

Newest development of MRPC

Wang Yi Department of Engineering Physics, Tsinghua University yiwang@mail.tsinghua.edu.cn

Wang Yi, Tsinghua University

1st DRD1 Collaboration Meeting, 2024.1.29-2.2

Abstract:

- Introduction of MRPC
- Introduction of three generation MRPC TOF
- Status of newest technology
- Conclusion

MRPC introduction

stack of equally-spaced resistive plates with voltage applied to external surfaces (all internal plates electrically floating)

pickup electrodes on external surfaces (resistive plates transparent to fast signal)

internal plates take correct potential - initially due to electrostatics but kept at correct potential by flow of electrons and positive ions - feedback principle that ensures equal gain in all gas gaps

MRPC used in TOF system

	ALICE	STAR	FOPI	BESIII	СВМ	SoLID
Active area per detector (cm)	120 x 13	22 x 8.4	90 x 4.6	0.5x(9.2+14.8)x32.8	33 x 27.6	
Total active area (m ²)	141	50	5	1.33	120	10
Pad size (cm)	3.7 x 2.5	6.3 x 3.1	90 x 0.3	(9.1~14.1) x 2.4	27 x 1.0	(16~28) x 2.5
Gap×thickness(mm)	10 x 0.25	6 x 0.22	6 x 0.3	12 x 0.22	10 x 0.25	32 x 0.128
Gas mixtures ($C_2H_2F_4/C_4H_{10}/SF_6$)	90/5/5	95/5/0	85/5/10	90/5/5	90/5/5	90/5/5
Operating field (kV/cm)	96	107	110	109	110	140
Efficiency	99.9%	95-97%	97±3%	99%	97%	98%
Time resolution(ps)	40	60	73±5	60	60	20 ps
Max rate (Hz/cm ²)	50	10	50	50	30k	20k

higher counting rate and time precision.

The voltage drop in the gas gap:

$$\overline{V}_{drop} = V_{ap} - \overline{V}_{gap} = \overline{IR} = \overline{q}\phi\rho d$$

The smaller the voltage drop, the higher efficiency and higher rate capability!

Two main ways to improve rate capability:

- Reducing bulky resistivity of electrode glass (CBM)
- Reducing the avalanche charge (ATLAS and CMS) Other methods:
- Reducing the thickness of glass
- Warming the detector

Typical MRPC TOF

RHIC-STAR TOF

High rate and 20ps resolution

FAIR-CBM TOF High rate- low resistive glass

Wang Yi, Tsinghua University

Key technology

1st generation TOF (from 2000): Requirement: Time resolution: <80ps Rate : <1kHz/cm² Technology: common glass MRPC+NINOs +HPTDC Analysis method: TOT slewing correction

2st generation TOF (from 2008): Requirement: Time resolution: <80ps Rate : 30kHz/cm² Technology: low resistive glass MRPC+PADI +GET4 Analysis method: TOT slewing correction

3st generation TOF (from 2012): Requirement: Time resolution: <20ps Rate : 20kHz/cm² Technology: low resistive glass MRPC+SCA +ADC Analysis method: TOT slewing correction Deep learning+ Neural network

RHIC-STAR

Collision species	C.M. Energy per nucleon pair (GeV)	Physics
Polarized p+p	510, 200, 150	Spin physics
Au+Au	200, 130, 62.4, 39, 27, 19.6, 14.5, 11, 7.7	Quark Gluon Plasma properties, QCD Critical point search
Cu+Cu, Cu+Au	200, 62.4, 19.6, 22.4	Study initial conditions
d+Au	200	Cold nuclear matter
U+U	193	Study initial conditions

Magnet MTD BEMC TPC TOF VPD Image: MTD Particle identification with
TPC+TOF TPC+TOF Pion/kaon, pT ~ 1.6 GeV/c; proton
pT ~ 3.0 GeV/c;
Strange hadrons (K, ^, A, E, Q)
reconstructed by the decay etir

Particle identification

STAR-TOF structure

The structure of MRPC

MRPC + NINOs + HPTDC

PID of STAR-TOF

- The "FAIR 2028" science program will include:
 - CBM at the new cave with SIS100 beams, and HADES at SIS18
 - APPA experiments at the low-energy rings, at SIS100, at the caves at SIS18 and UNILAC with and at PHELIX and a limited set of experiments which could be hosted at all the caves served by SIS100 _{Wang Yi, Tsinghua University} 1st DRD1 Collaboration Meeting, 2024.1.29-2.2</sub>11

Layout of CBM detector

Phase-1 = MSV = Day1 with full Compute Performance + ECAL

- Tracking acceptance: 2° < θ_{lab} < 25°
- Free streaming DAQ
- R_{int} = 10 MHz (Au+Au)

 $\begin{array}{l} R_{int} \approx 0.5 \; MHz \\ \mbox{full bandwith:} \\ \mbox{Det.} - \mbox{Entry nodes} \\ \mbox{reduced bandwidth} \\ \mbox{Entry nodes} - \mbox{Comp. farm} \end{array}$

with R_{int} (MVD)=0.1 MHz

 Software based event selection

> Day-1 funding: ~ 90% secured

The structure of CBM-TOF wall

Technical Design Report for the CBM Time – of – Flight System (TOF) The CBM Collaboration

March 2013

CBM-ToF Requirements

- > Full system time resolution $\sigma_T \sim 80$ ps
- Efficiency > 95 %
- ➢ Rate capability ≤ 30 kHz/cm²
- Polar angular range 2.5° 25°
- > Occupancy < 5 %</p>
- Low power electronics
 - (~100.000 channels)
- Free streaming data acquisition

1st DRD1 Collaboration

Development of low resistive glass

Continuous melting

Continuous annealing

Performance of the glass

Polishing glass

Glass mass production Yield $>100m^2/month$

> **Online test system. The** efficiency and time resolution can be obtained by cosmic ray while irradiated by Xrays. 0.1C/cm² charge is accumulated in 35 days.

Rate capability of high rate MRPC

Wang Yi, Tsinghua University

Design of strip-MRPC for high rate region

Glass: low resistive glass 0.7mm thick, 33cm x 27.6cm Strip: 27cm x 0.7cm, 0.3cm interval, 32 strips Gas gap: 8 x 0.25mm, two stacks

Beam test @ SPS Feb 2015

Wang Yi, Tsinghua University

1st DRD1 Collaboration Meeting, 2024.1.29-2.2

Performance of the prototype

1st DRD1 Collaboration Meeting, 2024. Reg (22/2 cm2)

Mass production of high rate MRPC

Two-dimensional code of $\ensuremath{\mathsf{MRPC}}$

CBM ToF

Development of MRPC for CBM-TOF

		ه = مربد = مربد ا							<u> </u>
H	М	RPC生产	"记录表/	MRPC3a	Quality Ass	surance T	able		
	MRPC ID	MRPC3a - 005							
		来自编号与批次 / Glass Batch No.			NO.9 151225	J	用料數量/Amount		
HII	被痛 / Glass	来自辅号与批次 / Glass Batch No.			NO.11 151225	J	用科教量/Amount		
		来自箱号与批次 / Glass Batch No.				用料數量/Amount			
		Ξ电阻 / Surface Resistance (MΩ/sq)			Point 1	Point 2	Point 3	Point 4	Point 5
		电极玻璃1 / Electrode 1			8	2	3	7	7
电极衰璃 / Electrode		电极玻璃2 / Electrode 2			3	3	4	3	3
		电极玻璃3 / Electrode 3			5	8	5	8	5
HD-		电极玻璃4 / Electrode 4			8	4	3	5	5
-0-0	蜂窝板 / Honeycomb	· · · · · · · · · · · · · · · · · · ·							
I FH	PCB上下板 / Top & Bottom PCB	3							
	PCB 中間板 / Middle PCB	外側64略信号 焊接保护电阻/ Resistance			与地之间电阻是 Measured on Outs	昏均为 100kΩ / ide Resistor	4	问题教量 / Unqualified	0
		Protection Resistor		内侧64略信号与地之间电阻是否均为200kΩ/ Resistance Measured on Inside Resistor			4	何思教量 / Unqualified	0
		焊接双捧播针 / Connector 16个播座与明 Thick			电路板的厚度是否 kness of the conne	tors /	~	问题数量 / Unqualified	0
-0-0	Mylar / Mylar				1				
-0-0	PCB上下板高压 / Top & Bottom HV	4							
-0-0	PCB 中间板高压 / Middle HV				1				
-0-0	鱼鏡 / Spacer				1				
-0-0	厚度 / Thickness	Point 1	Point 2	Point 3	Point 4	Point 5	Point 6	Point 7	Point 8
HC-C	LTPCB / Between Top & Bottom PCB	11.44	11.47	11.44	11.41	11.57	11.45	11.59	11.52
-6-	上中PCB / Between Top & Middle PCB	4.61	4.77	4.67	4.76	4.66	4.79	4.72	4.77
HH	下中PCB // Between Bottom & Middle PCB	4.63	5.03	5.02	4.87	4.96	4.84	4.84	4.74
HН	总厚度 / Total Thickness	25.98	25.92	26.11	26.12	26.03	26.13	26.15	26.05
HLH	組装人员签字 / Signature				杨泽林				
IН	日期 / Date	08/09/2017							
ч	备注 / Note								

Wang Yi, Tsinghua University

1st DRD1 Collaboration Meeting, 2024.1.29-2.2

Results in mCBM@SIS18

Development of sealed pad-spacer MRPC

1. **Gas saving :** stable operation under < 10 sccm/m² gas flow in cosmic ray test

MeanTemp: ~24°C

HV: 5300V

2. Speedup gas exchange and reduce creepage on the spacer

Wang Yi, Tsinghua University

10

Aging (davs)

15

20

time resolution

efficiency

0.14

Time resolution (ns)

0.1

0

Overview of SoLID

Solenoidal Large Intensity Device

• Full exploitation of JLab 12 GeV Upgrade

→ A Large Acceptance Detector AND Can Handle High Luminosity (10³⁷-10³⁹) Take advantage of latest development in detectors , data acquisitions and simulations

Reach ultimate precision for SIDIS (TMDs), PVDIS in high-x region and threshold J/ ψ

SoLID (PVDIS)

1 m

ward

•5 highly rated experiments approved (+3)

Three SIDIS experiments, one PVDIS, one J/ ψ production (+ three run group experiments)

•Strong collaboration (250+ collaborators from 70+ institutes, 13 countries) Significant international contributions (Chinese collaboration)

Wang Yi, Isingnua University

1st DRD1 Collaboration Meeting, 2024.1.29-2.2

SoLID-TOF structure

- The MRPC is developed for the TOF of SoLID
- Main Requirements for TOF:
 - π/k separation up to 7GeV/c
 - Time resolution < 20ps</p>
 - Rate capability > 20kHz/cm²

SoLID-TOF structure

Toward 20ps resolution: narrow gap MRPC

<13~15 ps₀

Wang Yi, Tsinghua University

gap number: >16

NN can get the first interaction time t₀

Simulation dataset :

- 1. t_0 : first interaction happens
- 2. t_{p} the signal reach the peak
- 7 uniformly distributed points along the leading edge

NN method can avoid avalanche time jitter compared with TOT method.

Multilayer perceptron (MLP)

Another NN: LSTM

Recurrent neural networks(RNN): Long Short Term Memory network(LSTM)

- Train/validate/test set: 20/10/10 k
- Tensorflow & GPU: GTX 1080 Ti

The length of the leading edge t_l

Several uniformly distributed points along the leading edge

- **f** : forget gate: Whether to erase
- I : Input gate, whether to write
- g: gate gate, How much to write
- o: output gate, How much to reveal

> 30 mins for training

Comparison of ToT and NN

Time reconstruction algorithms: The traditional algorithm: ToT (Time-over-Threshold) Neural network: LSTM(Long Short Term network)

The resolution result with the new reconstruction algorithm is even better

A prototype of 20ps MRPC

Simulated efficiency and time resolution

Cosmic test

20ps@15kHz/cm² MRPC

- European Union **"F-gas regulation"**:
- -Limiting the total amount of F-gases that can be sold in the EU
- -Banning the use of F-gases in many new types of equipment.
- -Preventing emissions of F-gases from existing equipment.

Candidation of Eco-gas

Preliminary results

- Pure HFO and HFO/iC₄H₁₀
 95/5 tests completed
- Efficiency Curve:
- Pure HFO:

96.9%@7000V

 HFO/iC₄H₁₀ 95/5: 97.6%@6900V

Preliminary results

- Time resolution:
- ~120ps at working point, not as good as standard gas (100ps)
- Increasing the HV may help improve the timing performance, but should mind the streamer.

Conclusions

- Time of flight system (TOF) based on MRPC technology is widely used and played an important role in modern high energy nuclear physics experiments.
- ✓ New technology were developed such as :

New material :low resistive glass;

New MRPC structure: sealed pad-spacer for high rate-MRPC;

New electronics : switched capacitor array (SCA) and high precision TDC);

New analysis method : deep learning technology.

- ✓ A prototype of 20ps resolution MRPC was designed and the time is around 16ps.
- ✓ New topics such as Eco-gas, industrial and medical usage...

Thanks for your attention!