DRD1 Logo placeholder ;)

Working Group 5: Electronics for gaseous detectors Introduction

Michael Lupberger

(University of Bonn)

1st DRD1 Collaboration Meeting, CERN 31.01.2024

For the first time, electronics has become an enabling, but potentially also limiting, aspect. (ECFA Detector R&D Roadmap)

WG5 conveners

Roberto Cardarelli - INFN e Universita Roma Tor Vergata

Maxime Gouzevitch – CNRS-IN2P3 Lyon / CERN CMS

Jochen Kaminski - University of Bonn, Physics Institute

Michael Lupberger – University of Bonn, Helmholtz-Institut für Strahlen- und Kernphysik

Hans Muller - University of Bonn / CERN GDD

+ DRD7 Liasons Persons:

Marco Bregant - University of São Paulo

Sorin Martoiu - Horia Hulubei National Institute of Physics and Nuclear Engineering

Contact us via: drd1-wg5-convenors@cern.ch

WG5 mandate

DRD1

DRD1 EXTENDED R&D PROPOSAL
Development of Gaseous Detectors Technologies
v1.5

Contents

Executive Summary	
I Executive Summary	18
Executive Summary	19
I.1 Introduction	19
I.2 Scientific Organization of the DRD1 Collaboration I.2.1 Scientific Organization	

WG5: Electronics for Gaseous Detectors

Working Group 5 is dedicated to <u>developing</u>, applying, and <u>disseminating electronic components necessary for advancing</u>, <u>qualifying</u>, and <u>operating Gaseous Detectors</u>. WG5 serves as a <u>hub</u> for pooling interests and resources among DRD1 groups. This includes optimizing <u>analog</u> front ends for specific needs, designing new front-end ASICs (from specifications to pre-production prototyping and testing), supporting the development of <u>DAQ</u> systems for R&D and application in small- to mid-size experiments (like the RD51 Scalable Readout System), implementing <u>spark</u> protections, managing <u>high-</u> and low-voltage systems, and deploying monitoring equipment.

WG5 mandate

DRD1

DRD1 EXTENDED R&D PROPOSAL
Development of Gaseous Detectors Technologies
v1.5

I	Scientific Proposal & R&D Framework	54
Sci	entific Proposal & Research Framework	55
I.1	Detailed Description of Research Topics and Work Plan	55
	II.1.1 Technological Aspects and Developments of New Detector Structures, Com-	
	mon Characterization and Physics Issues [WG1]	55
	II.1.1.1 Introduction	55
	II.1.1.2 Challenges	58
	II.1.2 Applications [WG2]	59
	II.1.2.1 Introduction	59
	II.1.2.2 Applications based on gaseous detectors technologies	59
	II.1.2.3 Common Activities	66
	II.1.3 Gas and Material Studies [WG3]	66
	II.1.3.1 Introduction	66
	II.1.3.2 Common Research Interests	68
	II.1.3.3 Infrastructure and Facilities	71
	II.1.4 Modelling and Simulations [WG4]	72
	II.1.4.1 Introduction	72
	II.1.4.2 State of the Art	72
	II.1.4.3 Needs of the Communities	74
	II.1.5 Electronics for Gaseous Detectors [WG5]	80
	II.1.5.1 Introduction	81
	II.1.5.2 Status of Readout Systems for Gaseous Detectors	81
	II.1.5.3 Front-End Challenges for Future Facilities, Experiments and Ap-	
	plications	86
	II.1.5.4 Plan for Modernized Readout Systems	88
	II.1.5.5 Topics Beyond the Readout Systems	90

II.1.5 Electronics for Gaseous Detectors [WG5]

The DRD1 Working Group 5 (WG5) takes responsibility for the development, application and dissemination of electronic components required to operate and further advance Gaseous Detectors (GDs). As an integral part of the detector system, the tools of WG5 are developed together with detector amplification structures in order to achieve the best performances. After the introduction in Section II.1.5.1 and a summary of the state-of-the-art (Section II.1.5.2) the major tasks are outlined in Sections II.1.5.3 to II.1.5.5 and summarised in Tables 16-18.

WG5 topically differentiates itself from ECFA DRD7 in the sense that it focuses on GDs and the electronics required for their R&D and application in small- to mid-size experiments. Methodologically, WG5 is based on the specific requirements of DRD1, developments by the community for the community and dissemination opportunities to future facilities and their experiments. Close exchange with DRD7 is achieved through the membership of electronic experts in both collaborations. DRD1 access to ASIC technologies, licenses, test resources and experts of DRD7 is deemed of mutual benefit for DRD7 since some basics of GD detectors are different, or non-existing in Silicon detectors.

WG5 main topics (from proposal)

DRD1

DRD1 EXTENDED R&D PROPOSAL
Development of Gaseous Detectors Technologies
v1.5

Devices

- Electronic readout system
- Service electronics
- Goal: direct use in R&D (lab, test beams) and small to mid-size experiments
- ⇒ HV- / LV systems, monitoring equipment, standardised DAQ systems, support & training
- ⇒ Partially front-end ASICs development, support DRD1 groups who design gaseous detector ASICs

Attitude

- Common R&D developments for and with DRD1 users
- Qualification and iterative improvement with DRD1 teams
- Long-term vision: Initial test systems can be scaled for experiments

Less important role: Experiment-specif electrics as e.g. ASICs, radiation hardness, high-speed links, data reduction, dense integration (latter mainly in DRD7)

DRD1

DRD1 EXTENDED R&D PROPOSAL
Development of Gaseous Detectors Technologies
v1.5

Involved in almost all current Work Packages (WP)

⇒ Key to many Milestones and Deliverables (example WP4 - TPCs)

#	Task	Performance Goal	DRD1	ECFA	Milestones/Deliverable			Institutes
"	1458.		WGs	DRDT	12M	24M	36M	mstitutes
TI	IBF reduction	 Reduce IBF in case of gated operation Reduce IBF in case of 	WG1,	1.1,	M1	M2.1	D	IFUSP,
		ungated operation	WG2,	1.2,	Evaluation of various readout	Improvement of dE/dx perfor-	Prototype TPC A small scale pro-	U Carleton,
T2	pixelTPC	- Develop different tech-	WG3,	1.3,	technologies: stud-	mance: experimen-	totype detector with	IHEP CAS,
	development	nologies for pixelized readout	WG4,	1.4	ies of various gas amplification and	tal tests to optimize the dE/dx resolution	good spatial and dE/dx resolution to	U Tsinghua,
		 Build small prototypes to verify spatial resolu- tion 	WG5,		readout technologies including pixelised structures to estimate	in various gas mix- tures.[T1, T2, T5]	fulfil the require- ments of future accelerators with	HIP,
		- Study dE/dx resolution	WG6,		their potential per- formance in a TPC.	M2.2	a gated or ungated operation mode of	U Jyväskylä,
Т3	Optimization	- Reduce material bud-	WG7		[T1, T2, T4, T5]	Improvement of	the TPC. [T1-T5]	IRFU/CEA,
	of mechanical structure	get of mechanical and electrical field cage				IBF performance: experimental tests to reach an IBF		TUDa,
		 Reduce material bud- get of the endcap, in par- 				performance optible		U Bonn,
		ticular, the cooling in- frastructure				with gain×IBF < 5. [T1, T2, T5]		GSI,
T4	FEE for TPCs	- Develop a low-power				M2.3		Wigner,
		ASIC for TPC readout - Implement a readily available ASIC, which				Electronics im- plemented in the		INFN-BA, UniBA, PoliBA,
		fulfils MPGD-TPC requirements in the				SRS and ready for operation with small-scale proto-		INFN-RM1,
		Scalable Readout Sys- tem				small-scale proto- types. [T4]		U Iwate,
		 Increase the readout rate of TPC-readout with SRS 						CERN,
TO E	Commission	with SRS						PSI

DRD1

DRD1 EXTENDED R&D PROPOSAL
Development of Gaseous Detectors Technologies
v1.5

Common Objectives from inside WG5:

5.1 Front End Challenges

Reference	Description	Common Objective
D5.1.1	High-rate RPC electronics	Survey on low-threshold
		discriminators
D5.1.2	Front-end ASIC for TPCs - WP4	Description of parameters
D5.1.3	Front-end ASIC for straw chambers - WP3	Description of VMM3/3a
D5.1.4	Front-end ASIC for straw chambers - WP3	VMM3b or new ASIC de-
		sign
D5.1.5	Front-end ASIC for MPGDs - WP1	Community survey on chip
		requirements

DRD1

DRD1 EXTENDED R&D PROPOSAL **Development of Gaseous Detectors Technologies** v1.5

Common Objectives from inside WG5:

5.2 Modernised Readout System 🗡

Reference	Description	Common Objective
D5.2.1	SRSe WP1-8	eFEC
D5.2.2	SRSe WP1-8	VMM software and firmware migra-
		tion
D5.2.3	SRSe - WP1-8	DAQ and reconstruction software
D5.2.4	SRSe	Testing and integration
D5.2.5	Common DAQ/SRS WP1,4	SAMPA implementation
D5.2.6	Common DAQ/SRS - WP4	Timepix3 implementation
D5.2.7	Common DAQ/SRS - RPC	RPC front-end implementation
		needs, potential and feasibility
		evaluation (report)
D5.2.8	SRS upgrades	2.5 Gbit Ethernet and L0 trigger ß
D5.2.9	Portable, Connected µSRS nodes	readout of distributed, small detec-
		tors over long distance

: Talk in this session

CERN

DRD1

DRD1 EXTENDED R&D PROPOSAL
Development of Gaseous Detectors Technologies
v1.5

Common Objectives from inside WG5:

5.3 Beyond Readout System

Reference	Description	Common Objective
D5.3.1	MPGD HV - WP1	Stabilised voltage divider
D5.3.2	MPGD LV - WP1-8	PBX
D5.3.3	Monitoring - WP1-8	SoC investigation

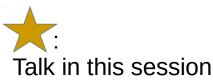
WG5 Synergies to other DRDs

DRD7: ELECTRONICS AND ON-DETECTOR PROCESSING

In general terms and not to be considered as a request for DRD7, a comprehensive list of the desired electronics advancements in the DRD1 Collaboration is the following:

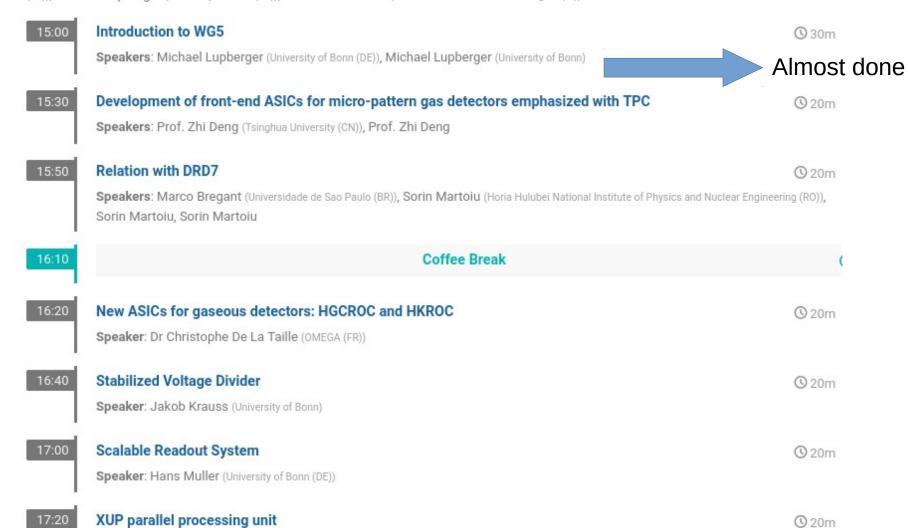
 High-performance charge-sensitive front-end circuit specific for medium and largevolume gaseous detectors (MPGD, TPC, drift chambers, straw tubes, RPC, ...)

Natural personal overlap and exchange with DRD7 🛨



- Profit from general developments and initiatives in DRD7
 - Access to foundries, design kits, tools, technologies, and services
 - Address potential technology limitations
 - Set up proper cooperation frameworks between groups from different institutes and countries
- Try to put DRD1 challenges of general interest on DRD7 agenda
- Clarify responsibilities and duties, use/develop synergies
- DRD1-DRD7 Liason Persons: Marco Bregant and Sorin Martoiu

DRD1


DRD1 EXTENDED R&D PROPOSAL **Development of Gaseous Detectors Technologies** v1.5

PRELIMINARY

- Overview of needs, available and potential solutions in the field of electronics for gaseous detectors.
- Working Group Objectives and plan

Conveners: Hans Muller (University of Bonn (DE)), Jochen Kaminski (University of Bonn (DE)), Maxime Gouzevitch (Centre National de la Recherche Scientifique (FR)), Michael Lupberger (University of Bonn (DE)), Roberto Cardarelli (INFN e Universita Roma Tor Vergata (IT))

WG5 Organisatorics

Main means of official communication via Mailing list:

- Self-subscription via https://e-groups.cern.ch/e-groups/ → search: DRD1-WG5
- **Direct link:** https://e-groups.cern.ch/e-groups/EgroupsSubscription.do?egroupName=drd1-wg5 (being logged in with CERN account required)
- Conveners can also add mail addresses manually

Other resources:

SRS: Documentation/entry point, User support Discord channel git repository (firmware / software)

Note: Download files & software is public, firmware code is access-controlled General (see WG8): DRD1 web page, Forum section?, Mattermost channel?

WG5 Organisatorics

Open points?
Questions?
Suggestions?

Actions required by conveners?