

D. González-Díaz (30-1-2024) DRD1 meeting

DRD1 EXTENDED R&D PROPOSAL Development of Gaseous Detectors Technologies

Abstract

This document, realized in the framework of the newly established Gaseous Detector R&D Collaboration (DRD1), presents a comprehensive overview of the current state-of-the-art and the challenges related to various gaseous detector concepts and technologies. It is divided into two key sections.

The first section, titled "Executive summary", offers a broad perspective on the collaborative scientific organization, characterized by the presence of eight Working Groups (WGs), which serve as the cornerstone for our forthcoming scientific endeavours. This section also contains a detailed inventory of R&D tasks structured into distinct Work Packages (WPs), in alignment with strategic R&D programs that funding agencies may consider supporting. Furthermore, it underlines the critical infrastructures and tools essential for advancing us towards our technological objectives, as outlined in the ECFA R&D roadmap.

The second section, titled "Scientific Proposal and R&D Framework," delves deeply into the research work and plans. Each chapter in this section provides a detailed exploration of the activities planned by the WGs, underscoring their pivotal role in shaping our future scientific pursuits. This DRD1 proposal reinforces our unwavering commitment to a collaborative research program that will span the next three years.

DRD1 STRUCTURE

Figure 2: DRD1 Scientific Organization

DRD1 STRUCTURE

72 intersections

Figure 2: DRD1 Scientific Organization

"Technical" Start Date of Facility

(This means, where the dates are not known, the earliest technically feasible start date is indicated - such that detector R&D readiness is not the delaying factor)

Quick note (please bear with me)

40 60 80 100 120

Collider-type TPCs (tracking)

ILC/CEPC TPC

Collider-type TPCs (tracking)

ILC/CEPC TPC

pixels

Limited by diffusion:

$$
\frac{D_T^*(B)}{D_T^*(0)} = \sqrt{1/(1 + \omega^2 \tau^2)}
$$

$$
\omega \ = \ (q_e/m_e)|B|
$$

Pads can beat the $\Delta x/\sqrt{12}$ resolution limit by a factor of $-x6$, at least, by tuning the Point Spread Function (PSF):

- GEMs: adjust the PSF by tuning the distance to the induction plane.
- Micromegas: tune the PSF through resistive coating (AC coupling!).

Collider-type TPCs (ion back-flow)

A surprise in 2024: no universal solution to reach the 'TPC limit' of IBF x gain ≤ 1

NIM A 940 (2019), 498-504

 \ldots up to \sim 5-10 similar facilities

- Study rare nuclei and production of new isotopes.
- 4π -reconstruction of all reaction products (nuclei, $p, e+/e-.$
- Adjustable target pressure (enables optimization of containment, interaction probability, energy loss).

 $4-\alpha$ decay of 16 O **pair production**

(gated operation)

a lot to do!

1. Space resolution ('2-hit separation') \sim few mm. Fine granularity needed!.

• Linearity \vert unsolved for differences in ionization by factors $10^3 - 10^4$. unsolved

Dual-phase TPCs (improved EL-readouts)

[arXiv:2207.11127](https://arxiv.org/pdf/2207.11127.pdf) arXiv:1808.02969 Dual-phase TPCs (charge readout)

[arXiv:2307.02343](https://arxiv.org/abs/2307.02343)

[arXiv:1912.10133](https://arxiv.org/abs/1912.10133)

[arXiv:1808.02969](https://arxiv.org/abs/1808.02969)

[arXiv: 2311.09568](https://arxiv.org/abs/2311.09568)

an appealing possibility: couple to avalanche amplification! *GridPix-style (CsI can be added to the THGEM gate)*

good for O(10keV) thresholds in large-volume detectors

*not covered by

$E_{\rm drift}$ E_{drift} iquid Cathode Anode Cathode

Qing Lin JINST 16 P08011, 2021 Yu Wei, arXiv: 2111.09112, JINST 2022 Jianyang Qi arXiv: 2301.12296, JINST 2023

downside: spurious single-photon activity

…preferrable to high electron activity!

DRD1! DRD1! Dual-phase TPCs (morphing into single liquid-phase?)

A cylindrical Single-Phase LXe detector design (thin anode wire in the center) was first proposed by Lin (2102.06903, JINST).

- No liquid-gas interface: No trapped electrons!
- S2 in LXe ($\left\{20 \right.$ photon/e-) is typically much smaller than S2 in GXe: induce less delayed e-
- Weak field on the cathode: less micro discharges; anode/gate surface area is very small: less e-from metal surface
- More photosensor coverage, no reflection at liquid/gas interface: higher light collection (lower S1 threshold, better sensitivity for low-mass DM)

 0_{cm}

13

*not covered by

downside: spurious single-photon activity

…preferrable to high electron activity!

*not covered by DRD1!

Qing Lin JINST 16 P08011, 2021 Yu Wei, arXiv: 2111.09112, JINST 2022 Jianyang Qi arXiv: 2301.12296, JINST 2023

downside: spurious single-photon activity

…preferrable to high electron activity!

Dual-phase TPCs (morphing into single liquid-phase?)

A cylindrical Single-Phase LXe detector design (thin anode wire in the center) was first proposed by Lin (2102.06903, JINST).

No liquid-gas interface: No trapped electrons!

Aprile et al., 1408.6206

Kuger et al. 2112.11844

- S2 in LXe ($\left\{20 \right.$ photon/e-) is typically much smaller than S2 in GXe: induce less delayed e-
- Weak field on the cathode: less micro discharges; anode/gate surface area is very small: less e-from metal surface
- More photosensor coverage, no reflection at liquid/gas interface: higher light collection (lower S1 threshold, better sensitivity for low-mass DM)

SiPM matrix 스 스스 스스 스 $(S2(NBrSEL))$ LAr level

THGEM

or GEM anode

Cathode

GEM alternative

X-rays from pulsed Mo tube

 $S1$ (primary¹)

scintillation)

13

not viable for DM, but not excluded for neutrino TPCs

(previous) *neutral bremsstrahlung* in the liquid (not EL!)

arXiv: 2301.02530 https://doi.org/10.3390/instruments4040035

Full3D – camera-based optical tracking (pure argon TPC)

TPX3Cam

Raw data is 3D. Just need to convert ToA to z position using known drift velocity in the TPC and (x,y) pixel number to mm using the known field of view of the lens.

Huge readout rates are possible (80MHits/s)

Zero-suppressed readout (~few KBytes per event)

Relies on Timepix sensor

Same readout is possible for dual-phase and gas TPCs

 $2m$ glass GEM + TPB plate

Full3D – camera-based optical tracking (argon + CF_4 TPC)

CF⁴ -doping in argon works well down to **1%**, possibly even less, enables tracking and T_0 -tagging on large volumes

P. Amedo, arXiv: 2306.09919

A. Saá-Hernández https://arxiv.org/abs/2401.09920

P. Amedo et al., Primary scintillation yields induced by alpha particles in gas mixtures of Argon/ CF_4 at 10~bar (in preparation)

(3D-optical imaging soon to follow)

Full3D – camera-based optical tracking (pure xenon TPC)

Micromegas Low-mass DM TPCs IAXO (solar axions)

radiopurity!

11 spherical metallic anodes

3D printed ACHINOS with DLC coating

Insulated wires Resistive central electrode Support rod

Micromegas TREX-DM (low mass WIMPs)

Spherical detector 140cm 140cm NEWS-G (low mass WIMPs)

 $HV Wire \rightarrow$

17

Very-low-energy tracking (DM) TPCs

*resolution here refers to ~PSF (~2-hit separation in collider physics) D. Loomba (in preparation)

P. Majewski with glass-GEMs

- New gas mixtures and amplification structures are being introduced for the readout of TPCs:
	- 1. Double-mesh (low IBF x G).
	- 2. M-THGEM (operation in pure noble elements).
	- 3. Liquid-hole and Floating-hole multipliers for extraction in dual-phase TPCs.
	- 4. RWELL/RPWELL for cryogenic TPCs.
	- 5. FAT-GEMs for TPCs working with electroluminescence.
	- 6. Sand-blasted Large-Area Glass-GEMs.

…

- Wires, MSGCs, GEMs, THGEMs are all capable of producing usable scintillation in the liquid. Scaled-up concepts already on their way.
- Full3D camera-based optical tracking used or considered by several collaborations.
- Radiopurity of amplification structures continues to be key.
- Optical readout of negative-ion TPCs achieved at around 1bar!. Perhaps surprisingly… resorting to GEM structures with a classical design and no particular optimization.
	- Continued success of MPGD structures developed decades ago (GEMs, THGEMs).
	- However new production techniques and optimization, keeping the up and coming new applications seem inevitable

Appendix

Electroluminescence in gas TPCs

demonstration of absolute-z determination through diffusion

 Δ z \sim 33mm

new multi-hole EL structures for large area

I. ELCC (structure == light reflector)

<https://arxiv.org/abs/1907.03292>, https://arxiv.org/abs/2106.03773

FAT-GEMs: (Field Assisted) Transparent Gaseous-Electroluminescence Multipliers, S. Leardini et al (in preparation)

Very-low-energy tracking (DM) TPCs

from G. Dho

'perfect' detector for measuring nuclear recoils?:

- He/ CF_4/SF_6 at around atmospheric pressure.
- 3D optical readout via CMOS cameras down to 50um vixel size.

*(speed requirements are of the order of ~ 0.1 Mfps, already within the reach of ultra-fast cameras)

Single-ion tagging

a background-free method, particularly for studying decays

One of the possibilities: resort to the chemistry of the species.

-> adapting SMFI (single molecule fluorescent imaging)

but novel dry fluorophores are in need!

Phys. Rev. Lett. 120 (2018) 13, 132504 Sci. Rep. 9, 15097 (2019) ACS Sens 2021, 6, 1, 192–202 Nature 583 (2020) 7814, 48–54 Nat. Comm. 13, 7741 2023

1mm² –scan at the Abbe limit in HPGXe

