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Heterogeneous
Computing 

System

 Complex computation runs on HOST: a mono- or multi-

core computation structure (ARM, RISC V, …)

 Intense computation runs on ACCELERATOR: a many-

core computation structure

 ACCELERATOR is seen by the HOST as a 

hardware library of functions



XPU GENERAL PURPOSE ACCELERATOR (XPU-GPA)

 MAP: linear array of execution cells with big register 

files

 CONTROLLER: custom micro-computer used to 

issue in each cycle a command for MAP

 DISTRIBUTE: pipelined log-depth distribution 

network

 SCAN/REDUCE: pipelined log-depth circuit 

performing reduce functions (add, min, max, …) and 

scan functions (add prefixes, permute, …)



Architectural acceleration

 Test configuration for GEMM of N×N matrices :

HOST: ARM single-core

ACCELERATOR: our MapScanReduce accelerator with p = N cells

 Architectural acceleration (A): acceleration with HOST and ACCELERATOR running at 

the same frequency with a x86 mono-core engine

 TMultiply+TTransfer = ((2p2 + plog2 p+9p+5) + (1.5p2 + 17p +6) clockCycles 

(validated by measurement on GPA simulator’s clock counter)

 Tmultiply+Transfer = 22×N3 clockCycles (measured running on x86 mono-core)

A => 6.28×p



1024×1024 Matrix Multiplication for ML at 7 nm
 On GPU Nvidia’s A100: execution time 0.4ms, 

 on 846 mm2, with 6912 cells, in 7nm, 1.275 GHz, ~150W, Memory Bus: 5120 bits

 On our GPA: execution time 2.9ms, 

 on 40 mm2 , with 1024 cells, in 7nm, 1.275 GHz, 5.12W, Memory Bus: 128 bits

 #cells(GPU)/#cells(GPA) = 6.75 ≈ 7 ≈ time(GPA)/time(GPU) = 7.25

 Power(GPU)/Power(GPA) = 78 ➔ 11x computation for the same energy

 Area(GPU)/Area(GPA) = 21 ➔ 3x computation for the same area

The evaluation is based on simulation and synthesis made in a master thesis using Cadence environment for GPA,

and on https://www.techpowerup.com/gpu-specs/a100-sxm4-80-gb.c3746

https://docs.nvidia.com/deeplearning/performance/dl-performance-matrix-multiplication/index.html for GPU.

https://www.techpowerup.com/gpu-specs/a100-sxm4-80-gb.c3746
https://docs.nvidia.com/deeplearning/performance/dl-performance-matrix-multiplication/index.html


Current stage

 Three silicon versions of the accelerator produced in a Silicon 
Valley start-up (more at: 
http://users.dcae.pub.ro/~gstefan/2ndLevel/connex.html )

 Working prototype, on FPGA development board, for p = 
128

 The accelerator is programmed in assembly

The performance was investigated for a large number of 
application domains (dense & sparse linear algebra, FFT, 
molecular dynamic, automotive, …)
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Application Domains

Artificial Intelligence

Automotive

Robotics

Bio-Informatics

Security

Digital Signal Processing



Evaluations against NVIDIA GA100

The evaluation for GPA is based on simulation and synthesis using Cadence environment:

• technology node: 7 nm

• area: 40 mm 2

• number of cells: 1024

• clock frequency: 1.275 GHz

• power: 5.12 W

• memory bus: 128 bis

while for GA100 GPU we used the spec [6]:

• technology node: 7 nm

• area: 846 mm 2

• number of cells: 6912

• clock frequency: 1.275 GHz

• power: 400 W

• memory bus: 5120 bits

For dense matrix multiplication on GA100 the information is provided by [5]

According to figures, the matrix multiplication time for M=K=N on GA100 GPU is t_GPU (1024) = 0.4ms 

According to sim on a 1024 GPA the execution time for multiplying 1024 × 1024 matrices is t_GPA (1024) = 2.9ms.



Recap for: 1024×1024 Matrix Multiplication for ML at 7 nm

GPU Nvidia’s A100 vs our GPA:

 #cells(GPU)/#cells(GPA) = 6.75 ≈ 7 ≈ time(GPA)/time(GPU) = 7.25

 Power(GPU)/Power(GPA) = 78  => 11x computation for the same energy

Area(GPU)/Area(GPA) = 21  => 3x computation for the same area



Coding the GPA:
- by coding explicitly the controller and 
the array, with library of functions:

- by coding directly using source-code 
based C++ classes that implements a 2-
pass assembler

 

 void GenerateKernelDemo(int DEMO_KNR) { 

BEGIN_KERNEL(DEMO_KNR); 

/* execute on all machines */ 

        EXECUTE_IN_ALL(          

NOP; 

LS[100] = R4; 

R10 = LS[0x32]; 

R0 = 0x140; 

R3 = R1 * R2; 

LS[R1] = R7;) 

/* execute only on some machines */ 

        EXECUTE_WHERE_LT(  R1 = INDEX ) 

/* execute on all machines */ 

        EXECUTE_IN_ALL(   
R3 = LS[R6]; 

                         R29 = R31 << R29; 

                         R5 = (R3 == R4); 

             R1 = R1 ^ R1; ) 

END_KERNEL(DEMO_KNR); } 



For GEMM, when using large matrices, one will have to 
use an intermediate layer of software to split the task and 
merge the results of GEMM-ing smaller matrices:
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The ARH research team
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The project  Stage 0: we already have:

 ACCELERATOR in FPGA

 Assembler language

 Stage 1: with 10 people in 12 months :

 GPA SDK

 the frame for API integration

 partially Kernels up to the level at which 
system performance can be 
demonstrated (ONNX)

 Stage 2: fully developed Kernels



Subset of 
kernel library 
of functions 
used by the 

host computer

 START_CC : start cycles counter

 STOP_CC : stop cycles counter

 SEND_INT : send interrupt and cycles counter

 MM_EWO : element-wise operation on matrix

 SM_MULT : scalar-matrix multiplication

 MM_MULT : matrix-matrix multiplication

 MM_MAC : matrix-matrix multiplication & accumulate

 WRITE_MATRIX : write matrix

 READ_MATRIX : read matrix

 WAIT_RES_READY : wait for result ready



Evaluations on FPGA
 Matrix-Matrix multiplication on GPA with 16 cells

 16x16 matrices: 1489 clock cycles

 32x32 matrices: 9826 clock cycles

 64x64 matrices: 70190 clock cycles

 128x128 matrices: 527806 clock cycles

 128x128 Matrix-Matrix MULT on GPA of various size

 16 number of cells: 527806 clock cycles

 32 number of cells: 242253 clock cycles

 64 number of cells: 127082 clock cycles

 128 number of cells: 77204 clock cycles


