, Multi-GEM, resistive GEM, Micromegas, micropixel Micromegas, µRwell, µPIC	Rad-hard/longevity Time resolution Fine granularity Gas properties (eco-gas) Spatial resolution Rate capability	
1.1 1.1 1.1 1.3 1.1 1.3 1.1 1.3 1.1 1.2 1.2 1.2 1.2 1.1 1.3 1.1 1.2 1.2 1.2 1.2 1.2 1.2 1.2			Inner/central tracking with PID Proposed technologies: TPC+(multi-GEM, Micromegas, Gridpix), drift chambers, cylindrical layers of MPGD, straw chambers	Rad-hard/longevity Low X _o IBF (TPC only) Time resolution Rate capability dE/dx Fine granularity	Gas Properties Eco-gases studies Light emission in gas Gas recuperation and recirculation systems
11 11 11 11 13 13 11 12 11 13 13 14 15 16 17 18 11 13			Preshower/ Calorimeters Proposed technologies: RPC, MRPC, Micromegas and GEM, µRwell, InGrid (integrated Micromegas grid with pixel readout), Pico-sec, FTM	Rad-hard/longevity Low power Gas properties (eco-gas) Fast timing Fine granularity Rate capability Large array/integration	Gas systems Sealed detectors and systems Resistive electrodes Solid converters Photocathodes Novel materials Material properties for detector and infrastructures Light (low material budget) materials
12 11 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14			Particle ID/TOF Proposed technologies: RICH+MPGD, TRD+MPGD, TOF: MRPC, Picosec, FTM	Rad-hard (photocathode) IBF (RICH only) Precise timing Rate capability dE/dx Fine granularity	Precise mechanics Ageing Outgassing Radiation hardness
DRDT 1.2 Achieve trac in large volu schemes DRDT 1.3 Develop em areas with t	Reach ReD needs being met e and spatial resolution for tability king in gaseous detectors mes with very low material	at to meet several physics goals or gaseous detectors with with dE/dx and dN/dx capability <u>I budget</u> and different read-out seous detectors for very large and high-pressure TPCs	TPC for rare decays Proposed technologies: TPC+MPGD operation (from very low to very high pressure)	Low power <u>Fine granularity</u> Large array/volume Higher energy resolution Lower energy threshold Optical readout <u>Gas pressure stability</u> Radiopurity	31 Jan 2024

Common objectives for WG3

_		Reference	Description	Common Objective	
Gas		D3.1.1	Gas properties: drift velocity, diffu-	Common gas properties	
		sion for e- and ions, gain measurements,	database		
		light emission, attachment, etc.			
		D3.2.1	Characterisation of new eco-friendly	New data for the integration in	
			gases: gas properties, cross-section, etc.	Magboltz and Garfield++ (col-	
S			laboration with WG4)		
	D3.3.1	Longevity and ageing studies for differ-	Report for a common approach		
		ent technologies			
	D3.3.2	Characterisation of material for the con-	Common construction mate-		
Materials			struction of detectors: material proper-	rial database	
			ties, compatibility, outgassing, etc.		
Materials N		D3.4.1	Development of gas recirculation and	New design and knowledge	
			recuperation systems	transfer	
		D3.5.1	Resistive material: characterisation of	Common resistive material	
			different materials	database and procedures	
at		D3.6.1	Mechanics: compression, rigidity, ma-	Common approach for the dif-	
Σ	<u> </u>		chining precision, etc.	ferent technologies	

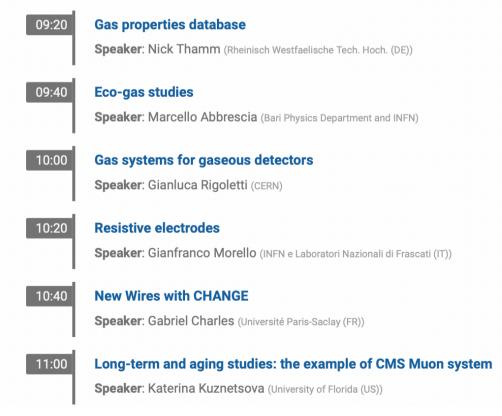
Table 13: WG3 - Common Objectives

Long-term operation

Systems

WG3 communication channels and activities

Contact email: drd1-wg3-convenors@cern.ch


Mailing list: <u>drd1-wg3@cern.ch</u> E-group link to subscribe: <u>DRD1-WG3</u>

- WG3 conveners will organise dedicated meetings to discuss specific topics: please send to us feedback about possible needs, interests or ideas

- Well-defined common objectives in the DRD1 Proposal: community is welcome to start contributing. Several aspects to take into accounts (know-how on R&D hardware, database, software, etc.). Need several and versatile expertises in the WG3

Summary

- The DRD1 WG3 aims to address key issues, related to gas and material studies, common to all gaseous detector technologies under development for future applications
- The WG3 main research topics are well linked with the ECFA themes and strongly connected to several tasks currently foreseen for the DRD1 Working Packages
- Shared resources, facilities and expertise will be key ingredients to achieve the WG3 common objectives which will also take advantage of synergies with other DRD1 WGs
- Today's session is a starting point for a collaborative discussion on topics and synergies of the WG3 within the DRD1 and especially within the different technologies

Back-up slides

Impacts of some topics in the Physics roadmap

Use of F-gases for future particle detectors

- European Union F-gas regulation is aiming to phase out most of F-gases in the coming years
- Implementation of several strategies to reduce the GHG emissions in particle detection

Longevity of the detectors

- In future accelerators, the accumulated charge will reach also hundreds of C/cm²
- Fundamental to validate detectors in these harsh environments

Gas recirculation Gas recuperation Eco-gas studies

Gas Properties

Sealed detectors and systems

Muon systems Calorimetry Photon detection Particle ID/TOF

Material properties Ageing studies

Outgassing Radiation hardness

Muon systems Inner/central tracking Calorimetry Particle/IDTOF

Impacts of some topics in the Physics roadmap

Improve in rate capability and time resolution

- Rate capability: operation at flows up to ~10 MHz/cm² (especially muon and inner/central tracking)
- Time resolution: depending on the application we can go down to less than hundreds ps

Construction of new detector systems

- Very large detector systems are foreseen for new experiments
- The design and construction are fundamental for the good success of the experiment
- Both manufacturing on an industrial scale and optimisation of the design will be necessary

Gas properties Resistive electrodes Solid converters Photocathodes Novel materials

Muon systems Inner/central tracking Calorimetry Particle ID/TOF

Gas systems

 Material properties for detector and infrastructures
Light (low material budget) materials
Precise mechanics

All detector systems

*amples