

1st DRD1 Collaboration Meeting

Development of Front-end ASIC for MPGD Emphasized with TPC

Zhi Deng Tsinghua University, Beijing

01/31/2024

CONTENTS

01 | Introduction

03 | Progress on TEPIX chip

02 | Progress on WASA chip

04 | Summary

01 Introduction

TPC: Time Projection Chamber

- Invented by David Nygren in 1970s
- TPC can provide large-volume high-precision 3D track measurement with the capability of measuring dE/dx
- TPC has been widely used in high energy particle and nuclear physics, rare event searching and astrophysics experiments

Bubble Chamber

Time Projection Chamber

MPGD: Micro-Pattern Gas Detector

- Most recent TPC are readout by micro-pattern gas detector at the end-plate, such as GEM or MicroMEGAS
- Primary signals are amplified by MPGD with high spatial resolution and high counting rate
- > Highly demanding on low power readout ASIC, especially the front-end

F. Sauli, GEM: A new concept for electron amplification in gas detectors, NIMA, Vol. 386, 1997

G Charpak, J Derré, Y Giomataris, Ph Rebourgeard, Micromegas, a multipurpose gaseous detector, NIMA, Vol. 478, 2002

TPC Readout Requirements

- Measure energy and time simultaneously
- Variation of signal durations:
 - > Parallel to charge collection panel \rightarrow short
 - > Vertical to charge collection panel \rightarrow long
- BD (Ballistic Deficit) vs. pileup

waveform sampling

- Development starts since 2006
- From analog front-end (CASA) to SCA and ADC waveform sampling chips

CASA: 4ch CSA+Shaper

CASAGEM: 16ch CSA+Shaper

				ŤΕ
		_		
(injele)				
- Hele				
10 PE				
- Isinge	1			
CHE				
Smer				
() Here	THE	And a second		
njej a		1		

CASA32: 32ch CSA+Shaper

CASCA: 32ch CSA+Shaper+SCA

GERO: 16ch SCA

WASA: 16ch AFE+ADC+DSP

ASICs for gas detectors @ Tsinghua

Applications of CASA32 chips

in in the second se	delerdelerd T	141744 1		
				the feature of
			i A mi	and

Parameters	Specs
Gain	2-40mV/fC
Shaper	CR-RC
Тр	100-400ns
ENC	<2000e @ 10pF
INL	<1%
Crosstalk	<1%
Channel no.	32

300

ASICs for gas detectors @ Tsinghua

> Applications of the SCA chip (GERO)

parameters	specs
Power supply	1.8 V, 2.5 V
Input range	0.3V - 1.3 V
Sampling rate	100 MS/s
Sampling resolution	> 10 bits
Buffer depth	256
ADC clock	100 MHz
ADC counter	12 bits
ADC conversion time	42 μs
Dead time (max.)	336 µs
Power consumption	2.3 mW/ch
Process	0.18 μm

ASICs for gas detectors @ Tsinghua

Beam Tests

Application of GERO in MWDC

Fe-55 Spectrum

Gas: Ar+CO2(80:20)

Energy resolution: ~25%(FWHM)

10

> A low power and high integration front-end ASIC developed for CEPC-TPC

- Power consumption!!!
 - Pipeline ADC vs. SAR ADC
 - > Analog filter vs. Digital filter

Energy needed for a singlepole low-pass filter (J)

> Chip architecture

- > Analog CR-RC shaper+ Digital filters: baseline correction + digital trapezoid
- Trigger mode: Self-trigger, External trigger, External trigger window + self trigger
- Data buffers: Ring buffer + de-randomize buffer
- Trigger latency: 25.6 µs @ 40 MHz (1024 samples)
- Event size: 1-256 samples
- Buffer Depth: 4

CSA+CR-RC 10-40 mV/fC,160-400 ns 100 M/s,10 bits

Analog Front-end

- Low power supply design: 1.2 V
- Fully differential output
- Power optimization orientated

Parameters	SPECs	Simulation	
Shaper	CR-RC	CR-RC	
Shaping time	160 ns	160 ns	
Gain	10 mV/fC	10 mV/fC	
Dynamic Range	120 fC	120 fC	
INL	<1 %	<1 %	
ENC	500 e @ 10 pF	306 e @10 pF	
Crosstalk	<1 %	0.12 %	
Power	<2.5 mW/ch	1.4 mW/ch	

OUTP

OUTN

Digital Trapezoid Filter

Valentin T. Jordanov, Unfolding-synthesis technique for digital pulse processing. Part 1: Unfolding, NIMA Vol 805, 2016, 63-71

> Layout floor plan:

- ➤ The die size: 3783 µm x 2243 µm
- Separated power supply:
 - Analog Front-End
 - > SAR ADC
 - Digital Logics
 - LVDS driver
 - Guarding ring insert between
- SIC submitted in Jan, 2022 and received in March, 2022

> Specs

	PASA+ALTRO	Super-ALTRO	SAMPA	WASA
ТРС	ALICE	ILC	ALICE upgrade	CEPC
Pad size	4x7.5 mm ²	1x6 mm ²	4x7.5 mm ²	1x6 mm ²
Number of channels	5.7× 10 ⁵	$1-2 \times 10^{6}$	5.7 × 10 ⁵	2 x×10 ⁶
Readout detector	MWPC	GEM/MicroMegas	GEM	GEM/MicroMegas
Gain	12 mV/fC	12-27 mV/fC	20/30 mV/fC	10-40 mV/fC
Shaper	CR-(RC) ⁴	CR-(RC) ⁴	CR-(RC) ⁴	CR-RC
Peaking time	200 ns	30-120 ns	80/160 ns	160-400 ns
ENC	370+14.6 e/pF	520 e	246+36 e/pF	569+14.8 e/pF
Sampler	Pipeline ADC	Pipeline ADC	SAR ADC	SAR ADC
Sampling rate	10 MHz	40 MHz	10 MHz	10-100 MHz
Resolution	10 bit	10 bit	10 bit	10 bit
Power (ana.)	11.7 mW/ch	10.3 mW/ch	9 mW/ch	1.4 mW/ch
Power (ADC)	12.5 mW/ch	33 mW/ch	1.5 mW/ch	0.8 mW/ch@40 MHz
Power (digital)	7.5 mW/ch	4.0 mW/ch	6.5 mW/ch	2.7 mW/ch@40 MHz
Total Power	31.7 mW/ch@10MHz	47.3 mW/ch@40 MHz	17 mW/ch@10 MHz	4.9 mW/ch@40 MHz
CMOS Process	250 nm	130 nm	130 nm	65 nm

Test setup

- > AFE: 1.38 mW/ch
- > ADC: 0.83 mW/ch
- Digital logics: 2.73 mW/ch

Transient response: Analog part

Transient analog outputs (different shaping time)

Transient analog outputs (different gain)

Transient response of digital filter

- AFE: gain=10 mV/fC, shaping time = 160 ns, Qin=120 fC
- > ADC sampling rate: 40 MHz
- Trapezoid: tr = 600 ns, t_flat = 200 ns

> Transient response of digital filter : BD

> Linearity

- AFE: gain = 10 mV/fC, shaping time = 160 ns
- > ADC sampling rate: 40 MHz
- Trapezoid: tr = 600 ns, t_flat = 200 ns

> Noise

- > AFE: gain = 10 mV/fC, shaping time = 160 ns
- > ADC sampling rate: 40 MHz
- Trapezoid: t_flat = 200 ns

➤ Timing

- > AFE: gain = 10 mV/fC, shaping time = 160 ns
- > ADC sampling rate: 40 MHz
- Trapezoid: tr = 600 ns, t_flat = 200 ns
- Timing method: time centroid

Detector test: Fe-55

TPC setup

- GEM HV: 310 V
- Drift E: 3.23×10^4 V/m
- Gas: T2K (Ar/CF₄/iC₄H₁₀ 95/3/2)

Electronics setup

- Gain = 20 mV/fC
- Sampling rate = 30 MHz
- Self trigger

Transient waveforms and Fe-55 spectrum

Detector test: laser tracks

TPC setup

- GEM HV: 280 V
- Drift E: 9000 V/50 cm = 180V/cm
- Gas: T2K (Ar/CF₄/iC₄H₁₀ 95/3/2)
- Laser:7.2 mJ @20 Hz

Electronics setup

- Gain = 20 mV/fC
- Sampling rate = 30 MHz
- External trigger mode
- Trigger latency: 2500*8 ns=20 µs

Laser tracks

Track resolution

Resolution vs. layer energy

03 Progress on TEPIX chip

Mini-pad Readout

- Mini pad Readout
 - > 1 mm x 6 mm \rightarrow 0.5 mm x 0.5 mm pixel
 - Higher precision, higher rate
 - Potential for dN/dx
- Concept Design
 - ROIC + Interposer PCB as RDL
 - High metal coverage, 4-side buttable
 - Low power Energy/Timing measurement ASIC
 - ~160 e noise @ ~1pF input capacitance
 - 5 ns drift time resolution
 - > <100 mW/cm2</p>

- Charge Sensitive Preamplifier(CSA)
- CDS amplifier provides additional gain and noise shaping
- > 14-bit Wilkinson type ADC each pixel
- Timing discriminator with14-bit TOA (Time of Arrival) information

2.2mm

5.6mm

- Conventional architecture
 - Continuous feedback
 - CR-RC shaper
 - Trigger based readout
 - Need peak/hold

- > TEPIX architecture
 - Pulse reset
 - > CDS
 - Frame based readout
 - No need for peak/hold

- In pixel buffer depth
 - > 0.1/pixel/frame: 10% for 1 event, 0.5% for 2 events
 - > 1/pixel/frame: 1.5% for 4 events, 0.3% for 5 events
- Count rate per pixel = frame rate * occupancy
- Max. frame rate = 10 kfps

Frame-based mode, token ring readout

Zero-dead time:

- Dual S/H and registers at ping-ping mode
- Pipelined processing: integration, A/D conversion and readout

TEPIX Chip Test

Test setup

TEPIX Chip Test

Power consumption = 0.36 mW/ch
0.22mW for analog
0.14 mW for digital

Transient waveforms are correct

Power	Voltage (V)	Power (mW)
AVD	1.774	28
SVD	1.79	0
VDD	1.785	18

04 Summary

000000

.......

0.000000

0000000

.........

......

0000000000

00000000

6966666

......

.......

Summary

- Various front-end ASICs for gas detectors have been developed at our group, from analog front-end only to SCA/ADC waveform sampling integrated
- Most recent readout ASIC (WASA) has been successfully developed for TPC
 - Power consumption is only 4.94 mW/ch @ 40 MHz
 - P_{AFE} =1. 38 mW/ch
 - $P_{ADC} = 0.83 \text{ mW/ch}$
 - $ightarrow P_{\text{Digital}} = 2.73 \text{ mW/ch}$
 - ENC = 569 e+14.8 e/pF @ gain=10 mV/fC
 - Next step: BGA package 16 x 11 (11.05 mm x 7.8 mm)
- R&D on mini-pad TPC has been started with TEPIX chip
 - > The second version chip has been received and under test
 - Next step: ROIC and module test

