
XPU General- Purpose Accelerator (XPU-GPA)

UNSTPB - Politehnica Bucharest / Faculty of Electronics

ETTI-DCAE-ARH group

Speaker: Calin Bira (calin.bira@upb.ro / calin.bira@cern.ch)

Jan.2024

mailto:calin.bira@upb.ro
mailto:calin.bira@cern.ch

Heterogeneous
Computing

System

 Complex computation runs on HOST: a mono- or multi-

core computation structure (ARM, RISC V, …)

 Intense computation runs on ACCELERATOR: a many-

core computation structure

 ACCELERATOR is seen by the HOST as a

hardware library of functions

XPU GENERAL PURPOSE ACCELERATOR (XPU-GPA)

 MAP: linear array of execution cells with big register

files

 CONTROLLER: custom micro-computer used to

issue in each cycle a command for MAP

 DISTRIBUTE: pipelined log-depth distribution

network

 SCAN/REDUCE: pipelined log-depth circuit

performing reduce functions (add, min, max, …) and

scan functions (add prefixes, permute, …)

Architectural acceleration

 Test configuration for GEMM of N×N matrices :

HOST: ARM single-core

ACCELERATOR: our MapScanReduce accelerator with p = N cells

 Architectural acceleration (A): acceleration with HOST and ACCELERATOR running at

the same frequency with a x86 mono-core engine

 TMultiply+TTransfer = ((2p2 + plog2 p+9p+5) + (1.5p2 + 17p +6) clockCycles

(validated by measurement on GPA simulator’s clock counter)

 Tmultiply+Transfer = 22×N3 clockCycles (measured running on x86 mono-core)

A => 6.28×p

1024×1024 Matrix Multiplication for ML at 7 nm
 On GPU Nvidia’s A100: execution time 0.4ms,

 on 846 mm2, with 6912 cells, in 7nm, 1.275 GHz, ~150W, Memory Bus: 5120 bits

 On our GPA: execution time 2.9ms,

 on 40 mm2 , with 1024 cells, in 7nm, 1.275 GHz, 5.12W, Memory Bus: 128 bits

 #cells(GPU)/#cells(GPA) = 6.75 ≈ 7 ≈ time(GPA)/time(GPU) = 7.25

 Power(GPU)/Power(GPA) = 78 ➔ 11x computation for the same energy

 Area(GPU)/Area(GPA) = 21 ➔ 3x computation for the same area

The evaluation is based on simulation and synthesis made in a master thesis using Cadence environment for GPA,

and on https://www.techpowerup.com/gpu-specs/a100-sxm4-80-gb.c3746

https://docs.nvidia.com/deeplearning/performance/dl-performance-matrix-multiplication/index.html for GPU.

https://www.techpowerup.com/gpu-specs/a100-sxm4-80-gb.c3746
https://docs.nvidia.com/deeplearning/performance/dl-performance-matrix-multiplication/index.html

Current stage

 Three silicon versions of the accelerator produced in a Silicon
Valley start-up (more at:
http://users.dcae.pub.ro/~gstefan/2ndLevel/connex.html)

 Working prototype, on FPGA development board, for p =
128

 The accelerator is programmed in assembly

The performance was investigated for a large number of
application domains (dense & sparse linear algebra, FFT,
molecular dynamic, automotive, …)

6

http://users.dcae.pub.ro/~gstefan/2ndLevel/connex.html

Application Domains

Artificial Intelligence

Automotive

Robotics

Bio-Informatics

Security

Digital Signal Processing

Evaluations against NVIDIA GA100

The evaluation for GPA is based on simulation and synthesis using Cadence environment:

• technology node: 7 nm

• area: 40 mm 2

• number of cells: 1024

• clock frequency: 1.275 GHz

• power: 5.12 W

• memory bus: 128 bis

while for GA100 GPU we used the spec [6]:

• technology node: 7 nm

• area: 846 mm 2

• number of cells: 6912

• clock frequency: 1.275 GHz

• power: 400 W

• memory bus: 5120 bits

For dense matrix multiplication on GA100 the information is provided by [5]

According to figures, the matrix multiplication time for M=K=N on GA100 GPU is t_GPU (1024) = 0.4ms

According to sim on a 1024 GPA the execution time for multiplying 1024 × 1024 matrices is t_GPA (1024) = 2.9ms.

Recap for: 1024×1024 Matrix Multiplication for ML at 7 nm

GPU Nvidia’s A100 vs our GPA:

 #cells(GPU)/#cells(GPA) = 6.75 ≈ 7 ≈ time(GPA)/time(GPU) = 7.25

 Power(GPU)/Power(GPA) = 78 => 11x computation for the same energy

Area(GPU)/Area(GPA) = 21 => 3x computation for the same area

Coding the GPA:
- by coding explicitly the controller and
the array, with library of functions:

- by coding directly using source-code
based C++ classes that implements a 2-
pass assembler

 void GenerateKernelDemo(int DEMO_KNR) {

BEGIN_KERNEL(DEMO_KNR);

/* execute on all machines */

 EXECUTE_IN_ALL(

NOP;

LS[100] = R4;

R10 = LS[0x32];

R0 = 0x140;

R3 = R1 * R2;

LS[R1] = R7;)

/* execute only on some machines */

 EXECUTE_WHERE_LT(R1 = INDEX)

/* execute on all machines */

 EXECUTE_IN_ALL(
R3 = LS[R6];

 R29 = R31 << R29;

 R5 = (R3 == R4);

 R1 = R1 ^ R1;)

END_KERNEL(DEMO_KNR); }

For GEMM, when using large matrices, one will have to
use an intermediate layer of software to split the task and
merge the results of GEMM-ing smaller matrices:

PE0 PE1023

The ARH research team

15

Prof. Gheorghe Ștefan Assoc. Prof.
Radu Hobincu

Msc. Andrei
Alexandru
Ulmămei

Asst.Prof.
George-Vlăduț
Popescu

++
PhD.stud. Mihai Antonescu
PhD.stud. Andrei Simion

Stud. Vlad-Gabriel Serbu
Stud. Andrei Haiducescu
++

SR-III Marius
Stoian

Asoc.Prof.
Călin Bîră

PhD.stud. Costin-
Emanuel Vasile

Q & A ?

Backup Slides

References

[1] Mihaela Malit , a, Gheorghe Stefan, Dominique Thiébaut (2007) Not Multi-, but Many-Core: Designing Integral

Parallel Architectures for Embedded Computation, ACM SIGARCH Computer Architecture News, 35(5)32:38,

Special issue: ALPS ’07 - Advanced low power systems; communication at International Workshop on Advanced

Low Power Systems held in conjunction with 21st International Conference on Supercomputing June 17, 2007

Seattle, WA, USA.

[2] Gheorghe Ştefan (2006) The CA1024: A Massively Parallel Processor for Cost-Effective HDTV, SPRING

PROCESSOR FORUM JAPAN, June 8-9, 2006, Tokyo.

[3] Gheorghe Ştefan, Anand Sheel, Bogdan Mı̂ţu, Tom Thomson, Dan Tomescu (2006) The CA1024: A Fully

Programmable System-On-Chip for Cost-Effective HDTV Media Processing, Hot Chips: A Symposium on High

Performance Chips, Memorial Auditorium, Stanford University, August 20 to 22, 2006.

[4] Gheorghe M. S , tefan, Mihaela Malit , a (2014) Can One-Chip Parallel Computing Be Liberated From Ad

HocSolutions? A Computation Model Based Approach and Its Implementation, 18th International Conference on

Circuits, Systems, Communications and Computers , Santorini Island, Greece, pp 582-597. http://www.

inase.org/library/2014/santorini/bypaper/COMPUTERS/COMPUTERS2-42.pdf

[5] User’s Guide — NVIDIA Docs (2023) Matrix Multiplication Background, https://docs.nvidia.

com/deeplearning/performance/pdf/Matrix-Multiplication-Background-User-

Guide.pdf

[6] NVIDIA GA100 (2023) NVIDIA GA100, https://www.techpowerup.com/gpu-specs/nvidia-

ga100.g931

The project  Stage 0: we already have:

 ACCELERATOR in FPGA

 Assembler language

 Stage 1: with 10 people in 12 months :

 GPA SDK

 the frame for API integration

 partially Kernels up to the level at which
system performance can be
demonstrated (ONNX)

 Stage 2: fully developed Kernels

Subset of
kernel library
of functions
used by the

host computer

 START_CC : start cycles counter

 STOP_CC : stop cycles counter

 SEND_INT : send interrupt and cycles counter

 MM_EWO : element-wise operation on matrix

 SM_MULT : scalar-matrix multiplication

 MM_MULT : matrix-matrix multiplication

 MM_MAC : matrix-matrix multiplication & accumulate

 WRITE_MATRIX : write matrix

 READ_MATRIX : read matrix

 WAIT_RES_READY : wait for result ready

Evaluations on FPGA
 Matrix-Matrix multiplication on GPA with 16 cells

 16x16 matrices: 1489 clock cycles

 32x32 matrices: 9826 clock cycles

 64x64 matrices: 70190 clock cycles

 128x128 matrices: 527806 clock cycles

 128x128 Matrix-Matrix MULT on GPA of various size

 16 number of cells: 527806 clock cycles

 32 number of cells: 242253 clock cycles

 64 number of cells: 127082 clock cycles

 128 number of cells: 77204 clock cycles

