Mu2e Tracker

Aseet Mukherjee (FNAL) 30 January 2024

Tracker Environment

(aka the Mu2e Experiment)

- Generate muons
- Stop them, and let them decay... or convert
- Detect outgoing electrons

Beam Structure

- 1700 nsec set by Delivery Ring
- 700 ns wait to allow fast decays to finish
 - But tracker still gets hits

Detector Solenoid

- Graded field pushes decay products forward
- Uniform field around tracker

Cosmic Ray Veto (CRV)

Particles at Tracker

- Before live time
 - Electrons "flash" scattering off target
 - Fast decay products
- Lot of hits to recover from!
- Extending into live time
 - Protons from Nuclear breakup
 - Decay in Orbit (DIO)
 i.e. usual μ→ev

- DIO
 - Mostly $< \frac{1}{2} m_{\mu}$
 - Nuclear recoil smears up to near 105MeV

Tracker Requirements

- Near zero material down the center
 ↔ ambient vacuum
 - Lot of unstopped muons, electron flash, DIO
 - Even if tracker could handle it, scattering would create background
- Low mass in active region
 - 105MeV electrons scatter a lot
- Momentum resolution
 - Primary tool to reject background

Straw Tracker

- Small cylindrical volumes tolerate large pressure differential with minimum material
- Fine segmentation gives low occupancy
- Successfully used in previous experiments
 - Most recently, g-2 used essentially identical straws in vacuum

Transverse Tracker

- Straws parallel to *B*
 - Difficult to keep mechanical support and readout out of active volume
- Straws Transverse to B
 - Mass easily moved out of active volume
 - Difficult pattern recognition
 - "Time division" helps

Time Division

- Measure hit time at both ends of straw
- Δt gives estimate of position along straw
- Benefits from TDC precision better than needed for drift time

DC-DC Convertor

- $48V \rightarrow 5V \& 2.5V$
- Charge pump (no magnetic material)

HV Disconnect

- Thermal fuse triggered by heating a resistor
- Allows individual straw to be disconnected
- Commercial fuses had issues with size, outgassing, radiation

Pictures are from a worst-case test with excessive parylene

Straws

- 5 mm diameter, as thin wall as possible
- ~1 bar internal pressure for easier testing
- Ambient vacuum $\rightarrow \Delta P \approx 100 kPa$
- Use tension to keep straws straight

- Double helical wrap
 - 2×6 μm Mylar + 3 μm adhesive
- Metalized inside and outside to reduce leaks

Straw Leak Testing

- Thinnest straws made!
- Every straw individually tested
 - Purge with CO₂, pressurize to 100 kPa
 - Place in N₂ purged tube, close tube
 - Monitor CO₂ content
 - Fast and cheap: big market for CO₂ sensors!
- Cross-checked with vacuum tests

Straws slide through ball valve

Straw Prep

- Laser cutter to generate
 48 different lengths
- Temperature and humidity compensation
- 0.2mm accuracy

Straw Installation

- Straws pulled to tension into 3D-printed piece
- Has fine features to allow epoxy to drip onto straw ends

Sense Wire Installation

- 25µm gold plated tungsten
- Tension with load cell and stepper motor
 - Work harden wire as part of installation:
 Over-tension, then back off

"Panel"

- 120° sector with 96 straws
- Small enough to ship
- Straw and Panel work done at U. of Minnesota
- Ship to Duke U. for metrology

Straw and Wire Metrology

• X-ray (almost) all panels to locate wires and straws relative to survey markers

- 15° stereo (tilt X-ray) for measuring Z

σ_y≈25μm, σ_z≈ 75μm

"Plane" and "Station"

- Plane: 6 overlapping panels form a complete ring
- Station: 2 planes
 "clocked" to have 12
 orientations for straws
- Assembled referencing granite table for precision in Z

- Assembly precision
 ~150 μm
- Final alignment based on survey points used at Duke

Vertical Slice Test

• Plane with full electronics chain

- Shown horizontal - also run vertical

Resolution, Efficiency

Leak Testing

- Done at every step!
 - Panels leak tested
 - At U.Mn before shipping
 - At FNAL after shipping
 - After assembly, planes leak tested
 - Precision setup, gets leak rate overnight
 - Long term leak test while planes are in storage

Leak Rate

- Looks good so far! But...
 - Periodic repairs, not realistic in reality
 - Die out over time. Still worrisome
- On the other hand
 - 6 sccm \leftrightarrow 10⁻⁴ Torr
 - − 10^{-3} Torr \leftrightarrow 60 sccm is acceptable

Per-panel Gas Feed

- Gas to any panel can be stopped without opening the DS
- Do need to access IFB (back of DS)
 - Remote control being looked at
- Check valves on exhaust side avoid the need for manual valves
 216 gas lines
 216 gas lines

Reverse Pressure Protection

- Straws crush if $\Delta P < 0$
 - Disconnected panel would be destroyed when DS was back filled
- Custom, very low opening pressure check valve
 - Very little space!
 - No suitable commercial valve found

Tracker Frame

- Kinematic mount for each station
- No stress
 → stable metrology

Summary & Future R&D

- Straws are an appealing option for low mass, high-rate detectors
- Looking into even lighter straws for Mu2e-II (and possibly other applications)