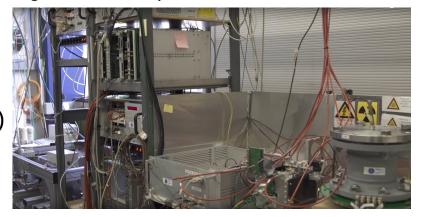
The Aachen Gas Database

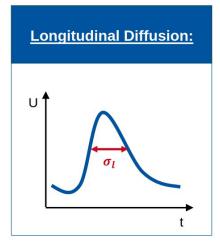
DRD1 - 1st Collaboration Meeting

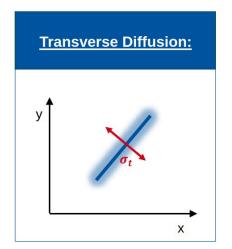
Nick Thamm, RWTH Aachen University

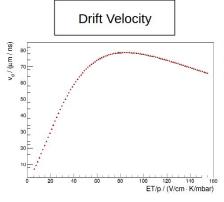

CERN (online) - 31.01.2024

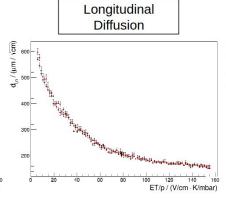
The Aachen gaseous-detector group

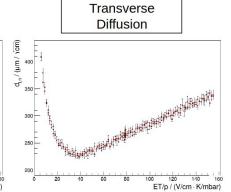
- TPC R&D and operation
 - Participation in the T2K experiment (near detector gaseous TPC)
 - Involved in the ongoing upgrade
 - Calibration of TPC data for optimum track reconstruction
- Construction of monitor chambers (Mini-TPCs)
 - Continuous measurement of gas quality for best tracker performance
 - Rolling calibration of TPC
 - Detector safety
- Mini-TPCs:
 - Measurements of electron drift parameters
 - Wide range of operating pressures and drift fields
 - Various types of anode topologies
 - Mixing of gases with sub-percent accuracy

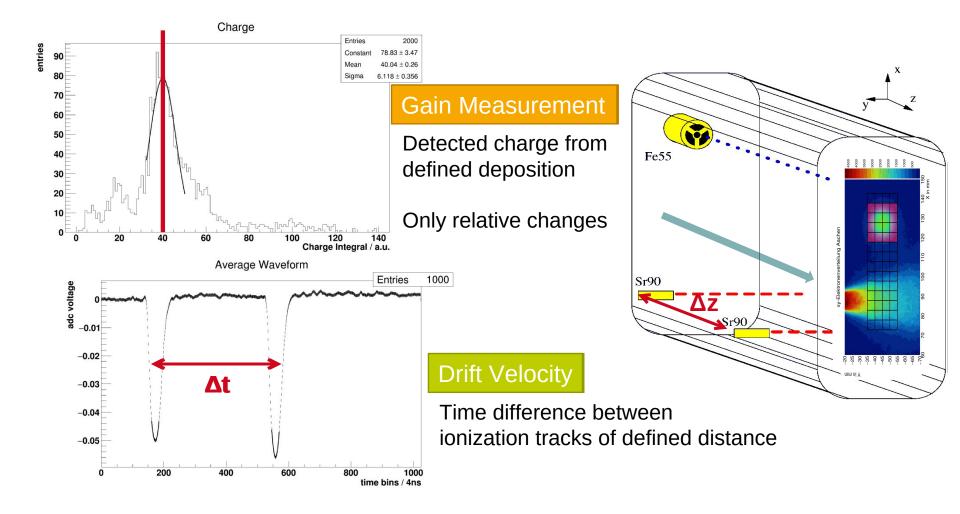




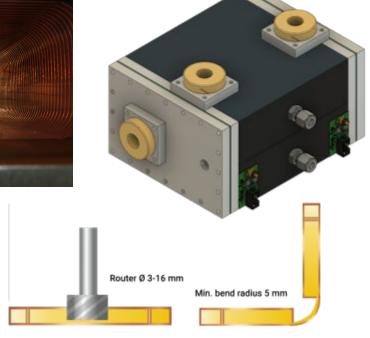


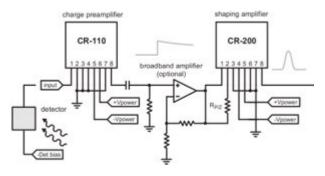

Measurement quantities





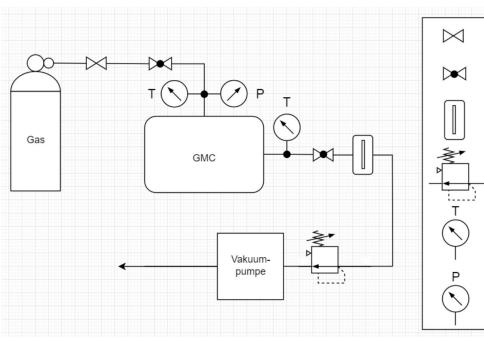
Gas Monitoring System @ ND280 / RWTH





Gas monitor chambers (GMC)

- Field-cage:
 - Semi-flex PCB
 - FR4 less hygroscopic
 - Halogen-free
 - Easier gluing
 - New strip geometries
- Amplifier:
 - Commercial solution
 - Cremat charge sensitive amplifier and shaper
- Materials:
 - Radiation-hard (PEEK / POM)
 - Low outgassing
- Auxiliary sensors
 - Temperature
 - Pressure
 - Humidity
 - Oxygen



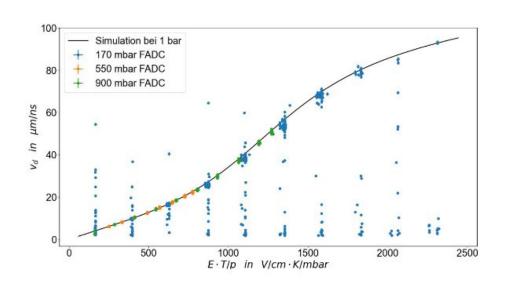
High/Low Pressure GMC

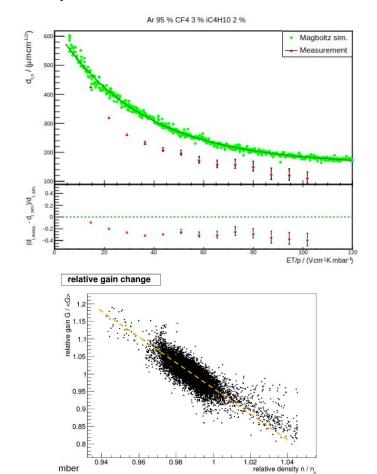
- Existing GMC setup for high pressures up to 10bar (HPGMC)
- Easily adaptable for low pressure measurements
 - External vacuum pump
 - Vacuum regulator integrated into system

Nadelventil

Durchflussregler und -messser

Vakuumregler

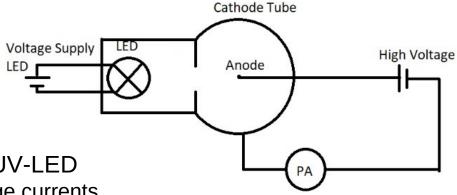

Temperatursensor


Drucksensor

Ventil

Results on high/low pressure

- Electron drift parameters scale with temperature and pressure
- Various measurement-techniques
 - Time-over-threshold
 - Waveform-fitting
- Results show good agreement with simulation

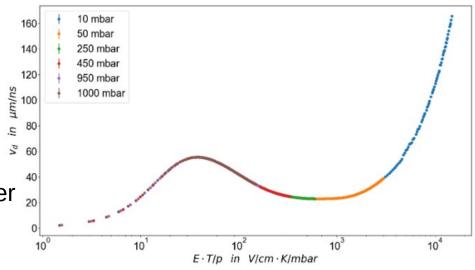


Ongoing work

Measurement of first Townsend coefficient

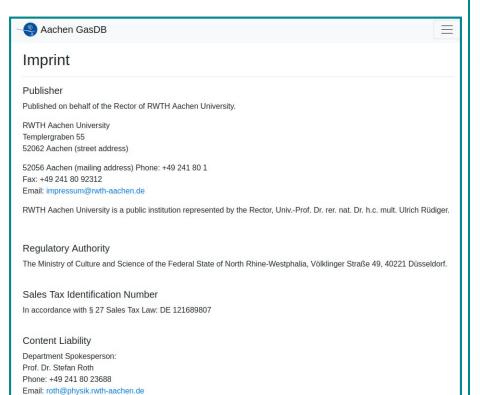
- Measure current through drift-tube
- Scan voltage from 0V to O(kV) to vary drift-field

Picoamperemeter


- Induce current by photoeffect with UV-LED
 - Toggle LED to compensate for leakage currents
- Calculate from current to gas gain amplification
- Match gas gain to first Townsend coefficient
- Compare to simulation

Simulation

- Magboltz / Pyboltz
 - Programs to simulate electron transport in gas mixtures
 - Drift velocity
 - Diffusion (longitudinal / transverse)
 - Gas gain (Townsend-coefficient / attachment)
 - https://magboltz.web.cern.ch/magboltz/
 - Actively maintained
 - Included into Garfield++
 - https://github.com/UTA-REST/PyBoltz
 - Not actively maintained?
- Custom scripts to run simulations in batch-mode on RWTH computer cluster


gasDB

gasDB - features

Overview

This database is filled with both simulations and measurements. At the moment, only simulation runs performed with MagBoltz, configured and run through Garfield++ on our local computing cluster, are available. The corresponding MagBoltz versions are given within the run names of the simulations. Measurements are done in-house with various detectors of the Gas Monitoring Chamber type (T2K-style GMC and HPGMC). Some data was imported from publications, see the run names for the original sources.

Usage

The workflow is from left to right:

- 1. Select the desired gases one by one from the dropdown list, then click the "Submit Gases" button.
 - Uncheck "Strict" if additional gases are allowed in the mixture, as available.
- 2. Select a specific mixture from the dropdown list, then click the "Submit Mixture" button.
 - $\,{}^{\circ}$ You can type in the field to filter the mixtures and only display those which match your input.
- 3. Select a run from the dropdown list, then click the "Add Run to List" button to add it to your plotting and download list.

By default, no range restrictions are applied to E, p, or B. If desired, these have to be set before submitting the gas mixture.

Runs on the runs list can be downloaded. Error bars displayed in the plots correspond to the total errors, but exported data distinguishes between statistical and systematic errors. The exported data is in human readable format and can be read into Python with our example project example.py.

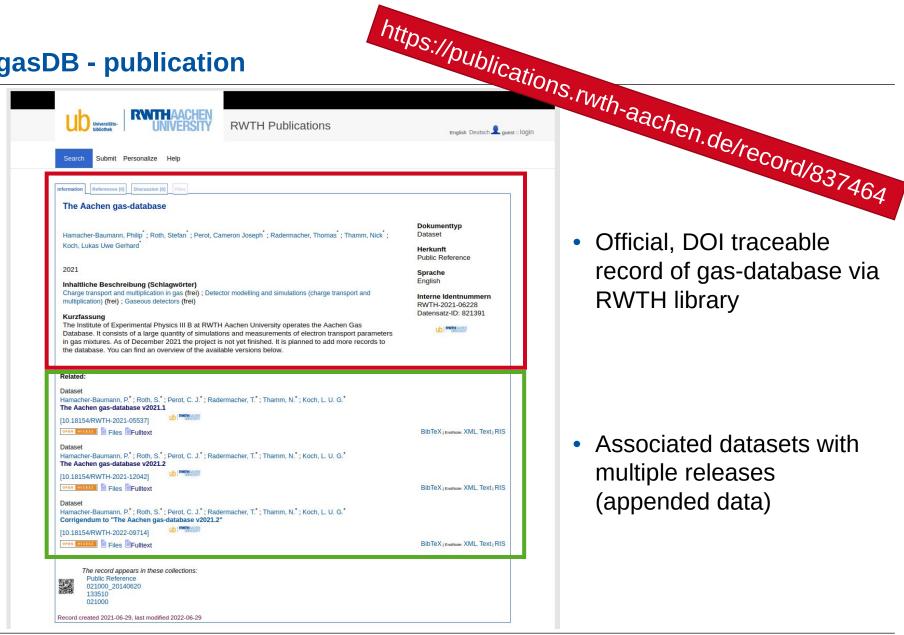
For online plotting, a number of options are available, most of which are self-explanatory. Density scaling corrections for comparing electron swarm parameters at different pressures or temperatures are a useful preselection possibility, since simulation runs can contain scans in the gas density. More details on density corrections can be found under Density Scaling.

Density Scaling

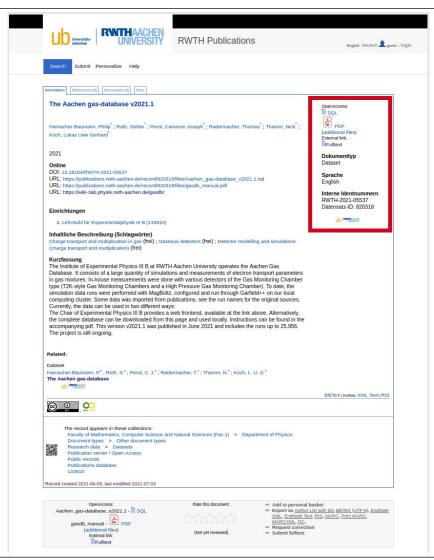
For a given gas mixture, all swarm parameters depend in one way or another on the gas density. Given sufficient distance from phase boundaries of the mixture components, the ideal gas law can be used to factor in the change in gas density:

$$pV = nRT$$

gasDB - features


- Web-Interface
 - For quick comparisons
- .csv data-download
 - Including python-parsing example script
- Introductory information on gas-parameters / simulation
 - What exactly is provided and how does T/p-scaling work
- Citation information
 - Bibtex format
- Imprint
 - For legal reasons. Adjusted RWTH-version
- Contact information
 - For questions or requests for additional datasets

gasDB - publication


Official, DOI traceable record of gas-database via **RWTH library**

 Associated datasets with multiple releases (appended data)

gasDB - data release

- Database release accessible via individual DOI
 - Provides dataset, "manual" for dataset and citation information

Why this talk?

- Discussion about database in WG3 for the DRD1 proposal
- Common objective D3.1.1 of WG3
- Proposal to discuss a future common database at this CM

Scientific Proposal & Research Framework

v1.3

Reference	Description	Common Objective
D3.1.1	Gas properties: drift velocity, diffusion for e- and ions, gain measurements,	
	light emission, attachment, etc.	

Options

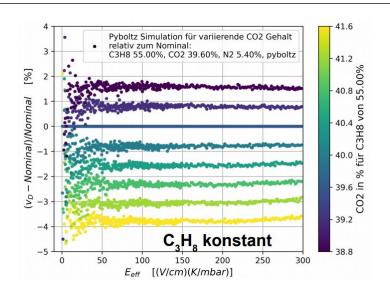
- Use database as is
 - Add external measurements and simulations on specific request (with limited service)
- Host and maintain database in a common effort
 - within WG3 "Gas and Material Studies" of DRD1
- Take the database as "inspiration" for a future tool with extended capabilities
 - There are many old gas databases, which could be imported
 - CERN tool Zenodo could be used to provide datasets

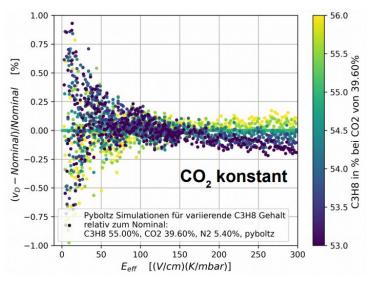
In case of interest, please contact us! stefan.roth@rwth-aachen.de

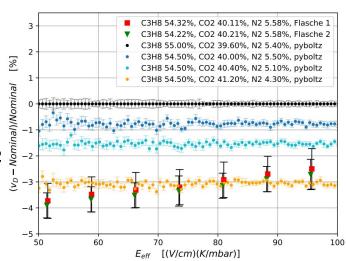
Thank you!

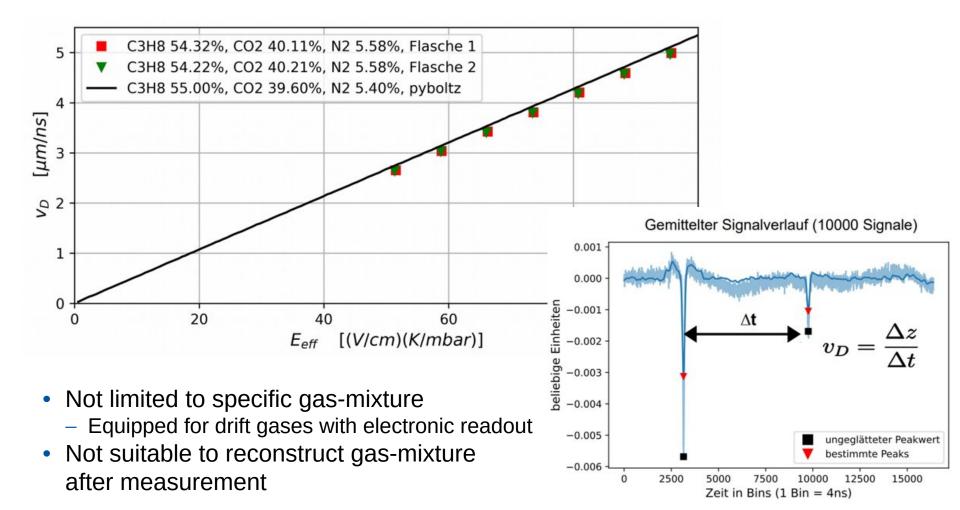
Backup

Conclusion

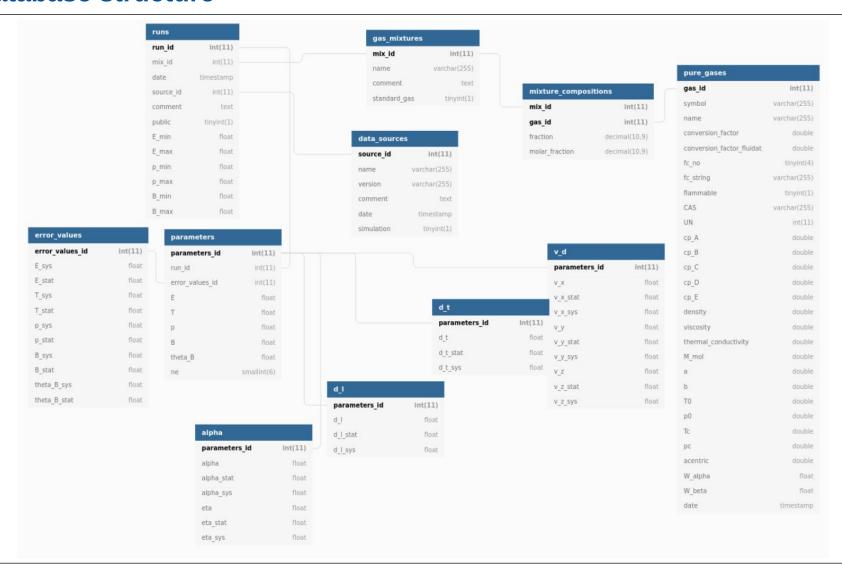

- Aachen gas database is a useful tool for developing and operating gaseous detectors
- Results are traceable and publicly available
- Database is easily extendable and published results could be imported
- Ongoing work on adding more results and new measurement techniques




Gas Monitoring System - Limitations

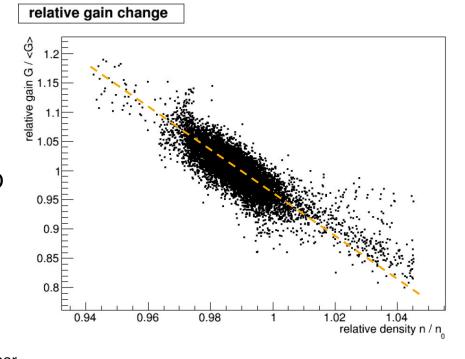

- Reconstructing impurities via simulation
- VD mostly sensitive to percentage of alkanes
- No exact match between measurement/simulations
- --> Probably detector effect

Gas Monitoring System - Limitations


Technical aspects

- Data sources
 - Measurements, papers, simulations
- Very lightweight load from outside interactions
 - No powerful server needed
 - Refurbished lab-PC as server
- Interface self-hosted on dedicated lab-server
 - Podman / docker container with Flask / jQuery / Plotly / Bootstrap
- Database hosted on cluster infrastructure
 - Central mysql installation
 - Read-only user for data-access
 - Read/Write user to add data
- Domain hosted by RWTH and forwarded to lab-server
 - RWTH points to Physik-3B-Apache installation (webserver)
 - Webserver reverse proxies to lab server (apache)
 - Managed by physics IT-department

Database structure

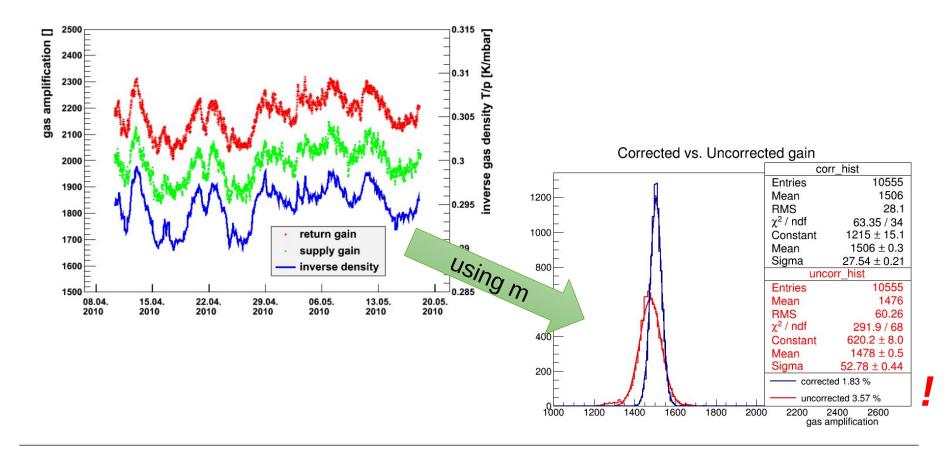

Gain Calibration

- Correction depends on amplification technology (E-field shape)
 - Pixel / pad detectors use homogenous amplification field (1st order)

$$rac{\Delta G}{G_{
m STP}} = m rac{\Delta rac{p}{T}}{rac{p_0}{T_0}}$$
 $G_{STP} = G(T_0, p_0)$

- typical values for $m \approx -3$
- Application in TPC calibration
- Calculate current gain for single PAD

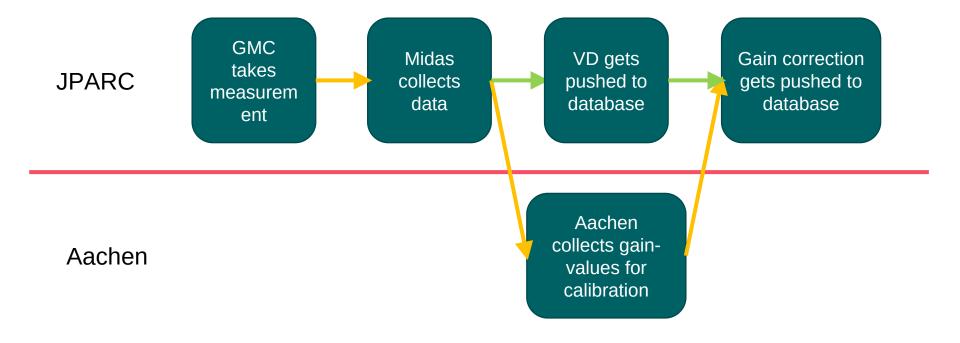
from calibration DB $G_{\rm PAD} = G_{\rm STP} \quad \left(m \left(\frac{p/T}{p_0/T_0} - 1 \right) + 1 \right)$ Measured by monitoring chamber



Gas Amplification

Density effects

- Gas amplification changes a lot over the runtime of an experiment
- Caused by density fluctuations (i.e. weather)



Slow-control

- GMC is technically a digital sensor
 - No external interactions required
 - Measurements are written onto self-contained DAQ-PC

Configurations

- Pleged 4 GMCs
- Multiple anode-setups possible
 - ERAMs and Bulk-MMs
- Two suggestions:

Setup 1	Setup 2
Gas-supply (vTPC) – Bulk	Gas-supply (vTPC) – Bulk
Gas-exhaust (vTPC) – Bulk	Gas-exhaust (vTPC) – Bulk
Gas-supply (HAT) – ERAM	Gas-exhaust (HAT) – Bulk
Gas-exhaust (HAT) – ERAM	Gas-exhaust (HAT) – ERAM

Modular Deployment of GMCs

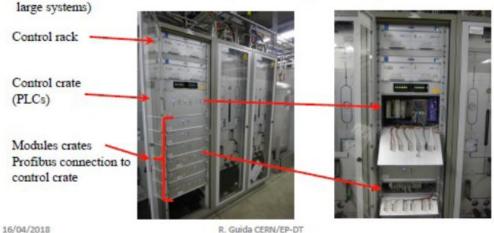
Only needs gas connection, power and ethernet link

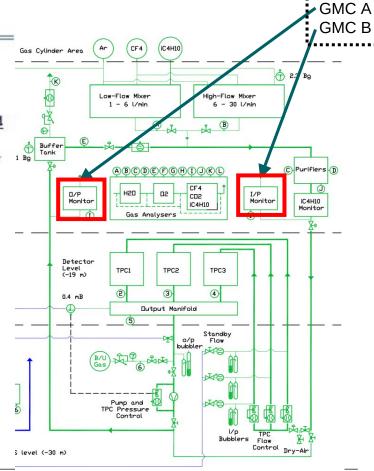
Current setup with 2 crates

- 2 GMC crates
 - 2 Gas Monitoring Chambers
 - Pressure sensors
 - Temperature sensors
 - Preamps
- 2 (VME) DAQ and HV crates
 - FADC
 - Trigger Board
 - SiPM power supply
 - Anode & cathode power supply
 - § Security Loop
 - Storage slot
 - Computer

 \rightarrow Total of 4 crates ~20U in 19" rack space (2x 10U)

Gas System


Current situation



Gas system construction: modularity

- Gas systems are made of several modules (building blocks): mixer, pre-distribution, distribution, circulation pump, purifier, humidifier, membrane, liquefier, gas analysis, etc.
- Functional modules are equal between different gas systems, but they can be configured to satisfy the specific needs of all particle detector.

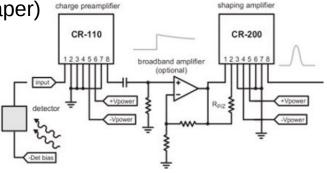
Implementation: control rack and crates (flexible during installation phase and max modularity for

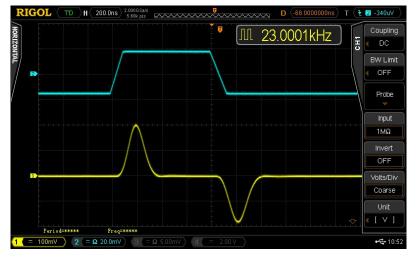
Gas-System / installation

- GMC should have security loop
 - Switch off, when no T2K-gas is present
 - Best: hardware, OK: software
- Ideally seperate gas-stream for GMC
 - Currently 6 I/h
- GMC could profit from auxiliary measurements from gas-system
 - E.g.: Water, Oxygen
- For radioactive sources, GMC should be accessible from top
 - If rack-space is rare, GMC could be mounted on drawer rails
 - Flexible tube connection
 - Rack dimensions need to be known!
- GMC has over-pressure valves
 - Is there a need to connect them to gas-loop?

Questions?!

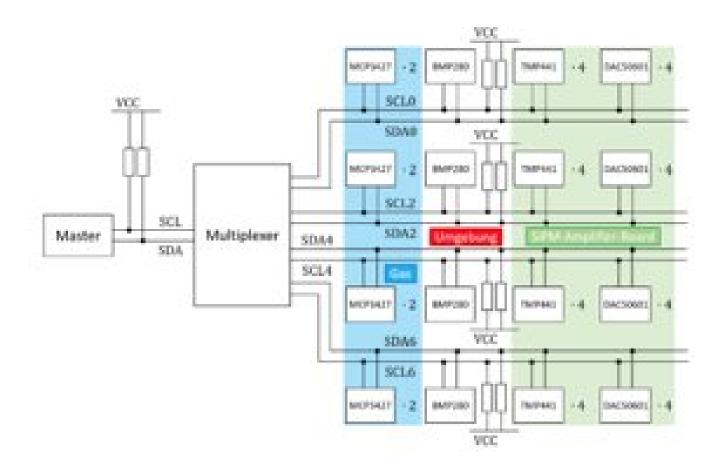
- Which GMC configuration is desired by the HAT-group?
- Where will the GMCs be installed?
 - Gas-shack or detector-level?
- Is there any public information available for the gas-system?
 - Sensors, connections, ...
- Will there be any interaction between gas-system and GMC?
- What is the best meeting, to ask GMC-integration related questions?
- Where should we provide any information on t2k.org?
 - Currently old information hidden in ~5 submenus
 - nd280/tpc/operation/gas/GasMonChambers

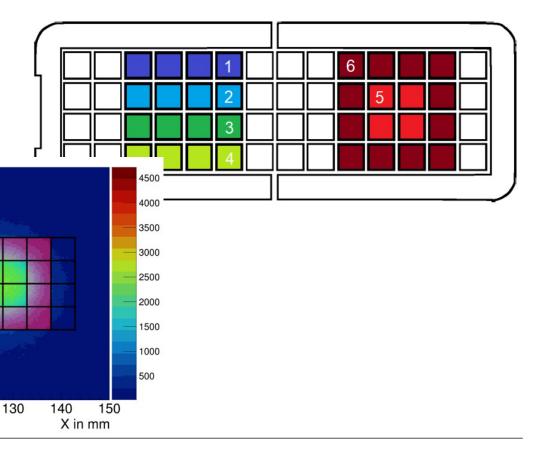

Amplifier


- New amplifier-modules testing going on with custom PCB
 - +/- 12V input (provided by VME backplane)

- 3 channels (charge sensitive amplifier + guassian shaper)

Test input for calibration and functionality-checks





Micromegas Subdivision

- MM pads are subdivided into groups
 - Horizontal bars for drift measurement
 - Ring/Pad for gain-measurement
 - Ring -> Veto pad

90

100

110

120

-20

-25

-30

-35

-40

-45

-50

–55 –60

-65

-70 60

70

80

Y in mm

Amplifier / DAQ

- Combination of charge-sensitive-amplifier and shaper
 - Several combinations possible (various gain-options / shaping times)
- Waveforms are digitized with CAEN VX1720
 - 250MS/s, 12bit FADC

Specifications	Assume temp =20 °C, V _s = ±6	6.1V, unloaded output
·.	CR-110-R2	units
Preamplification channels	1	
Equivalent noise charge (ENC)*		
ENC RMS	200	electrons
	0.03	femtoCoul.
Equivalent noise in silicon	1.7	keV (FWHM)
Equivalent noise in CdZnTe	2.4	keV (FWHM)
ENC slope	4	elect. RMS /pF
Gain	1.4	volts / pC
	62	mV / MeV(Si)
Rise time **	7	ns
Decay time constant	140	μs
Unsaturated output swing	-3 to +3	volts
Maximum charge detectable per event	1.3 x10 ⁷	electrons
	2.1	pC
Power supply voltage (V _s)	11 112	20
maximum	$V_s = \pm 13$	volts
minimum	$V_s = \pm 6$	volts
Power supply current (pos)	7.5	mA
(neg)	3.5	mA
Power dissipation	70	mW
Operating temperature	-40 to +85	°C
Output offset	+0.2 to -0.2	volts
Output impedance	50	ohms

Specifications	Assume temp =20°C, V _s = ±9V, u	nloaded output
	CR-200	units
amplification channels	1	
polarity	non-inverting	
operating temperature range	-40°C to 85°C	
input noise voltage		
CR-200-50ns	115	μV RMS
CR-200-100ns	90	μV RMS
CR-200-250ns	60	μV RMS
CR-200-500ns	47	μV RMS
CR-200-1µs	36	μV RMS
CR-200-2µs	30	μV RMS
CR-200-4µs	24	μV RMS
CR-200-8µs	22	μV RMS
output impedance	<5	Ω
output offset	-40 to +40	mV
output temperature coefficient	-60 to +60	μV/°C
power supply voltage (V _s)		
absolute maximum	$V_s = \pm 13$	volts
minimum	$V_s = \pm 5$	volts
quiescent power supply current	7	mA
maximum output current	20	mA
maximum output swing*	V _S -0.5	volts

^{*} for CR-200-50ns maximum output is +/-6V or V_s-0.5, whichever is less.

High voltage

- ISEG VME modules (same as old GMCs)
 - ISEG VHS 4005p / 500V (ERAM)
 - ISEG VHS 4060n / –6kV (Drift)
- Ripple and noise
 - f>10Hz: <10mVpp</pre>
 - f>1kHz: <2-3mVpp</p>
- By now, no filter on MM installed
 - DLC more susceptible to noise?
- Connection via round solder-point

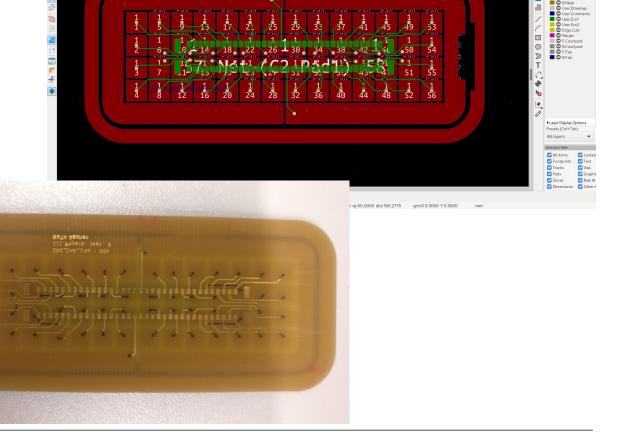
SPECIFICATIONS	VHS Common-GND (CG)
Polarity	Factory fixed, positive or negative
Ripple and noise (f > 10 Hz)	< 10 mV _{p-p}
Ripple and noise (f > 1 kHz)	< 2 - 3 mV _{p-p}
Stability	
Stability – [ΔV _{out} vs. ΔV _{in}]	< 1 • 10 ⁻⁴ • V _{nom}
Stability – [ΔV _{out} vs. ΔR _{load}]	< 5 • 10 ⁻⁴ • V _{nom}
Temperature coefficient voltage measurement	< 50 ppm / K
Temperature coefficient current measurement	< 50 ppm / K
Resolution – The resolution of measurable values	depends on the settings of the sampling rate and the digital filter!
Resolution voltage setting	< 2 * 10 ⁻⁶ * V _{nom}
Resolution current setting (trip)	< 2 • 10 ⁶ • I _{nom}
Resolution voltage measurement (1	< 2 • 10 ⁻⁶ • V _{nom}
Resolution current measurement [l _{ost} > 20 µA] ^{[1}	< 2 • 10 ⁶ • I _{nom}
Measurement Accuracy – The measurement accu	racy is guaranteed in the range 1% • V _{nom} < V _{out} < V _{nom} and for 1 year
Accuracy voltage measurement	± (0.01 % • V _{out} + 0.02 % • V _{nom})
Accuracy current measurement [I _{out} > 20 μA]	± (0.02 % • I _{out} + 0.02 % • I _{nom})
Sample rates ADC (SPS)	5, 10, 25, 50, 60, 100, 500 [©]
Digital filter averages	1, 16, 64 ¹² , 256, 512, 1024
Voltage ramp up / down	1 • 10 ⁻⁶ • V _{nam} /s to 0.2 • V _{nom} / s
Hardware limits	Potentiometer per module [V _{max} / I _{max}]
Limit monitor volt	2.5 V
Digital interface	VMEbus
Protection	Safety loop, over load and short circuit protected (ATTENTION: there is only one short circuit or arc per second allowed!)
HV connector	Redel 51pole SHV
System connector	96-pin connector according to DIN 41612 (MMS HV compatible)
Safety loop connector	Lemo 2pole
Limit monitor connector	Lemo 2pole
Case	6U VME cassette (single and double width)
Dimensions – L/W/H	164mm 4HP,(8HP) / 6U VME cassette,
Operating temperature	0 - 40 °C
Storage temperature	-20 - 60 °C
Humidity	20 - 80 %, not condensing

²⁾ Standard factory settings

Table 1: Technical data: Specifications

Pad dimensions:

- Pitch: 5mm

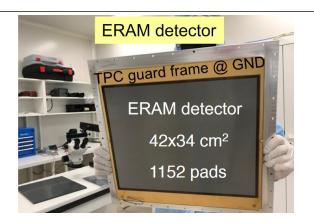

Distance between pads: 0.5mm

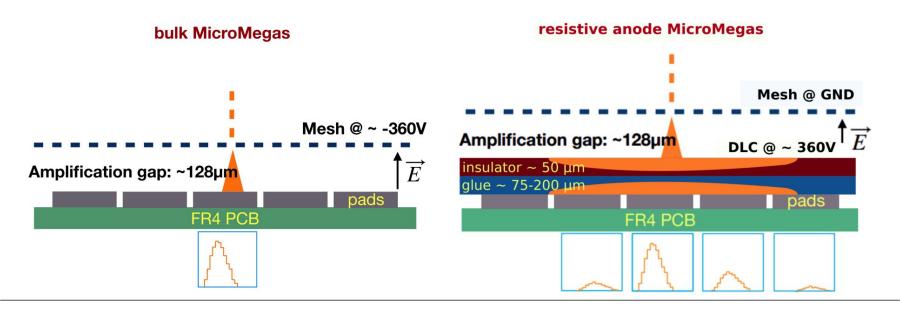
 Larger veto-pads around segmented plane

HV-ring around all pads

Corner radius: 10mm

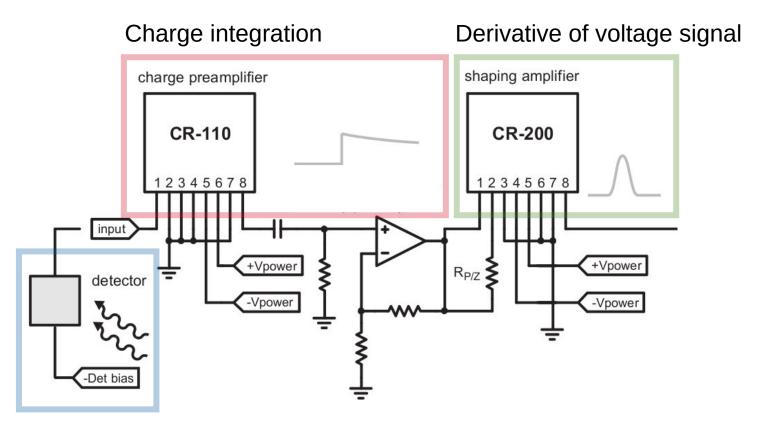
HV connection





Anode (Micromegas / ERAM)

- Large TPCs are changing technology
 - Bulk micromegas vs resistive micromegas (ERAM)
- Resistive layer introduces charge-spread
 - DLC foil acts as intrinsic sparking protection
 - Charge-spread reduces number of required pads
 - Mesh @ GND
 - Equipotential plane for whole detector.



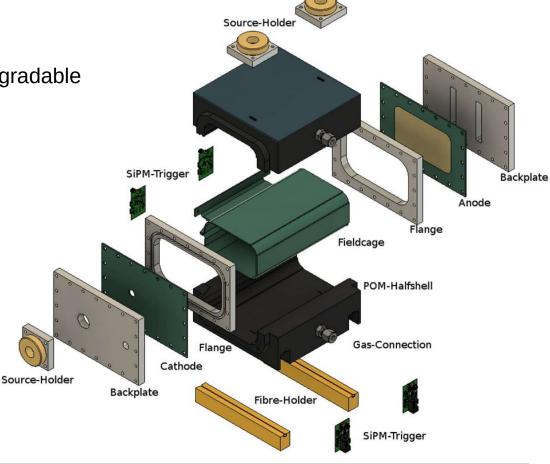
Micromegas signal

Signal of several 1000 electrons

General idea for GMCs

Choice of materials (PEEK, POM, G10, ...)

Radiation hardness, halogen free


Low outgassing

Modular approach

Make anode easily replacable / upgradable

Rack-mountable system

Interesting databases / material information

Starting points (!) for "material selections"?

- https://outgassing.nasa.gov/outgassing-data-table
- https://www.ensingerplastics.com/en/plastic-material-selection/radiation-resistant
- https://www.klebeprofi.net/klebe-anleitungen/
- https://www.matweb.com/
- https://www.nist.gov/srd/physics
- http://cyclotron.mit.edu/drift/www/
- https://ncsx.pppl.gov/NCSX_Engineering/Materials/VacuumMaterials/Outgassing_ Data.pdf
- Database of databases would be really useful!

Setup at CERN

