DEEP UNDERGROUND NEUTRINO EXPER

The Horizontal and Vertical Drift detectors in DUNE

Jaime Dawson on behalf of the DUNE collaboration Laboratoire AstroParticule et Cosmologie, Paris

DUNE: international collaboration

1400+ collaborators 200+ institutions 37 countries (including CERN)

DUNE is next generation neutrino oscillation experiment

Far detectors at SURF: 4 x 17 kt Liquid Argon TPCs 1.5 km underground

Long baseline: 1300km

1.2 MW wide-band beam from Fermilab (upgradable to 2.4 MW)

Near Detector to measure initial composition

LAr TPCs

- Massive detectors (17 ktons Far Detectors)
- Fine-grain 'images' of neutrino interactions
- Separation v_μ/v_e
- Good energy reconstruction
- Low energy threshold

LAr TPCs

- Supernova signals
	- \bullet DUNE is sensitive to v_e $ve + {}^{40}Ar \rightarrow e^- + {}^{40}K^*$
	- Also elastic-scattering
	- 5-50 MeV signals
- Proton decay
	- DUNE sensitive to: $p \rightarrow K^+ \nu$
	- and other channels:
		- $n \rightarrow K^+ e^$ $p \rightarrow l^+ K^0$ $p \rightarrow \pi^0 e^+$

ProtoDUNEs

- TPC technologies tested with full-size components at the CERN neutrino platform – protoDUNEs
- Each cryostat holds 720 tons LAr
- Single Phase [August 2018]
- 3rd run this year (Horizontal Drift)
- **Dual Phase [2019-]**
- **Experience with ProtoDUNE Dual** Phase led to Vertical Drift

ProtoDUNE Single Phase

2 drift volumes, each with a 3.6 m drift distance

6 anode plane assemblies (APAs) Charge Read-out electronics in LAr: 2560 channels/APA

HV at -180 kV, nominal E-field 500 V/cm

ProtoDUNE Single Phase

ARAPUCA photon detector modules mounted inside Anode Plane Assemblies (10 per APA)

ARAPUCAs: light traps coupled to SiPM readout

ProtoDUNE Single-Phase

- First run charged-particle test beam
- Operated from August 2018 July 2020
- Instrumented Beamline
- Known incident particle momentum 300 MeV/c to 7 GeV/c
- First results paper: JINST 15 P12004

ProtoDUNE Single-Phase

DrotoDUNE Derformanc

- First run charged-particle test beam
- Operated from August 2018 July 2020
- Instrumented Beamline

 S

- Instrumented Beamline

Known incident particle momentum 30

MeV/c to 7 GeV/c

First results paper: JINST 15 P12004

The Later

The L MeV/c to 7 GeV/c
- First results paper: JINST 15 P12004

Stopping muon and proton dE/dx vs. residual range in ProtoDUNE-SP.

* 99.5% uptime. ** in TPC EF=500 V/cm, in PurMon EF=20 V/cm - (< 10 ppt [O2-equiv] during beam run).

*** coherent noise removed. ++ from extrapolation based on actual ARAPUCA data. ^^ two pulse separation.

ProtoDUNE Single Phase

Charge response to low energy signals

Michel electrons arxiv: 2211.01166

ProtoDUNE Horizontal-Drift

- 4 APAs two with readout on the bottom
- New versions of TPC and PDS electronics
- Test of calibration systems for **DUNE**
	- Ionization Laser System (IoLS) calibration
	- Pulse Neutron Source (PNS)
	- Radioactive Source Deployment System (RSDS)
- LAr filling begins soon

- New concept merging positive features of Dual Phase with successful Single Phase LArTPC
- HV delivery allows large drift volumes
- Top and Bottom
- Top volume electronics is accessible
- **PCB-based charge read-out**
- 3-views
- Advantageous for manufacturing and installation
- Single-Phase

- Charge-readout planes (CRP) (anode) on top and bottom.
- Cathode in the middle at -300 kV
- 6,5 m drift distance
- Photon detectors
	- X-arapuca
	- Behind field cage (on cryostat walls)
	- Embedded in cathode !!

- 3-views with different strip orientation
- 3072 channels/CRP
- 2 induction
	- **Bipolar signals**
	- 7.65mm wide strips
	- 952/view/CRP
- 1 collection
	- Unipolar signals
	- 5.1 mm wide strips, total of 1168 strips/CRP

Cnr

- Test of the Vertical Drift design in the coldbox facility at the Neutrino Platform at CERN
- 3×3×1 m3 cryostat
- 23cm drift
- Testing Nov 2021 present

- Charge Read-Out Planes testing
- Successfully operated
- Less than 1% channel failure

- **Photon Detectors embedded in Cathode**
- One module: 65x65cm², 2x80 SiPMs
- **Electronics and SiPMs powered and** signals read-out by optical fiber

- Large-scale test of the Vertical Drift design in the NP02 cryostat in the Neutrino Platform at **CERN**
- Active volume: $3 \times 6.8 \times 7$ m2
	- 2 CRPs top
	- 2 CRPs bottom
	- 2 Cathode modules
- Operated at -175 kV

Installation complete Operation in Autumn 2024

Far detector at SURF

- Modular design
	- 500 V/cm horizontal-drift (HD) field
	- 3.5-meter drift length
- Wire plane charge read-out
- 150 APAs (2560 channels/APA)
- Photodetectors (Arapuca) embedded in Anode Plane Assemblies

- **Two volumes**
	- 500 V/cm vertical-drift (VD) field
- 6-meter drift length
- PCB charge read-out
- 160 CRPs (3072 channels/CRP)
- Top electronics replaceable
- Xe-doping
- Photodetectors (Arapuca) embedded in Cathode and on membrane

Far detector at SURF

150 m

- Sanford Underground Research Facility in Lead, South Dakota
- Four 17-kt LAr TPC modules, located 1.48 km underground (4850 mwe)
- **Excavation complete**
- FD1 Horizontal Drift LArTPC
- FD2 Vertical Drift LArTPC

Phase-2 - FD3 (decision 2027)

- FD4 module of opportunity (decision 2028)

Far detector at SURF

Summary

- DUNE's ambitious program based on high Performance TPCs
- decadal US Particle Physics Project Prioritization Panel (P5) - DUNE received strong endorsement of Phase 1 and 2
- Construction of the experiment underway
- At CERN neutrino platform
	- Testing of Vertical Drift in the cold-box continues
	- ProtoDUNEs (HD and VD) to run 2024
- R&D continues preparing for Phase 2
- Running FDs expected from 2028
- Beam and ND from 2031

A history of Single Phase LAr TPCs

ICARUS T-600 @ CNGS (2010-2012, 760 tons LAr)

Argoneut @ FNAL (2009-2010, 240 kg LAr)

Successfully reconstructed neutrino events from CNGS beam (~17 GeV)

Small TPC, precise measurements of crosssections and neutrino interactions

MicroBooNE @ FNAL (2015-ongoing, 170 tons LAr)

Sterile neutrino search. Neutrino event selection and reconstruction. Leads to protoDUNE Single Phase

taken from A. Chatterjee

A history of Dual Phase LAr TPCs

Small R&D TPCs

 $2007 \sim 2014$

ProtoDUNE Dual Phase

PCB-based Charge Read-Out in gas phase LEM and Anode

Replaceable charge read-out electronics

Homogeneous Large drift volume (6m) requires -300 kV on cathode

PhotoDetectors

Square Arapuca Tiles embedded in **Cathode**

Increase Light Output by Xe-doping

Lowers **SN** threshold and **solar** neutrinos

Schedule

Phase 1

- Excavation complete 2024
- Far Detector
	- FD1 installation begins 2026
	- Running by 2028
	- FD2 installation begins 2029
- New neutrino beam 2031
- Near Detector System 2031
	- Moveable NDLAr + TMS
	- On-axis Near detector (SAND)

Phase 2

- Far Detector
	- \cdot +FD3 FD4
		- Increased physics scope
	- Neutrino beam upgrade (2.4 MW)
- Near Detector upgrade

Neutrino Oscillation

Pontecorvo – Maki – Nakagawa – Sakata (PMNS) matrix

- 3 mixing angles
- 1 CP phase

• Oscillation also governed by 2 mass splittings Δm^2

 $U = \begin{pmatrix} \cos \theta_{12} & \sin \theta_{12} & 0 \\ -\sin \theta_{12} & \cos \theta_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} \cos \theta_{13} & 0 & \sin \theta_{13} e^{-i\delta} \\ 0 & 1 & 0 \\ -\sin \theta_{13} e^{i\delta} & 0 & \cos \theta_{13} \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos \theta_{23} & \sin \theta_{23} \\ 0 & -\sin \theta_{23} & \cos \theta_{23} \end{pmatrix}$ θ12~33^o θ13~9^o θ23~45^o

Still to discover

- Mass ordering (sign of Δm^2_{31})
- CP violation ($\delta_{\rm cp} \neq 0$ or π)
- Octant θ_{23} ($\theta_{23}=45^{\circ}$?)

Precision measurements

Complete picture of neutrino oscillation

3 flavour mixing

PMNS unitarity

Neutrino Oscillations

- ~7 years running
- Measure appearance and disappearance for both neutrino and anti-neutrinos
- Order of 10,000 v_u and 1,000 ν^e

DUNE

Long baseline (completely disentangle mass ordering and CP violation) High power beam and gigantic far detectors (more stats)

Make a spectral measurement use a wide band beam (neutrino/anti-neutrino mode)

Measurement range spans 2 oscillation peaks

Gain additional power on deltaCP

Sensitivity – Phase 1

Determine neutrino mass ordering at 3σ (5σ) with 66 (100) kt-MW-yr exposure

Sensitivity – Phase 1

 δ_{CP} = ±90°, CPV at 3σ

- 4 FD **Sensitivity – Phase 2**

- ND upgrade
- 2.4 MW beam
- If $\delta_{CP} = \pm 90^{\circ}$, 5σ in 7 years
- For 50% of δ _{CP} values 5σ CPV in 12 years

Phys. Rev D 105 (2022) 072006

Precision Measurements

Oscillation parameters: Δ m²₃₂, δ_{CP}, θ₂₃, θ₁₃

Precision Measurements

Precision δ_{CP} : 6 – 16[°]

Neutrino Signal

Neutrino interactions can be quite complex (multiple products and showers)

Neutrino flavour determined by outgoing lepton

Neutrino Energy Reconstruction dependent on Interaction Model

Not all products may be visible (neutrons)

Need highly performing Near and Far detectors!

Final State

Interactions (FSI)

Off-beam program

- **Astrophysical Neutrinos** Galactic supernova Solar
- **Atmospheric Neutrinos**
- **BSM physics (at Near and Far)**
- Deviations from 3-flavour oscillation (sterile ν, NSI, PMNS non-unitarity, CPT violation etc)

and more !

Other new physics: Neutrino trident rate, dark matter, baryon number violation

Galactic SuperNova

Uniquely DUNE is sensitive to v_e $ve + {}^{40}Ar \rightarrow e^- + {}^{40}K^*$

Also elastic-scattering 5-50 MeV signals

Galactic SuperNova

- SN trigger (Light and Charge signals) Continuous data-taking, all waveforms stored for 100s (with 10s pre-trigger)
- Light signal provides:
- SN signal arrival times
	- Global triangulation (SuperNova Early Warning System)
- Position in drift direction needed to correct of electron drift loss (Energy estimate)

ES short tracks – forward scattering allows direction estimate

'Garching' model SN as seen by 40 ktons DUNE (inc detector response)

41 41

Nucleon decay

- DUNE sensitive to: $p \rightarrow K^+ \nu$
- and other channels:
	- $n \rightarrow K^+e^ \rm p ~\rightarrow ~ l^+ \, K^0$
	- $\rm p ~\rightarrow ~ \pi^0~ e^+$

Assuming no signal in 10 years, FV of 40 ktons and 30% signal efficiency 1. 3×10^{34} years (90% C.L.)

