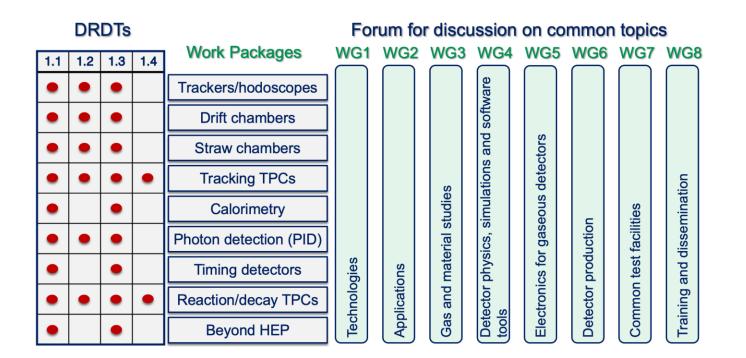


1st DRD1 Collaboration meeting

Work Packages


Piotr Gasik FAIR, Darmstadt, Germany)

Working Groups

2

The scientific organization is structured in eight Working Groups, the core of the scientific collaboration:

Following the indication of ECFA Detector Panel two areas of Detector R&D :

- "Blue-sky" R&D (competitive, short-term responsive grants, nationally organised)
- Strategic R&D via DRD Collaborations (long-term strategic R&D lines) (address the high-priority items defined in the Roadmap via the DRDTs)

Two types of DRD1 joint projects will be implemented:

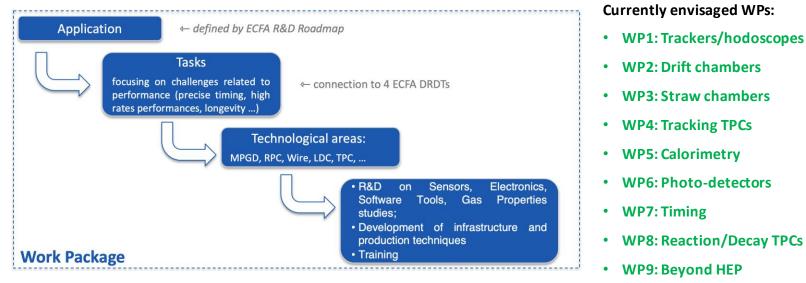
3

Common projects

For low-TRL (blue sky) R&D, or other short term generic projects

Work Packages

Strategic R&D targeting the priority programmes outlined in the updated European Strategy for Particle Physics



Work Packages

Strategic R&D (according to the ECFA Detector R&D Roadmap) is organized in Work Packages

• WPs consolidate activities across institutes with shared research interests, encompassing applications, challenges, technologies, detector technologies, and tasks outlined by Working Groups.

- It is not required to be involved in a WP to be a member of DRD1
- It is required to be a member of DRD1 to contribute to a WP

5

- Encompass long-term projects with significant strategic R&D goals and corresponding funding lines.
- Active contribution to the scientific program, R&D environment, infrastructure, and tools within DRD1.
- Integration of activities from Working Groups, where feasible (e.g., simulation, electronics).
- Way to get funding and a way to get involved in strategic R&D!

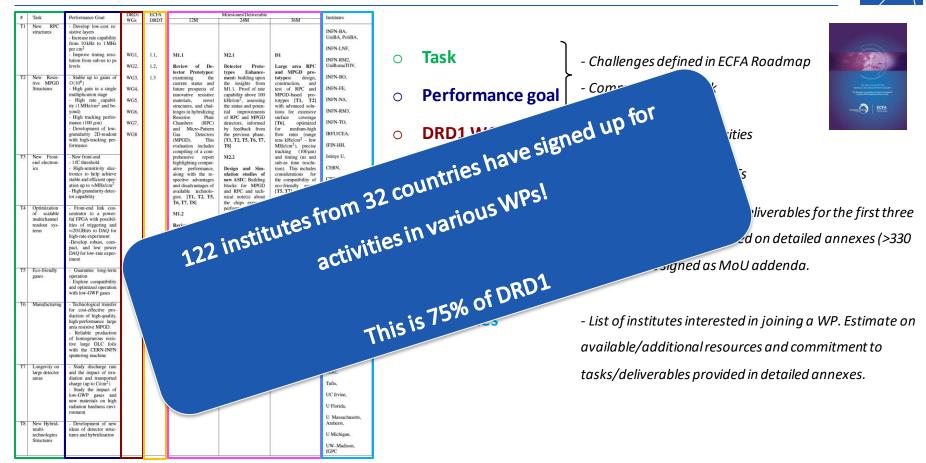
WP funding

- Funding for WPs is provided to participating institutes by their respective **Funding Agencies** through major lines aligned with ECFA detector R&D priorities.
- Funding Agencies approve their Resource commitment in the WPs.
- Participating institutes maintain control and operational authority over the allocated resources.

Extended proposals

7

- In the course of the DRD1 proposal preparations, nine WPs were established, incl. ad-interim coordinators
- A great collaboration- and community-building effort! Bottom-up approach!
- Each Work Package has its own structure, detailed working plan description, incl. deliverables and milestones
- Extended proposals submitted as an additional document (333 pages) with the DRD1 proposal
 - \rightarrow base for MoU addenda
- See presentations today to learn about various WPs!
- See also: <u>https://drd1.web.cern.ch/wp</u>


WP tables in the DRD1 proposal

#	Task	Performance Goal	DRD1 WGs	ECFA DRDT	12M	Milestones/Deliverable 24M	36M	Institutes			
TI	New RPC structures	 Develop low-cost re- sistive layers Increase rate capability from 10 kHz to 1 MHz 						INFN-BA, UniBA, PoliBA,			、
		 Improve timing resolution from sub-ns to ps levels 	WG1, WG2,	1.1, 1.2,	M1.1 Review of De-	M2.1 Detector Proto-	D1 Large area RPC	INFN-LNF, INFN-RM2, UniRomaTOV,	0	Task	- Challenges defined in ECFA Roadmap
T2	New Resis-	- Stable up to gains of	WG3,	1.3	tector Prototypes: examining the	types Enhance- ment: building upon	and MPGD pro- totypes: design,	INFN-BO,			
	tive MPGD Structures	O(10 ⁶) - High gain in a single multiplication stage	WG4,		current status and future prospects of innovative resistive	the insights from M1.1. Proof of rate canability above 100	construction, and test of RPC and MPGD-based pro-	INFN-FE,		Dorformonco gool	- Community feedback
		 High rate capabil- ity (1 MHz/cm² and be- 	WG5,		materials, novel structures, and chal-	kHz/cm ² , assessing the status and poten-	totypes [T1, T2] with advanced solu-	INFN-NA,	0	Performance goal	
		yond) - High tracking perfor-	WG6,		lenges in hybridizing Resistive Plate	tial improvements of RPC and MPGD	tions for extensive surface coverage	INFN-RM3,		-	are the second sec
		mance (100 µm) - Development of low-	WG7,		Chambers (RPC) and Micro-Pattern	detectors, informed by feedback from	[T6], optimized for medium-high	INFN-TO,	~	DRD1 WGs	Link to DDD1 M/Co. activition
		granularity 2D-readout with high-tracking per- formance	WG8		Gas Detectors (MPGD). This evaluation includes	the previous phase. [T1, T2, T5, T6, T7, [T8]	flow rates (range tens kHz/cm ² - few MHz/cm ²), precise	IRFU/CEA, IFIN-HH,	0	DKD1 WGS	- Link to DRD1 WGs activities
13	New Front-	- New front-end			compiling of a com- prehensive report	M2.2	tracking (100 µm) and timing (ns and	Istinye U,			
350	end electron- ics	- 1 fC threshold - High-sensitivity elec-			highlighting compar- ative performance,	Design and Sim-	sub-ns time resolu- tion). This includes	CERN,		ECFA DRDT	
	30210	tronics to help achieve stable and efficient oper-			along with the re- spective advantages	ulation studies of new ASIC: Building	considerations for the compatibility of	CIEMAT,	0	ECFA DRDT	- Connection to ECFA DRDTs
		ation up to ≈MHz/cm ² - High granularity detec- tor capability			and disadvantages of available technolo-	blocks for MPGD and RPC and tech-	eco-friendly gases. [T5, T7]	LMU,			
T4	Optimization	- Front-end link con-			gies. [T1, T2, T5, T6, T7, T8]	nical note(s) about the chips expected performance. [T3]	D2	WIS,		Nd:lestenes/	
17	of scalable multichannel	centrator to a power- ful FPGA with possibil-			M1.2	M2.3	New frontend and DAQ systems:	Wigner,	0	Milestones/	- Top-level milestones and deliverables for the first three
	readout sys- tems	ities of triggering and ≈20 GBit/s to DAQ for			Review of the status of the art of ASICs	Design of a novel	completion of the innovative ASICs'	U Kobe,			
		high-rate experiment -Develop robust, com-			and DAQ systems, and definition of	readout system for Gaseous Detec-	final design; com- pilation of compre-	U Cambridge,		Deliverables	years of a WP activity. Based on detailed annexes (>330
		pact, and low power DAQ for low-rate exper- iment			the requirements for next-generation large area muon	tors: assessment of performance achievements based	hensive production documentation; if applicable, initiation	USTC, U Oviedo,		Denverables	
15	Eco-friendly	- Guarantee long-term			systems. [T3, T4]	on DAQ modelling. [T4]	of the engineering run for the first chip,	UNSTPB.			pages), to be signed as MoU addenda.
	gases	operation - Explore compatibility					should it be in an advanced stage [T3].	UTransilvania,			
		and optimized operation with low-GWP gases					DAQ system proto- typing for gaseous	VUB and UGent,			
T6	Manufacturing	- Technological transfer					detectors, aiming to push the boundaries	U Genève,			
		for cost-effective pro- duction of high-quality, high-performance large					in terms of timing, radiation resistance, multi-channel high	U Hong Kong,	0	Institutes	- List of institutes interested in joining a WP. Estimate o
		area resistive MPGD. - Reliable production					rate acquisition and performance, for	MPP,	\cup	institutes	- List of institutes interested in joining a WF. Estimate o
		of homogeneous resis- tive large DLC foils					large systems [T4].	BNL,			available/additional resources and commitment to
		with the CERN-INFN sputtering machine						FIT,			available/ additionarresources and communent to
17	Longevity on	- Study discharge rate						JLab, MSU.			
	large detector areas	and the impact of irra- diation and transported charge (up to C/cm ²)						MSU, Tufts,			tasks/deliverables provided in detailed annexes.
		- Study the impact of low-GWP gases and						UC Irvine,			
		new materials on high radiation hardness envi-						U Florida,			
		ronment						U Massachusetts,			
· · · ·	New Hybrid- multi- technologies	 Development of new ideas of detector struc- tures and hybridization 						Amherst, U Michigan,			
	Structures	unes and hybridization						UW-Madison.			
								IGPC			

Example Work Package Table: WP1 - Trackers/Hodoscopes

WP tables in the DRD1 proposal

Example Work Package Table: WP1 - Trackers/Hodoscopes

WP Resources

10

Resource and Participation Tables are presented in the proposal as cumulative data:

- gathering "confidential material" from institutes,
- no commitment is assured at this stage
- institutes need to verify with their FAs the potential consideration of proposed resources.
- the final commitment will be provided only at the time of submission of Work Package for approval

WP	Description	Material	Material	Material	FTE	FTE	FTE
		[kCHF]	[kCHF]	[kCHF]	(2024)	(2025)	(2026)
		(2024)	(2025)	(2026)			
WP1	Trackers/Hodoscopes	651	516	501	47.45	50.9	50.7
WP2	Inner and Central	394	163	167	19.45	21.45	23.45
	Tracking with PID						
	Capability, Drift						
	Chambers						
WP3	Inner and Central	163.5	70	65	32	37.3	40.3
	Tracking with PID						
	Capability, Straw and						
	Drift Tube Chambers						
WP4	Inner and Central	268	268	253	15	15	14.5
	Tracking with PID						
	Capability, Time						
	Projection Chambers						
WP5	Calorimetry	150	150	150	12.75	12.75	12.75
WP6	Photo-Detectors	275	325	315	11.9	11.4	11.4
WP7	Timing Detectors	420	311	311	24.1	21.7	20.7
WP8	TPCs as Reaction and	495	505	405	78.35	73.05	72.55
	Decay Chambers						
WP9	Beyond HEP	803	783	694	40.5	37.5	35.2
	SUM	3456	3091	2861	281.5	281.05	281.55

Cumulative information about <u>existing resources</u> 2024-2025-2026

FAs can have different approval steps

WP Resources

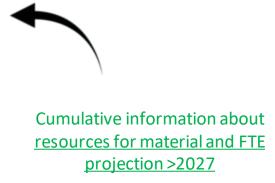
11

Resource and Participation Tables are presented in the proposal as cumulative data:

- gathering "confidential material" from institutes,
- no commitment is assured at this stage
- institutes need to verify with their FAs the potential consideration of proposed resources.
- the final commitment will be provided only at the time of submission of Work Package for approval

WP	Description	Material	Material	Material	FTE	FTE	FTE
		[kCHF]	[kCHF]	[kCHF]	(2024)	(2025)	(2026)
		(2024)	(2025)	(2026)			
WP1	Trackers/Hodoscopes	716	1040	670	21.8	23.55	23.55
WP2	Inner and Central	79	89	93	3.15	8.4	9.15
	Tracking with PID						
	Capability, Drift						
	Chambers						
WP3	Inner and Central	525	325	330	11.7	12.9	12.9
	Tracking with PID						
	Capability, Straw and						
	Drift Tube Chambers						
WP4	Inner and Central	238	238	238	11.3	11.3	11.3
	Tracking with PID						
	Capability, Time						
	Projection Chambers						
WP5	Calorimetry	50	50	50	1	1	1
WP6	Photo-Detectors	180	270	250	4.6	5.1	5.6
WP7	Timing Detectors	257	307	346	3	5.5	6.9
WP8	TPCs as Reaction and	516.5	471.5	436.5	35.1	40	40
	Decay Chambers						
WP9	Beyond HEP	140	225	275	15.9	20.4	23.9
	SUM	2701.5	3015.5	2688.5	107.55	128.15	134.3

Cumulative information about additional resources needed 2024-2025-2026


FAs can have different approval steps

04.12.2023

WP Resources

WP	Description	Material	FTE/year
		(2027-2029)	(2027-2029)
		[kCHF/year]	
WP1	Trackers/Hodoscopes	1365	73
WP2	Inner and Central Tracking with PID	328	28
	Capability, Drift Chambers		
WP3	Inner and Central Tracking with PID	438	49
	Capability, Straw and Drift Tube		
	Chambers		
WP4	Inner and Central Tracking with PID	501	26
	Capability, Time Projection Chambers		
WP5	Calorimetry	200	14
WP6	Photo-Detectors	538	17
WP7	Timing Detectors	651	27
WP8	TPCs as Reaction and Decay Chambers	943	113
WP9	Beyond HEP	973	58

Resource envelope necessary if progress aligns with expectations by 2026, following milestones and deliverables.

WP approval and reviews

- WPs can be initiated at any time and are internally organized and coordinated by participating institutes dedicated to the specific WP.
- WP members actively engage in internal assessments, evaluating goals, milestones, and deliverables and define their internal organization within subprojects.
- Internal scientific review by the Scientific Coordination Board, considering the involvement of other WPs and WGs.
- The Resource Board evaluates resource consistency.
- Approval involves WP coordinators, DRD1 FA representative of the WP, overall WP coordinator. SPs, CB chair/deputy.
- Final approval by the Management Board and Collaboration Board.
- A formal agreement is established among participating institutes, Funding Agencies, DRD1 management, and the host lab (CERN).
 Work Package Agreements are included as annexes in the DRD1 Memorandum of Understanding (MoU).
- WP coordinators report to DRD1 and WP undergo review by the Detector Research and Development Committee (DRDC). Those procedures of reviewing is defined by DRDC

- All WPs currently included in the DRD1 proposal will be presented today and tomorrow
- Present the WP, and discuss next steps!

• On Thursday we will have a plenary discussion (everybody is welcome) to further discuss next steps, WP approval process, WP structure, FA contacts, formalities, MoU addenda etc

 The outcome of these discussions will serve as input to the CB meeting, DRD1 constitution, MoU addenda, etc.

• Your active participation is highly appreciated!

PLENARY DISCUSSION ON WPs

Suggestions/discussions on Monday/Tuesday

- Mailing lists (all WP members, institute contacts, coordinators/leaders, etc.)
- Kick-off meetings in February/March

Interplay with WG: doesn't seem to be a problem seeing the ongoing meeting. Mandate for WP Coordinator to push for feeding WG sessions and activities...

Structure of WPs – assure efficient organization and information flow

WP structures

- Different approaches: w/ and w/o sub-projects.
- Sub-projects are more or less independent (with separate tasks and/or deliverables)

WP coordinators come from the WP; the Internal WP structure is worked out internally

- Main WPx coordinator
- Sub-projects with their coordinators
- The interplay between sub-projects organised within the WP
- Consider formal aspects: MoU addenda, signatories.
 - In some WPs sub-projects are clearly separated: separate addenda, reviews, etc. see also later
 - Global WP for internal exchange/support/common tasks, etc

A question to the current WP coordinators (raised during the meeting):

How do you see the WP Coordinator mandate? What do you think she/he should do in the month to come?

Funding Agencies

Note: FA may have different meanings! Here we use the FA term for all of these:

- an actual FA (ministry, committee, etc.)
- an institute/university/etc.
- whoever confirms the resources

QUESTIONS/IDEAS

- We shall assess what is the status of the "Existing Resources" and what is the timescale of applying for "Additional resources"
- Distinct between the funding agencies covering the DRD1 membership (MoU signature) and the funding agency involved in the WP annexes
- Several groups may ask for funding from the same funding agency. How do we mitigate or prevent internal conflict in DRD1?

Action item proposal:

collect info about FA within WP (who will be confirming existing resources, who will give additional resources)

CERN

WP approval, MoU signature

Goal: WP R&D activities should start asap!

WP approval vs. MoU signature:

- Simpler if fully decoupled.
- MoU defines mechanism (of approval for instance) and WP will be later approved via internal scientific and resource review.

WP approvals, MoU addenda: can we / should we agree on a lightweight process?

- Do we want to focus on the approval of existing resources (simpler)? Addendum signature with whoever can confirm existing resources.
- Or, do we want to cover the additional resources as well, looking for a sort of commitment from FA (more complex but closer to the final goal)?
- Are we looking for simple internal approval (simpler and without too much workload) or also for internal review with evaluation of the work done (more workload but more usable in front of FA)?
- Proposal: could we think about starting the simple and moving to the more complex with time?
- Proposal: should we differentiate, depending on the funding status (i.e. application for substantial funding)

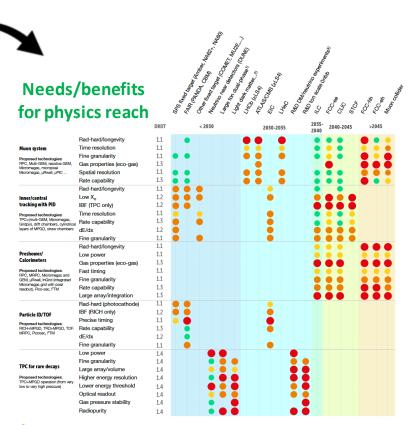
20

• We are indirectly bringing within the collaboration the evaluation of the progress of the work done . How do we preserve the fact that we will openly present and discuss problems without the necessity of showing good results and good performances?

BACKUP

ECFA DETECTOR R&D ROADMAP CONTENT: TF1

Performance targets and main drivers from facilities


Facility	Technologies	Challenges	Most challenging requirements at the experiment
HL-LHC	RPC, Multi-GEM, resistive-GEM, Micromegas, micro-pixel Micromegas, µ-RWELL, µ-PIC	Ageing and radiation hard, large area, rate capability, space and time resolution, miniaturisation of readout, eco-gases, spark-free, low cost	(LHCb): Max. rate: 900 kHz/cm ² Spatial resolution: ~ cm Time resolution: O(ns) Radiation hardness: ~ 2 C/cm ² (10 years)
Higgs-EW-Top Factories (ee) (ILC/FCC-ee/CepC/SCTF)	GEM, μ-RWELL, Micromegas, RPC	Stability, low cost, space resolution, large area, eco-gases	(IDEA): Max. rate: 10 kHz/cm ² Spatial resolution: ~60-80 µm Time resolution: O(ns) Radiation hardness: <100 mC/cm ²
Muon collider	Triple-GEM, μ-RWELL, Micromegas, RPC, MRPC	High spatial resolution, fast/precise timing, large area, eco-gases, spark-free	Fluxes: > 2 MHz/cm² (0<8 ⁶) < 2 kHz/cm² (for 0>12 ⁶) Spatial resolution: ~100µm Time resolution: sub-ns Radiation hardness: < C/cm²
Hadron physics (EIC, AMBER, PANDA/CMB@FAIR, NA60+)	Micromegas, GEM, RPC	High rate capability, good spatial resolution, radiation hard, eco-gases, self-triggered front-end electronics	(CBM@FAIR): Max rate: <500 kHz/cm ³ Spatial resolution: < 1 mm Time resolution: ~ 15 ns Radiation hardness: 10 ¹⁰ neq/cm ² /year
FCC-hh (100 TeV hadron collider)	GEM, THGEM, μ-RWELL, Micromegas, RPC, FTM	Stability, ageing, large area, low cost, space resolution, eco-gases, spark-free, fast/precise timing	Max. rate 500 Hz/cm ² Spatial resolution = 50 μ m Angular resolution = 70 μ rad (η=0) to get $\Delta p/p \le 10\%$ up to 20 TeV/c

Example: Muon systems

Detector R&D themes

DETECTOR RESEARCH AND DEVELOPMENT THEMES (DRDTs) & DETECTOR COMMUNITY THEMES (DCTs)

			< 2030	2035	2040	2045	> 204
	DRDT 1.1	Improve time and spatial resolution for gaseous detectors with			-		
	DRDT 1.2	long-term stability Achieve tracking in gaseous detectors with dE/dx and dN/dx capability			_	-	
Gaseous		in large volumes with very low material budget and different read-out schemes					
	DRDT 1.3	Develop environmentally friendly gaseous detectors for very large areas with high-rate capability			-	-	
	DRDT 1.4	Achieve high sensitivity in both low and high-pressure TPCs					

Must happen or main physics goals cannot be met 🦳 🛑 Important to meet several physics goals

ohysics goals 💫 😑 Desirable to enhance physics reach 💦 😑 R&D needs being met

WORK PACKAGES

WP1 – Trackers/Hodoscopes

Challenges

- Extend the state-of-the-art rate capability by at least one order of magnitude
- Improve time resolution at the level of sub-ns for RPC and O(ns) for MPGD
- Enable reliable and efficient operation with suitable low-GWP gas mixtures
- Establish large-scale serial production and cost reduction procedures
- ECFA R&D tasks are all covered

Goals

- Develop and validation of RPC and MPGD-based prototypes with advantage solutions for extensive surface coverage and optimized for medium-high flow rates with associated fine granularity readout, precise tracking and timing
- Develop a new frontend and readout systems that push the detector boundaries in terms of timing, radiation resistance, and performance

One project associating different technologies

				Seg Seg	1000 - 100 -	Linger and and and a set of the s	10000000000000000000000000000000000000	2045
		Rad-hard/longevity		1.1	< 2050	2030-2035	2040 2040-204	5 >2045
Muon I Proposi RPC, M Moroma Moroma	eystem ad technologios: un-GEM, resolve GEM, gas, monoral igas, philet, pPIC	Time resolution Fine granularity Gas properties (eco-ga Spatial resolution Rate capability	is)	11 11 13 11 13	:			
	Task	Performance Goal	DRD1	ECFA		Milestones/Deliverable		Institutes
TI	New RPC structures	 Develop low-cost re- sistive layers Increase rate capability from 10 kHz to 1 MHz per cm² Improve timing reso- lution from sub-ns to ps levels 	WGs WG1, WG2.	DRDT	12M ML1 Review of De-	24M M2.1 Detector Proto-	36M D1 Large area RPC	INFN-BA, UniBA, PoliBA, INFN-LNF, INFN-RM2, UniRomaTOV,
T2	New Resis- tive MPGD Structures	Stable up to gains of $O(10^4)$ – High gain in a single multiplication stage – High rate capabil- ity (1 MH2/m ² and be- yond) – High tracking perfor- mance (100 µm) – Development of low- granularity 2D-readout with high-tracking per- formance	WG2, WG4, WG5, WG6, WG7, WG8	13	tector Prototypes: examining the current status and future prospects of innovative resistive materials, novel structures, and chal- lenges in hybridizing Resistive Plate Chambers (RPC) and Micro-Pattern Gas Detectors (MPGD), This evaluation includes	types Enhance- ment: building upon the insights from M.1.1. Proof of rate capability above 100 kHz/m ² , assessing the status and poten- tial improvements of RPC and MPGD detectors, informed by feedback from the provious phase. [T1, T2, T5, T6, T7, T8]	Large area RPC- and MIGD procession of the second totypes: design, construction, and test of RPC and MPGD-based pro- totypes [T1, T2] with advanced solu- tions for extensive surface coverage [T6], optimized for mediam-high flow rates (range tens kH/zem ²), precise tracking (100 µm)	INFN-BO, INFN-FE, INFN-NA, INFN-RM3, INFN-TO, IRFU-CEA, IFIN-HH,
Т3	New Front- end electron- ics	 New front-end If C threshold High-sensitivity electronics to help achieve stable and efficient oper- ation up to <i>m</i>MHz/cm² High granularity detec- tor capability 			compiling of a com- prehensive report highlighting compar- ative performance, along with the re- spective advantages and disadvantages of available technolo- gies. [T1, T2, T5, T6, T7, T8]	M2.2 Design and Sim- ulation studies of new ASIC: Building blocks for MPGD and RPC and tech- nical note(s) about the chips expected	tracking (100 µm) and timing (ns and sub-ns time resolu- tion). This includes considerations for the compatibility of eco-friendly gases. [TS, T7] D2	Istinye U, CERN, CIEMAT, LMU, WIS,
T4	Optimization of scalable multichannel readout sys- tems	 Front-end link con- centrator to a power- ful FPGA with possibil- ities of triggering and %20/OBt/s to DAQ for high-rate experiment -Develop robust, com- pact, and low power DAQ for low-rate exper- iment 			M1.2 Review of the status of the art of ASICs and DAQ systems, and definition of the requirements for next-generation large area muon systems, [T3, T4]	M2.3 Design of a novel readout system for Gassous Detec- tors: assessment of performance achievements based on DAQ modelling.	New frontend and DAQ systems: completion of the innovative ASICs [*] final design; com- plation of compre- hensive production documentation; if applicable, initiation of the engineering	Wigner, U Kobe, U Cambridge, USTC, U Oviedo,
Т5	Eco-friendly gases	Guarantee long-term operation Explore compatibility and optimized operation with low-GWP gases			Systems, [15, 14]	[T4]	run for the first chip, should it be in an advanced stage [T3]. DAQ system proto- typing for gaseous	UNSTPB, UTransilvania, VUB and UGent,
T6	Manufacturing	 Technological transfer for cost-effective pro- duction of high-quality, high-performance large area resistive MPGD. Roliable production of homogeneous resis- tive large DLC foils with the CERN-INFN sputtering machine 					detectors, aiming to push the boundaries in terms of timing, radiation resistance, multi-channel high rate acquisition and performance, for large systems [T4].	U Genève, U Hong Kong, MPP, BNL, FIT, JLab,
77	Longevity on large detector areas	 Study discharge rate and the impact of irra- diation and transported charge (up to C/cm²) Study the impact of low-GWP gases and new materials on high radiation hardness envi- ronment 						MSU, Tufus, UC Irvine, U Florida, U Massachusetts.
TS	New Hybrid- multi- technologies Structures	 Development of new ideas of detector struc- tures and hybridization 						U Massachusetts, Amherst, U Michigan, UW-Madison, IGPC

WP1 – Trackers/Hodoscopes

Institutes

• 39 institutes from 17 countries

TASK										
Institute	T1	T2	Т3	T4	T5	T 6	77	T 8		
INFN-BA	Х				Х		Х			
INFN-BO		х	х							
INFN-FE		х	х	х				х		
INFN-LNF	х	х			х	х	х	х		
INFN-NA		X				X	Х			
INFN-RM2	х	X	х		х	х	х	х		
INFN-RM3		X				х	х			
INFN-TO			х							
Kobe	х	X								
CERN		X	х	Х	х		Х			
U. Cambridge	х				х		х			
LMU		х								
ICTEA U Oviedo			х							
CIEMAT			х							
Wigner RCP			х			Х	х			
Max Plank								х		
Univ of Geneva								х		
Hong Kong								х		
Weizmann		X					х			
IRFU		X	х							
USTC		X						х		
VUB					Х					
IFIN-HH		X	х	х						
UNSTPB		х	х	х						
UniTBv			х	х						
ISU	х		х	х	х		х			
e+e- US Cluster	х		х	х	х	х	х			
IGPC - Belgrade					х		х			



Existing

WP	Description		Material			FTE	FTE
		[kCHF] (2024)	[kCHF] (2025)	[kCHF] (2026)	(2024)	(2025)	(2026)
WP1	Trackers/Hodoscopes	651	516	501	47.45	50.9	50.7

Additional (not existing)

1	WP	Description	Material	Material	Material	FTE	FTE	FTE
			[kCHF]	[kCHF]	[kCHF]	(2024)	(2025)	(2026)
			(2024)	(2025)	(2026)			
ν	VP1	Trackers/Hodoscopes	716	1040	670	21.8	23.55	23.55

WP2 – Drift Chambers

Challenges:

- Development of front-end ASIC for cluster counting/a scalable multichannel DAQ board
- New wiring procedures and new endplate concepts
- · Consolidation of new wire materials and wire metal coating / ageing phenomena
- · Increase of the rate capability and granularity
- Optimization of gas mixing, recuperation, purification and recirculation systems

Goals:

- Achieving efficient cluster counting and cluster timing performances by using FPGA based architecture
- Completion of a cylindrical sector of a full length drift chamber prototype aimed at testing all mechanical properties.
- Performance of K-p separation in the momentum range from 2 to 30 GeV/c based on a scalable front-end/digitizer/DAQ electronics chain for cluster counting.

	Rad-hard/longevity
Inner/central	Low X _o
tracking with PID	IBF (TPC only)
Proposed technologies:	Time resolution
TPC+(multi-GEM, Micromegas, Gridpix), drift chambers, cylindrical	Rate capability
layers of MPGD, straw chambers	dE/dx
	Fine granularity

	SPS free,	LHOO WILLS	Peo ton Bee ton Bee ton Bee ton Bee to the ton Bee ton	FCC.11
DRDT	< 2030	2030-2035	2035- 2040-2045	>2045
1.1		•	• •	
1.2		•		
1.2	• •			
1.1	ē ī 🖕	•		
1.3	• •	ĕ		
1.2	ě T	i i i		
1.1	ě e	ĕ		

			DRD1	DODA		Milestones/Deliverable		
#	Task	Performance Goal	WGs	ECFA DRDT	12M	Milestones/Deliverable 24M	36M	Institutes
TI	Front-end ASIC for clus- ter counting	 High bandwidth High gain Low power Low mass 	WG1,	1.1,	M1.1	M2.1	D1	CNRS- IN2P3/IJCLab.
T2	Scalable mul- tichannel DAQ board	 High sampling rate Dead-time-less DSP and filtering Event time stamping Track triggering 	WG2, WG3, WG4, WG5.	1.2, 1.3	At least 80% effi- ciency of the cluster counting/timing with resolution in dn/dx smaller than 30% for a single hit. [T1]	Completion of the mechanical design of the full length drift chamber prototype. [T3] M2.2	Realization of a scalable front- end/digitizer/DAQ electronics chain for cluster count- ing/timing. [T1-T2]	INFN-BA, UniBA, PoliBA, INFN-LE, INFN-RM1.
T3	Mechanics: wiring proce- dures, new end-plate concepts	 Feed-through-less wiring procedures More transparent end-plates (X < 5%X₀) Transverse geometry 	WG7		M1.2 Design of the frontend ASIC optimized for cluster counting. [T1]	Validation of the tension recovery scheme. [T3]	D2 Performance of K-π separation in the momentum range from 2 to 30 GeV/c.	U Massachusetts, Amherst, U Michigan, UC Irvine,
T4	High rate High granular- ity	 Smaller cell size and shorter drift time Higher field-to-sense ratio 					[T1-T2]	Tufts, BNL, FIT.
Т5	New wire materials and wire metal coating	 Electrostatic stability High YTS Low mass, low Z High conductivity Low ageing 						U Florida , UW–Madison, U Nankay,
T6	Study ageing phenomena for new wire types	 Establish charge- collection limits for carbon wires as field and sense wires 						U Tsinghua, IHEP CAS, U Wuhan,
17	Optimize gas mixing, recuperation, purification and recircula- tion systems	Use non-flammable gases Keep high quenching power Keep low-Z Increase radiation length Operate at high ioniza- tion density						U Jilin, USTC, IMP-CAS, Bose

WP2 – Drift Chambers

Institutes

- 20 institutes in 5 countries
- All R&D tasks covered

				Tasks			
Institute	T1	T2	T3	T4	T5	T6	T7
IJCLab-IN2P3			x	х	х	х	
INFN-BA	х	x	x	x	х	х	x
INFN-LE	х	x	x	x	x	x	x
INFN-RM				х	х	х	x
US Cluster	х		x				x
Nankai U				х			
Tsinghua U	х						
IHEP-CAS	х		х	х			x
Wuhan U				x			
Jilin U				х			
USTC				х		х	
IMP-CAS				х		х	
Bose						х	х

Existing

	•						
WP	Description	Material	Material	Material	FTE	FTE	FTE
		[kCHF]	[kCHF]	[kCHF]	(2024)	(2025)	(2026)
		(2024)	(2025)	(2026)			
WP2	Inner and Central	394	163	167	19.45	21.45	23.45
	Tracking with PID						
	Capability, Drift						
	Chambers						

Additional (not existing)

WP	Description	Material [kCHF]	Material [kCHF]	Material [kCHF]	FTE (2024)	FTE (2025)	FTE (2026)
		(2024)	(2025)	(2026)			
WP2	Inner and Central	79	89	93	3.15	8.4	9.15
	Tracking with PID						
	Capability, Drift						
	Chambers						

WP3 – Straw and Drift Tube Chambers

Challenges and goals

- Straw tube wall film thickness < $20 \mu m$ for low X/X0 < 0.04% per straw
- Straw diameter \leq 5mm for high rate capability of O(100 kHz/cm²)
- Straw length up to 4m with thin film tube walls
- Extending tracking information to 4D (3D-space and T0) and dE/dx for PID
- ASIC design for high-resolution leading-/trailing edge time and charge readout
- Very large straw detector volumes of O(10m³) and in vacuum
- Extending detector longevity by increasing material purity
- Developing new production techniques, like ultrasonic film tube welding to minimize the usage of glue

List of projects

- 1. Drift tube developments for high-rate applications (e.g. at FCC-ee/hh)
- 2. Straw chamber technologies for hadron physics applications (e.g. 4D+PID, low X0, ..)
- 3. Large area straw detector for Dark Sector applications (e.g. 4m ultra-long straws)
- 4. Straw chamber technologies for neutrino physics applications (e.g. low X0, large area)
- 5. Optimization of straw materials and production technologies (e.g. standardizing, ..)
- 6. Optimization of electronic readout (new ASIC designs, versatile applications, ..)

			S	FA.	8	Ne	Lay.	3	47	47	El.	5	200	200	2	25	3	25	20	5	Mus
		DRDT			< 1	030				2	030-2	2035			2035-	20	40-20	45		>2045	
	Rad-hard/longevity	1.1	•	•	•						•				٠		٠				
Inner/central	Low X _o	1.2	٠	٠	۰						٠				•		•				
tracking with PID	IBF (TPC only)	1.2	Ő.	Ö											Ó	ŏ	Ō.	ŏ			
Proposed technologies:	Time resolution	1.1	ē								٠				ē	ē	ē	ē			
TPC+(multi-GEM, Micromegas, Science) drift chambers, collection	Rate capability	1.3	٠		۰						Ō.				•	•					
ridpix), drift chambers, cylindrical	dE/dx	1.2	Õ								Ő.				ŏ	Ó	ē	Ö			
	Fine granularity	1.1	Ó								6				Ó	ó	Ó	Ó			

	Task	Performance Goal	DRD1	ECFA	12M	Milestones/Deliverable	36M	Institutes
TI	Optimize	- Thin film materials	WGs	DRDT	12M	24M	36M	
-	straw ma- terials and production technologies	Film metallization Low cross-talk Resistance to ageing Production techniques	WG1, WG2,	1.1,	M1 Work plan con-	M2.1 Prototype design	D Prototype tests	GTU, FZJ-GSI-U
				1.2,	solidation: finalise	and construction:	and results: perfor-	Bochum,
	Develop straw tubes of 5mm diameter	- Thin film wall - Fast timing < 100 ns - Rates \approx 50 kHz/cm ²	WG3, WG4,	1.3	work package ob- jectives and decide final straw designs including simulation	optimization of straw materials, designs and produc- tion technologies	mance of prototype designs and mea- surement resolutions (3D-space <150 µm,	U Hamburg, MPP,
T2	Develop straw with ultra-thin film walls	 Film wall < 20 µm X/X0 ≃ 0.02% / straw Film metallization 	WG5, WG6,		studies. Setting up laboratories, production and test	for low radiation length, thin-wall tubes, small diame-	time t0 of O(1 ns), dE/dx < 10%). [T1- T7]	IITG,
	Develop ultra- long straws with thin film walls	 - 4-5 m tube length - Film walls < 30 μm - Good mechanical properties 	WG7, WG8		facilities. Tendering and procurement of materials. [T1-T7]	ter tubes, long tubes and straws with enhanced longevity. [T1-T3, T6] M2.2	Evaluation of WP tasks with review of further enhancement and new potential. [T1-17]	IITK, NISER Bhubaneswar, U Delhi,
	Develop straws with ultra-small diameter	Diameter <4mm Rates >500 kHz/cm ² Fast timing <50ns Charge load >10 C/cm	•			Optimization of the prototype me- chanical system with low material		U Punjab, INFN-TO,
T3	Optimize the detector mechanical system	 Develop self- supporting modules Control material relax- ation Straw alignment method 				budget and high me- chanical precision. Development of the alignment method. [T3, T5, T7]		INP-Almaty, JU-Krakow, IFIN-HH,
T4	Optimize the front-end elec- tronics (ASIC) and readout system	 Leading and trailing edge time readout Charge readout Time readout with sub- ns precision 				M2.3 Optimization of front-end electronic and ASIC design based on existing ASICs and simula-		CERN, U South Car- olina, U Duke,
T5	Enhance the tracker mea- surement information (3D/4D and PID via dE/dx)	 Spatial resolution 150 μm Time t0 extraction with O(ns) resolution dE/dx resolution <10% p/K/π-separation 				tion studies for fast timing, signal lead- ing and trailing edge time readout with high resolution and charge measurement		BNL, FIT, JLab,
T6	Enhance the detector longevity	Ageing resistance up to - 1 C/cm for thin-wall straws - >10 C/cm for straws for highest particle rates	_			for PID. [T4, T5]		U Massachusetts, Amherst, U Michigan, UC Irvine,
17	Optimize the online-/offline software	Straw tube simulation Straw calibrations Tracking simulation Pattern recognition Tracking and PID Tracker alignment						UW–Madison, Tufts

WP3 – Straw and Drift Tube Chambers

Funding comments

- Existing: excl. already spent costs of materials, infrastructures, devices..
- Additional: planned funding applications in 2023/24

Institutes

- 26 institutes in 9 countries
- All R&D tasks covered (T1-T7)

				Tasks			
Institute	T1	T2	T3	T4	T5	T6	T7
CERN	х	x	x				
FZJ			x	х	x		х
GSI					x		x
GTU	х	x	x		x		
IFIN-HH			х	х	х		х
IITG	х	х	х	х	х		х
IITK				х	x		
INFN-TO				х			
INP-Almaty	х	х	х	х	х	х	х
JU Krakow		х				х	
MPP	х	х	x	x	x		
NISER	х		х				
RU Bochum			x	х	х		х
U Hamburg	х	х	x			х	
U Punjab	х		x	х			
U South Carolina		x	x	x	x		x
U Duke		х					
U Dehli	х	x		x			
BNL				х			
FIT				х			
JLab				x			
U Mass. Amherst				x			
U Michigan	x	х	x	х			
UC Irvine				x			
U Wisconsin				x			
Tufts Uni	х	x	x				

Existing

WP	Description	Material [kCHF] (2024)	Material [kCHF] (2025)	Material [kCHF] (2026)	FTE (2024)	FTE (2025)	FTE (2026)
WP3	Inner and Central Tracking with PID Capability, Straw and Drift Tube Chambers	163.5	70	65	32	37.3	40.3

Additional (not existing)

WP	Description	Material	Material	Material	FTE	FTE	FTE
		[kCHF]	[kCHF]	[kCHF]	(2024)	(2025)	(2026)
		(2024)	(2025)	(2026)			
WP3	Inner and Central	525	325	330	11.7	12.9	12.9
	Tracking with PID						
	Capability, Straw and						
	Drift Tube Chambers						

WP4 – Tracking TPCs

Challenges and goals

- High rate,
- Low mass,
- Granularity,
- dE/dx & cluster counting
- Ion backflow suppression,
- Gas mixture optimization and Eco gas mixtures

Single WP project

	Rad-hard/longevity
Inner/central	Low X _o
tracking with PID	IBF (TPC only)
Proposed technologies:	Time resolution
TPC+(multi-GEM, Micromegas, Gridpix), drift chambers, cylindrical	Rate capability
layers of MPGD, straw chambers	dE/dx
	Fine granularity

	Contraction of the second seco	(Sen care of a c	Por Construction	PCC-141
DRDT	ద్ చ్ రి శ్ ీ · < 2030	ి చ్ ళో దో చ్ డి ⁹ 2030-2035	2035- 2040-2045	یک یک مج ^۲ >2045
11 12 12		÷		

:

and the second s

#	Task	Performance Goal	DRD1	ECFA		Milestones/Deliverable		Institutes
			WGs	DRDT	12M	24M	36M	monutes
ГІ	IBF reduction	Reduce IBF in case of gated operation Reduce IBF in case of ungated operation	WG1, WG2,	1.1, 1.2,	M1 Evaluation of various readout	M2.1 Improvement of dE/dx perfor-	D Prototype TPC A small scale pro-	IFUSP, U Carleton,
r2	pixelTPC development	Develop different tech- nologies for pixelized readout Build small prototypes to verify spatial resolu- tion Study dE/dx resolution	WG3, WG4, WG5, WG6,	1.3, 1.4	technologies: stud- ies of various gas amplification and readout technologies including pixelised structures to estimate their potential per- formance in a TPC.	mance: experimen- tal tests to optimize the dE/dx resolution in various gas mix- tures.[T1, T2, T5] M2.2	totype detector with good spatial and dE/dx resolution to fulfil the require- ments of future accelerators with a gated or ungated operation mode of	IHEP CAS, U Tsinghua, HIP, U Jyväskylä,
13	Optimization of mechanical structure	 Reduce material bud- get of mechanical and electrical field cage Reduce material bud- get of the endcap, in par- ticular, the cooling in- frastructure 	WG7		[T1, T2, T4, T5]	Improvement of IBF performance: experimental tests to reach an IBF performance optible with gain×IBF < 5. [T1, T2, T5]	the TPC. [T1-T5]	IRFU/CEA, TUDa, U Bonn, GSI,
r 4	FEE for TPCs	 Develop a low-power ASIC for TPC readout Implement a readily available ASIC, which fultilis MPGD-TPC requirements in the Scalable Readout Sys- tem Increase the readout rate of TPC-readout with SRS 				M2.3 Electronics im- plemented in the SRS and ready for operation with small-scale proto- types. [T4]		Wigner, INFN-BA, UniBA, PoliB INFN-RM1, U Iwate, CERN, PSI
12	Gas mixtures	 Study drift properties of gas mixtures to find low diffusion gases Study gases with low ωτ for improved performance of TPCs in magnetic fields Study eco-friendly gases. 						

1.2 1.1 1.3

1.2

•

WP4 – Tracking TPCs

CERN

Existing

WP	Description	Material [kCHF] (2024)	Material [kCHF] (2025)	Material [kCHF] (2026)	FTE (2024)	FTE (2025)	FTE (2026)
WP4	Inner and Central Tracking with PID Capability, Time Projection Chambers	268	268	253	15	15	14.5

Additional (not existing)

WP	Description	Material	Material	Material	FTE	FTE	FTE
		[kCHF]	[kCHF]	[kCHF]	(2024)	(2025)	(2026)
		(2024)	(2025)	(2026)			
WP4	Inner and Central	238	238	238	11.3	11.3	11.3
	Tracking with PID						
	Capability, Time						
	Projection Chambers						

Institutes

- 16 institutes in 10 countries
- All tasks covered

	Tasks							
Institute	T1	T2	T3	T4	T5			
USP				х				
U Carleton	x	x						
IHEP-CAS	x	x		х	x			
U Tsinghua				х				
нір	x		x		x			
U Jyväskylä	x							
IRFU/CEA	x			х				
U Bonn	x	x	x		x			
TU Da	x		x					
GSI	x			х	x			
RCP	x							
INFN-Bari			x		x			
INFN-Roma1	x	x						
IU	x		x					
CERN		x						
PSI	x	x						

WP5 – Calorimetry

Challenges

- Realization of thin and large surface detectors with high ٠ efficiency, excellent uniformity and high-rate capabilities operated with eco-friendly gases
- Very good time resolution
- Embedded readout electronics

Goals

• To provide high granular hadronic calorimeters with active media made of gaseous detectors to efficiently apply the PFA techniques and at the same time provide good energy resolution

One project associating different technologies

ŧ	Institutes
F1	IP2I, CIEMAT, VUB and UGent, GWNU,
72	SJTU, MPP, WIS, INFN-BA, UniBA, PoliBA, INFN-RM3, INFN-NA
3	
	ce and studies and thin different s. Perfor- s in terms unifor- 10% in fficiency of cluster esolution is [T2], tion rate up to a '2 [T4], ned with ds of gas readout [T3] with is of the m ² : down to

and larger than 100

cm × 100 cm for

(M)RPC, featuring

dead zones < 2%.

The detectors should

feature an efficient

gas circulation to

be used as active

lavers in granular

calorimeters. [T1]

a few fC for MPGD

and tens of fC for

better than 100 ps

time resolution

(M)RPC

2030.2035

2040

DRDT

1.1

1.1

1.3

Rad-hard/longevity

Gas properties (eco-gas)

Low power

Preshower/

T4 High-rate

capability

gaseous de-

tectors for cir-

cular collider

calorimeters

High-rate capability

exceeding a few KHz

in case of (M)RPC and

tens of KHz in case of

Impact of high particle

rate on the detector

performance (efficiency,

spatial resolution, tim-

MPGD

ing..etc)

Calorimeters

WP5 – Calorimetry

Existing

WP	Description		Material			FTE	FTE
		[kCHF]	[kCHF]	[kCHF]	(2024)	(2025)	(2026)
		(2024)	(2025)	(2026)			
WP5	Calorimetry	150	150	150	12.75	12.75	12.75

Additional (not existing)

WP	Description	Material	Material	Material	FTE	FTE	FTE
		[kCHF]	[kCHF]	[kCHF]	(2024)	(2025)	(2026)
		(2024)	(2025)	(2026)			
WP5	Calorimetry	50	50	50	1	1	1

				- 6
performant ones need to be produced in common	with other WPs in DRD1 and DRD6.	WP	Description	N

i	WP	Description			Material		FTE	FTE
·•			[kCHF]	[kCHF]	[kCHF]	(2024)	(2025)	(2026)
			(2024)	(2025)	(2026)			
	WP5	Calorimetry	50	50	50	1	1	1

Institutes

• 10 institutes from 8 countries

Funding comments

available

Most of all are also involved in DRD6 (calorimetry)

The foreseen developments on detectors is already available or almost sure to be

• Existing readout electronics could be used to characterize but new and more

• Most of them have already worked together on a given technology but in this proposal, common studies will be an essential feature

	Tas	ks			
Institute	T1	Т 2	T3	T4	
IP2I	x	x	х	x	
CIEMAT			x		
VUB	x				
GWNU	x	x			
SJTU			x		
MPP	x	x			
WIS	x	x		x	
INFN-BA		x		x	
INFN-RM3				x	
INFN-NA				x	

WP6 – Photo-detectors

Challenges and goals

- Gaseous Photo-Detectors:
 - o Large area
 - Low cost
 - Low material budget
 - Magnetic insensitivity
- Hadron identification at colliders + other applications

> Improve performance

> Explore visible gaseous PDs

			Proposed RICH-MPG MRPC, Por	technologies:	Precise timing 11 Rate capability 1.3 dE/dx 1.2 Fine granularity 1.1			
#	Task	Performance Goal	DRD1 WGs	ECFA DRDT	12M	Milestones/Deliverable	36M	Institutes
T1	Development of robust UV photoconvert- ers for gaseous photon detec- tors	 Robustness against ac- cumulated charge dose: 20% deterioration of quantum efficiency for 100 mC/cm² 	WG1,	I.1,	MI	M2	D1	AUTH .
		Discussion	1000000		1.632.63		522.65	1000000000
T2	Increase the photon detec- tion efficiency	 Photoelectron effi- ciency in gas ≥ 75% of that under vacuum 	WG2, WG3,	1.2, 1.3	Design and produc- tion of small-size photon detector	Results of simu- lations and mea- surements of IBF	Demonstrator prototypes for Large area Double	USTC, NISER
Т3	Suppression of ion feed- back to the photocathode, increase of stability and longevity	- Stable detector opera- tion at 10^5 gain. - IBF reduction down to 10^{-4} - Stable operation in harsh environment $(10^{11} n_{eq}/cm^2)$	WG4, WG5, WG6, WG7		prototypes, e.g. THGEM + Mi- cromegas equipped with hydrogenated nanodiamond pho- tocathode [T1], PI- COSEC Micromegas equipped with novel photocathodes [T6].	suppression [T7 , T3], photocathode robustness [T1], a test of small-size prototypes [T2 , T5] and new readout development, with low noise at low input capacitance	Micromegas [T8], Space resolution < 1 mm [T5], Time resolution < 200 ps [T6], IBF < 1%. Test bench for visible sensitive pho- tocathodes studies	Bhubaneswar, CERN, WIS, INFN-PD, DFA-UNIPD,
T4	Develop gaseous pho- ton detectors sensitive to visible light	 Sustained photosensi- tivity to visible light in gaseous photon detec- tors 			Double Micromegas photon detectors [T3], etc. to test the proposed technolog- ical improvements.	[T9].	[T4]. D2 Report on novel robust photocathode	INFN-TS, HIP, U Aveiro,
T5	Increase spa- tial resolution and readout granularity	- Spatial resolution $\leq 1 \text{ mm}$					performance [T1] and PDE achieve- ments [T2].	MSU, TUM
T6	Increase time resolution	- Time resolution $\leq 100 \text{ ps}$					New ASIC chip	
T7	Modelling and simulation of gaseous pho- ton detectors	- Accurate simulation of IBF to the photocath- ode, gain and stability					[T9].	
T8	Large area coverage	- Gain and QE variation $\leq 10\%$ over 1 m ² area with $\leq 10\%$ dead area.						
T9	Readout elec- tronics for sin- gle photon sig- nals	New frontend ASIC chip with 64 channels, ENC 0.5 fC at 20pF						

DRD 11

12 🔴 🍎

Rad-hard (photocathode) IBF (RICH only)

Particle ID/TOF

WP6 – Photo-detectors

Existing

WP	Description	Material	Material	Material	FTE	FTE	FTE
		[kCHF]	[kCHF]	[kCHF]	(2024)	(2025)	(2026)
		(2024)	(2025)	(2026)			
WP6	Photo-Detectors	275	325	315	11.9	11.4	11.4

Additional (not existing)

WP	Description	Material	Material	Material	FTE	FTE	FTE
	_	[kCHF]	[kCHF]	[kCHF]	(2024)	(2025)	(2026)
		(2024)	(2025)	(2026)			
WP6	Photo-Detectors	180	270	250	4.6	5.1	5.6

Institutes

- 11 institutes from 10 countries
- All tasks covered

Tasks													
Institute	Τ1	Т2	Т3	Τ4	T 5	Т6	Т7	Т8	Т9				
AUTh			х			х		х					
USTC	х		х	х	х	х	х	х	х				
NISER	х	х	х		x	х	x	х	х				
CERN	х	х				х	х		х				
WIS		х	х	x			х						
INFN-PD	х	х	х		х		x		х				
INFN-TS	x				x	x		x	х				
нір			x	x		х							
Aveiro	х	х	х		х		х	х	х				
FRIB		х	х	х			х	х	х				
TUM	х		х										

WP7 – Timing Detectors

Challenges

- Eco-friendly gases: decreasing availability, increasing cost of GH gases
- Detector ageing: operational instabilities/ageing in harsh environments,
- Front end electronics: timing performance, low power, robustness

Goals

- Development of scalable precise timing detector with operational stability and long term robustness
- High-rate capability and spatial resolution with suitable FE electronics for the required readout granularity

Two projects based on different technologies

- Project A High-rate, high-granularity precise timing with MPGDs
- Project B High-rate, large, precise timing (M)RPC

#	Task	Performance Goal	DRD1 WGs	ECFA DRDT	12M	Milestones/Deliverable	36M	Institutes
TI	Optimize the amplification technology towards large- area detectors	 Uniformity over m² (time resolution, rate capability, efficiency) 	WG1,	DRD1	M1.1	M2.1	D	AUTH,
T2	Enhance timing perfor- mance	- Time resolution < 50 ps up to 30 kHz/cm ²	WG2, WG3,	1.1, 1.3	Prototypes re- view (proof of concept, enhancing	Prototypes suit- able for large area coverage systems	Prototypes with time resolution below 200 ps based	CERN, CIEMAT,
T3	Enhance rate capability	- Time resolution < 200 ps up to 100- 150 kHz/cm ²	WG4, WG5,		time resolution, active area of about 100 cm ²): status and perspectives. [T1, T2, T5, T10]	review: status and perspectives. [T1, T3, T10] M2.2	on RPC/MRPC and MPGD technolo- gies: demonstrate the scalability of the technologies	CNRS- IN2P3/Omega, DGIST.
T4	Spatial resolu- tion and read- out granularity	 Spatial resolution of mm with low number of readout channels 	WG6, WG7		M1.2 Common activi-	Multichannel readout electronics: evaluation (on small	targeting m ² size coverage. Prototypes will be characterized in terms of time	GWNU, HYU,
т5	Stability, ro- bustness and longevity	- IBF <1% with <100 ps time resolution for sin- gle photoelectrons - Stable, high-gain oper- ation	5		ties and material studies: Support and development of modelling and simulation (time resolution, rate	prototypes, 100 cm ² active area) of dif- ferent multichannel readout solutions. [T9]	resolution, rate capability, space resolution, efficiency and multi-hit re- sponse. Different examples of mul-	HIP, INFN-BA, UniBA, PoliBA,
T6	Material stud- ies	- Radiation-hardness - Longevity			capabilities) tools and testing facilities (time resolution,		tichannel readout electronics will be provided. [T1 , T3 ,	INFN-PV, UniPV UniBG,
T 7	Gas studies for precise timing applications	Eco-friendly mixtures Recuperation Ageing mitigation CO ₂ -based mix- ture with geometrical quenching	4.		(internet resolution, rate capability, space resolution, gas and material studies). [T3, T4, T6, T7, T8, T11]		T4, T5, T9, T10] Guidelines for future develop- ments: At the end of the three years, de-	INFN-RM2, UniRomaTOV, IRFU/CEA, IP2I,
T8	Modelling and simulation of timing detec- tors	 Accurate modelling of charge transport and signal induction pro- cesses in precise timing detector geometries 	×				velopment directions will be summarized based on future facil- ities' requirements and the achievable performances of the studied solutions.	JLab, LIP-Coimbra, MPP,
T9	Readout elec- tronics for pre- cise timing	Low-noise FEE High input capaci- tance Large dynamic range Fast rise time Sensitivity to small charges Multi-channel readout solution for timing de- tectors					Status and strategies towards the use of sustainable gas mixtures will be given. [17]	RBI, SIAT, SJTU, U Heidelberg, U Kyoto, U Tsinghua,
TIO	Precision me- chanics and construction techniques	 Precise mechanics (μm) over relatively large active areas (hun- dreds of cm²) 						USTC, VUB and UGent
TII	Common framework and test facilities for precise timing R&D	- Test bench for precise timing studies						

WP7 – Timing Detectors

Institutes

- In total: 26 institutes from 14 countries
- Project A: 9 institutes from 9 countries
- Project B: 17 institutes from 10 countries

CERN

Existing

WP7

	•						
WP	Description	Material	Material	Material	FTE	FTE	FTE
		[kCHF]	[kCHF]	[kCHF]	(2024)	(2025)	(2026)
		(2024)	(2025)	(2026)			
WP7	Timing Detectors	420	311	311	24.1	21.7	20.7

(A) High-r	ate,	, hig	h-gra	nul	arity	pre	cise †	timir	ng wi	ith M	PGDs	(B) High-r	ate,	high-	gran	ulari	ty pr	ecise	timir	ng wi	th M	PGD	S	WP	Description	Material [kCHF]	Material [kCHF]	Material [kCHF]	FTE (2024)	FTE (2025
Institute	T1	T2	T3	T4	T5	Т6	T7	T8	Т9	T10	T11	Institute	T1	T2	Т3	T4	T5	T6	T7	Т8	Т9	T10	T11			(2024)	(2025)	(2026)	(2024)	(2025
AUTh		x	x		x	x	x		x	x		IP2I		x		x		x			x			WP7	Timing Detectors	257	307	346	3	5.5
IRFU/CEA	x	x			x	x						CIEMAT		x		x							x]						
CERN	x	x	x	x	x	x	x		x	x		VUB		x		x							x	1						
INFN-PV	x	x	x			x	x			x		GWNU				x							x]						
JLab	x	x		x						x		SJTU				x					x]				a the		
RBI		x				x						OMEGA				x					x				ALL		200			Pring .
USTC	x	x			x							U Heidelberg			x	x										- 13	25	Deres C	Ster.	
LIP		x						x	x			Kyoto U				x							x	and the second		1 -				
HIP	x	x	x		x							LIP		x		x				х		х			624	1		nd Se		-
												Tsinghua		x	х	х		х								Sec. 1	1.120	A Fr		- *
												SIAT-CAS				x							x	~	C.	7		13	N DR	
												DGIST				x					x				and the second	1		S.	20	00
												MPP				x	x					х			· 55 ~		· Pha	R		C.C.F.

INFN-Bari

INFN-RM2

Hanyang U

CERN

х

х

х х

х

х х

х х

х

х

Additional (not existing)

WP	Description	Material	Material	Material	FTE	FTE	FTE
		[kCHF]	[kCHF]	[kCHF]	(2024)	(2025)	(2026)
		(2024)	(2025)	(2026)			
WP7	Timing Detectors	257	307	346	3	5.5	6.9

WP8 – TPCs as Reaction and Decay Chambers

Fundamental challenges:

- Achieving track-reconstruction of low-energy nuclei and electrons, at granularities going from a few mm down to potentially tens of um and close to the thermal diffusion limit. [T1, T2, T4]
- Operating in a broad range of pressures going from a few tens of mbar to tens of bar, with energy-reconstruction performing generally down to ~1keV threshold if not less. [T2, T3]
- Achieving high and uniform amplification in nearly pure or weakly-doped noble gases. [T3]
- Increasing optical throughput (primary and secondary). [T1, T4, T5, T6]
- Developing more suitably scintillating and/or eco-friendly gas mixtures as well as recuperation systems. [T1, T5, T6]
- Enhancing the radiopurity of the amplification structure and of the TPC as a whole. [T7]

Four projects:

- A High-Pressure TPCs for precision studies of neutrino interactions.
- B TPCs for low-energy nuclear physics.
- C Electroluminescence-based TPCs for Rare-Event Searches and other R&D on pure noble-gas amplification.
- D Radiopure TPCs for precise track imaging and/or calorimetry with avalanche-based readouts.

				DRDT		< 2030	2030-2035	2035- 2040 2040-20	45 >2045
			/ power	1.4			•		
TPC for ra	re de		e granularity	1.4					
		· Laig	ge array/volume	1.4					
Proposed to TPC+MPGD	operat	ion from very	her energy resolution	1.4			•		
low to very h	igh pro		ver energy threshold	1.4					
			ical readout	1.4			•		
			pressure stability	1.4					
		Had	liopurity	1.4		• • •			
Γ		Task	Performance Goal	DRD1 WGs	ECFA DRDT	12M	Milestones/Deliverable	36M	Institutes
	TI	Enhanced operation of optical readout	- O(mm)-sampling, O(MeV)-threshold, O(ns)-timing for v-	wus	DKD1	1201	2401	3081	ANU,
		across gas densities	interactions. - Large-area amplifica- tion structures (≥ 50 cm × 50 cm) at optical gain						AstroCeNT, CERN,
			~ 10 ⁴ . - Tracking of low- energy nuclei (down to						DIPC, Fermilab,
			10-100 keV) with good PID.	WG1,	1.1,	ML1	M2.1	D1	GANIL
				WG2,	1.2,	Review and de-	Construction of	TPC commis-	
Ī	T2	Enhanced operation of charge readout	 Large-area MPGDs (≥ 50 cm × 50 cm) at ~ 10³ − 10⁴ gain. Large-area MPGDs (≥ 	WG3,	1.3,	sign: review of TPC technologies for reaction/decay	prototypes: start construction of technology demon-	sioning and proof of principle demon- stration: char-	CNRS- IN2P3/UGA, GSSL
		across gas densities	50 cm × 50 cm) with a large dynamic range.	WG4, WG5,	1.4	studies: status and perspectives; de- sign/construction of small R&D cham-	strators for large area coverage. [T1-T7]	acterization of mid-size technol- ogy demonstrators for reaction/decay	GSSI, HIP,
			- O(1 keV) threah.	WG6,		small R&D cham- bers, [T1-T7]	M2.2	studies focusing on	IFAE,
			old across pressures (100 mbar-10 bar) in O(1000 cm ³) technol-	WG7		M1.2	Characterization of key technolo- gles: characterize	energy and tracking thresholds, energy resolution, dynamic	Imperial,
			ogy demonstrators. - IBF suppression by G*IBF=10 or better.			Development and tuning of simu-	electronics, ampli- fication structures	range and IBF. [T1- T7]	INFN-BA, UniBA, PoliBA
						lation tools: design, development and/or	and overall TPC behaviour in small R&D chambers,	102	U Bonn,
1	T3	Enhanced operation of	- EL operation at 2m (15bar) and 0.5m			tuning of modelling and simulation tools	R&D chambers, comparison with	Analysis and	RHUL
		pure or trace- amount doped	(>20bar) scale, with <10% deformation.			(IBF, ionization, optical response,	simulations. [T1- T7]	definition of next steps: establish	RWTH Aachen,
		noble gases	- Single-electron thresh- olds on large areas for			Geant4). [T1-T7]		guidelines for fu- ture developments	STFC-RAL,
			mixtures of noble gases. - MPGD concepts with enhanced EL-					based on require- ments from future	U Bonn,
			response (up to or above					facilities and the achieved/achievable	IGFAE/USC,
			1000 ph/e). - Improve light collec- tion for large volumes.					performances. [T1- T7]	INFN-PD, DF UNIPD,
			 Integrated, low-power and radiopure elec- tronics for EL-based 						INFN-RM1,
			tracking.						IRFU/CEA,
1	T4		- Tracking of low- energy nuclei (down to						ISNAP,
		energy recon- struction of	10-100 keV) with good						LIP-Coimbra,
		highly ion- izing tracks	PID. - High dynamic range						MSU,
		(including R&D on	for the reconstruction of						SINP Kolkata.
		negative-ion	low and highly ionizing particles.						U Aveiro.
		readout)	- Single electron count- ing at O(100 µm) in						0.0000000000000000000000000000000000000
			3D, and diffusion at the thermal limit.						U Coimbra,
									U Genève,
Ī	T5	Determination of the interac-	 Develop new gaseous WLS and novel gaseous 						U Hamburg,
		tion time (T ₀)	scintillators, compara- ble or better than CF4.						UH Manoa,
			- Demonstration of Ta-						U Indiana,
			determination for low- energy deposits with at						U Kobe,
			least O(cm) resolution.						U Liverpool,
+	T 6	Microscopic	- Develop the science						U Bursa.
		gas properties and gas han-	and technology of novel eco-friendly gases.						10104010090
		dling	- Derive microscopic pa- rameters for new gases.						U New Me ico,
-	17	Radiopurity	- Background levels be-						UPV,
			 Background levels be- low 10⁻⁶ c/keV/cm²/s for axion research and at 						U Vigo,
			least ×10 more radiop-						U Warwick
			ure cameras. - New radiopure ampli-						CAPA,
			fication structures and						

WP8 – TPCs as Reaction and Decay Chambers

Institutes

- A 15 institutes in 7 countries
- B 8 institutes in 6 countries
- C 9 institutes in 4 countries
- D 15 institutes in 11 countries

Institute	T1	T2	Т3	T4	T5	Т6	T7
RWTH Aachen						x	
U Indiana		x				x	
U Geneva			x				
IFAE			x				
U Liverpool	x		x				x
RHUL		x					
Imperial C.		x					
INFN-Bari	x	x					
IGFAE	x				х	x	
UVigo					х	x	
U Warwick	x	x				x	
Fermilab	x	x				x	
INFN Padova	х	x				x	
IFIC	х				x		
U Uludag					x	x	

(C) Electroluminescence-based TPCs for RE Searches and other R&D on pure noble-gas amplification.												
Institute	T1	T2	Т3	T4	T5	Т6	T7					
DIPC			х		x	х	x					
IFIC			x			х						
UPV			х									
LIP-Coimbra			x									
IGFAE			х									
U Coimbra			х									
U Aveiro			x			x						
Astrocent			х									
WIS			x		x		x					

(B) TPCs for low-energy nuclear physics.													
Institute	T1	T2	T3	T4	T5	T6	T7						
MSU		x	х										
ISNAP		х				х							
IGFAE	x					x							
RIKEN		х											
SINP		x											
IRFU/CEA		x											
WIS	x	x				x							
GANIL		x				х							

Institute	T1	T2	Т3	T4	T5	T6	T7
GSSI	x			x	x		
IRFU/CEA		x		x			x
INFN-Roma1	x			x		x	x
RAL	x	x		x			
HIP	x	x		x			
UH Manoa	x	x		x			
New Mexico	x	x		x			
CERN	x						
CAPA/UNIZAR		x				x	x
LIP-Coimbra			x			x	
ANU	x	x		x		x	
IN2P3/UGA	x			x		x	
U Hamburg	x	x		x	x	x	x
U Kobe				x			х
U Bonn				x			

WP8 – TPCs as Reaction and Decay Chambers

Existing

	0						
WP	Description	Material	Material	Material	FTE	FTE	FTE
		[kCHF]	[kCHF]	[kCHF]	(2024)	(2025)	(2026)
		(2024)	(2025)	(2026)			
WP8	TPCs as Reaction and Decay Chambers	495	505	405	78.35	73.05	72.55

Additional (not existing)

WP	Description	Material	Material	Material	FTE	FTE	FTE
		[kCHF]	[kCHF]	[kCHF]	(2024)	(2025)	(2026)
		(2024)	(2025)	(2026)			
WP8	TPCs as Reaction and	516.5	471.5	436.5	35.1	40	40
	Decay Chambers						

Institutes

- 41 institutes from 16 countries
- All projects/tasks covered

WP9 – Beyond HEP

Key application areas (projects):

- cosmic muon imaging (muography) and large area applications; public safety and mining industry
- dosimetry/beam monitoring and medical imaging applications (PET, CT, X-ray, SPECT, Gamma cameras, or X-ray fluorescence imaging)
- fast/thermal neutron imaging with solid converters for neutron science, neutron beam monitoring, tomography and nuclear waste monitoring

Common challenges:

- Portable and recirculating gas systems
- Sealed detectors or ultra-low gas consumption
- · Operational stability in outdoor natural or extreme environments
- Cost-efficient solutions for robust large detectors
- Very low maintenance level
- Neutron converters
- Front-End electronics radiation hardness
- Low material budget
- Physics applications (e.g neutron differential cross section studies)

DETECTOR RESEARCH AND DEVELOPMENT THEMES (DRDTs) & DETECTOR COMMUNITY THEMES (DCTs)										
DLI	LUIN		< 2030	2030- 2035	2035- 2040	2040- 2045	> 2045		\langle	
	DRDT 1.1	Improve time and spatial resolution for gaseous detectors with long-term stability		-	•	-				
Gaseous	DRDT 1.2	Achieve tracking in gaseous detectors with dE/dx and dN/dx capability in large volumes with very low material budget and different read-out		-	-	-			1	
	DRDT 1.3	schemes Develop environmentally friendly gaseous detectors for very large areas with high-rate capability			-	-	-			
	DRDT 1.4	Achieve high sensitivity in both low and high-pressure TPCs								

#	Task	Performance Goal	DRD1 WGs	ECFA DRDT	12M	24M	36M	Institutes
TI	Cost-efficient large-size out- door detector structures: design and construction	Robust, cost-efficient large detectors Design chain, materials and construction compat- ible with outdoor use			M1.1 Muon imaging and extreme envi-	M2.1 Muon imaging and extreme envi-	D1 Performance evaluation of cos- mic imaging detec- tors and operation	
T2		 Mechanical stability during transportation Long-term sustainment 			and extreme envi- ronment solutions: evaluation of pro- posed technologies	and extreme envi- ronment demon- strations: demon- stration of the	tors and operation in extreme con- ditions: summary report on prototype	
	stability of detectors un- der outdoor	 Long-term sustainment of daily and yearly tem- perature cycling Compatibility with 			and solutions lead- ing to applicability in environments	technological con- cepts and proposed solutions in con-	report on prototype performance, includ- ing available and demonstrated tech-	UNIMIB,
	or extreme conditions Detector porta-	medical equipment guidelines			and configura- tions relevant to BHEP. This includes	ditions relevant to BHEP applications: field installation	nological solutions to address long-term outdoor operation	IRFU/CEA,
15	bility and low maintenance operation	- Portable structure, low weight, integrity - Fast installation and low maintenance need			maintenance-free operation, ex- treme or outdoor	of cosmic imaging detectors, demon- stration of portability	(more than 1 year, temperature 0 - 40 deg), portability	NISER Bhubaneswar, U Coimbra.
14		Low or zero gas con- sumption Low power, high chan-			temperature- and humidity ranges. [T1-T6]	and low (zero) flow operation. [T1-T6]	(meeting ASTM shipping standards), longevity, low power	LMU,
14	low power, long-lived Front-End and	nel number, high effi- ciency - Readout optimized and	WG1, WG2,	1.1, 1.3	M1.2	M2.2 Characterization of	(below 10 W). Crit- ical comparison of	Wigner, U Bonn,
TS	DAQ systems	operating in an intense neutron field - Low background for	WG3,		Evaluation of detector technol- ogy for medical	prototype detectors for medical applica- tions: demonstration	various technolo- gies and solutions, identification of gen- eral guidelines for	AGH-Krakow,
1.5	mization and simulation methods for	surface- and underground muon imaging	WG4, WG5,		applications: char- acterization of application-specific	and characterization of the developed prototype detectors	high-performance instruments and for technological	ESS,
Te	muons and neutrons	Optimized structures us- ing novel neutron con- verters Definition of bench-	WG6,		application-specific radiation fields and of different gaseous detectors for beam	in pre-clinical and clinical environ- ments, for medical	transfer towards commercialisation. [T1-T6]	Istinye U, U Hamburg,
1.00	Benchmarking performance, infrastructures and knowledge	 Definition of bench- marking parameters for muography, medical and neutron science 	WG7		nonitoring, beam characterization and photon-based	ments, for medical photon detection and in space radiation simulating beams.	[T1-16] D2	U Sofia,
	and knowledge transfer	- Characterization of benchmark sites, com- parative measurements			imaging using de- tailed simulations and already existing	Optimization of de- tector performance.	Performance eval- uation of detectors for medical appli-	VUB and UGen CNRS-LSBB,
17	Optical read- out MPGDs for bio-marker	 Ability to measure sub-Becquerel activities in single cells 			prototypes. Assess- ment of suitability of respective detector	M2.3	cations: assessment and description of re- alization, operation	GSI,
	imaging and beam char- acterization	 n single cells Reliably determine pre-clinical and clinical beam parameters with 			technology and customization of de- sign to application.	Characterisation of key aspects of	and performance of different detector technologies in clin-	UCLouvain, MedAustron,
TS	in ion beam therapy	beam parameters with well-characterized detec- tor - Optimization of detec-			[T7-T9]	gaseous neutron detectors: determi- nation of efficiency and maximum	ical and pre-clinical environments, for medical photon	OXY,
18	ton detectors for in-beam monitoring for ion beam	tor concept with good time resolution for in- beam range verification - Study detection effi-			Study of neutron converter materials realisation pro-	achievable rate ca- pability of different detector proto- types. Evaluation	detection and re- lated applications. Description of inte- gration possibilities.	U Johanne burg
	therapy and imaging	photons and temporal res- olution			cesses: definition of realisation processes and characterisation	of gamma-ray sen- sitivity and neutron discharge probabil-	[T7-T9] D3	
T 9	itors with high temporal resolution	 Monitor clinical ion beams at normal and high dose rates with µs resolu- tion 			of solid/gas con- verters of different areas. Estimation of expected detection	ity. Measurement of spatial resolution and image capa- bility reconstruc-	Performance eval- uation of gaseous neutron detec-	
	for ion beam therapy and space radiation simulation	 Monitor space radia- tion simulating secondary beams at high and low fluence in real-time 			efficiency. Eval- uation of intrinsic background due to employed materials	tion.Determination of radiation hardness of front-end elec- tronics. [T4,T10-	tors: comparison of performances of the different detector technol-	
т	Study of Inno- vative neutron converters with gaseous amplifying structures	Optimizing 2/3D solid- state large area and gaseous converters Enhancement of com- bined converter and amplification structures			and definition of common strategies to limit it. [T10- T12]	T12]	ogy prototypes in terms of efficiency (1-40% for ther- mal neutrons), rate capability (order MH2/cm ²), back-	
	for high-rate, efficient, low- background detectors	-Evaluation and lim- itation of intrinsic background.					ground suppression, spatial resolution (sub-mm) and image capability	
TI	I Spatial resolu- tion, readout granularity and rate capa- bility impact on neutron imaging and dosimetry	 Enhancement of spa- tial resolution and evalu- ation of image-capability reconstruction, sensitiv- ity and dosimetry capa- bility. 					reconstruction. Determination of the most suitable technologies for specific applications. Definition of next steps for future gaseous neutron de-	
т		-Evaluation of gamma rays sensitivity at high flux facilities -Study of neutron- induced discharge probability -Study in clinical envi- ronments					tectors development. [T10-T12]	

- Efficiency
- Low background materials
- Environmental-friendly gas mixtures
- Large Area granularity
- Sensitivity

WP9 – Beyond HEP

Institutes

- 18 institutes in 13 countries
- All tasks covered

	Tasks											
Institute	T1	T2	T3	T4	T5	Т6	T7	Т8	Т9	T10	T11	T12
UNIMIB				x						x	x	x
Bonn										x		
UCL		x	x	x								
LIP	x		x		x					x	x	
ISU	x	x			x							
Wigner	x	x	x	x	x	x						
AGH										x		
Hamburg										x	x	x
Saclay	x	x	x	x	x		x			x	x	x
LMU			x				x		x			
SOfia								x				
MedAustron		x							x			
VUB			x		x	x						
LSBB						x						
NISER	x			x	x							
ESS						x				x	x	
GSI									x			
UJ								x				

Existing

		•						
Γ	WP	Description	Material	Material	Material	FTE	FTE	FTE
			[kCHF]	[kCHF]	[kCHF]	(2024)	(2025)	(2026)
			(2024)	(2025)	(2026)			
	WP9	Beyond HEP	803	783	694	40.5	37.5	35.2

Additional (not existing)

WP	Description	Material	Material	Material	FTE	FTE	FTE
		[kCHF]	[kCHF]	[kCHF]	(2024)	(2025)	(2026)
		(2024)	(2025)	(2026)			
WP9	Beyond HEP	140	225	275	15.9	20.4	23.9

