QCD aspects in W and Z production, with focus on high-pT W/Z

AS

EXPERIMENT

QCD@LHC - Freiburg 7 of October 2024 Florencia Castillo on behalf of the ATLAS and CMS Collaborations

Motivation

ATL-PHYS-PUB-2022-009 CMS-SMP-23-004

- → We have a high sensitivity to a wide dynamic range of cross sections at the LHC.
- \rightarrow The production of W and Z particles has relatively high cross sections.

→ A large dataset enabling us to investigate a broad spectrum of physical processes.

Still a lot of to learn

- W and Z Bosons: crucial for understanding electroweak interactions
- **Precision Tests of QCD**: To accurately and precisely characterize W and Z processes at the LHC, all aspects of QCD must be thoroughly understood across a wide range of scales
 - PDF, Higher-order Matrix Element calculation, parton shower, matching or merging, factorization/renormalization, hadronization.

QCD aspects in W and Z physics

- Many analyses from ATLAS and CMS! We can't showcase everything here, but you can check them out!
 - CMS SM <u>results</u>
 - ATLAS SM <u>results</u>

* Talk on <u>Friday</u> by Max

This talk contains:

 $\begin{array}{l} \textbf{ATLAS} \rightarrow \ ^{*}\text{Z pT} \text{ and rapidity at 8 TeV} (\underline{\text{Eur. Phys. J. C 84 (2024) 315}}), \ ^{*}\text{Precise W and Z pT} \\ \text{measurements at 5.02 and 13 TeV} (\underline{\text{arXiv:2404.06204}}), \text{Z+jet unbinned unfolding} \\ (\underline{\text{arXiv:2405.20041}}) \text{ and MET+jets differential x-section at 13 TeV} (\underline{\text{JHEP 08 (2024) 223}}) \end{array}$

CMS \rightarrow Drell-Yan FB asymmetry and the weak mixing angle (<u>arXiv:2408.07622</u>), Precise W and Z pT measurements 5.02, 13 TeV and 13.6TeV (<u>arXiv:2408.03744</u>, <u>CMS-PAS-SMP-22-017</u>) and Z decaying to four leptons at 8 and 13 TeV (<u>CMS-PAS-SMP-19-007</u>)

Z pT and rapidity at 8 TeV

- <u>Eur. Phys. J. C 84 (2024) 315</u>
- Measuring leptonic decay in the full phase space enhances the effects, while leading to higher experimental and theoretical precision
- Measurement performed on 20 fb^{-1} of 8 TeV ATLAS
- Very high experimental precision (Δ < 1%)
 - First comparison with N3LO QCD predictions (MSHT20).
 - Comparison to other NNLO PDFs are also provided.
- Rapidity-dependence of differential cross-section yields high sensitivity to PDF

- ee_{CC} : two electrons with $p_T > 20$ GeV and $|\eta| < 2.4$
- $\mu\mu_{CC}$: two muons with $p_T > 20$ GeV and $|\eta| < 2.4$
- ee_{CF} : two electrons with $p_T > 20$ GeV and $|\eta| < 2.4$ and forward electron with $p_T > 20$ GeV and $2.5 < |\eta| < 4.9$

Z pT and rapidity at 8 TeV: Methodology

• Measure θ and ϕ distributions defined in the Collin-Soper frame and **extract the free parameters** (A_i, σ^{U+L}) from a fit in, p_T -y bins $\circ d\sigma/dp_T$: transverse dynamics $\circ d\sigma/dy$: longitudinal dynamics (PDFs) $\frac{d\sigma}{dpdq} = \frac{d^3\sigma^{U+L}}{dp_T dydm} \left(1 + \cos^2\theta + \sum_{i=0}^7 A_i(y, p_T, m)P_i(\cos\theta, \phi)\right)$

Expected Yield

- Measuring $A_i \rightarrow$ a "quantized" representation of ($cos(\theta)$, ϕ) from the construction of a synthetic model
 - allow to control uncertainties while accounting for correlations
 - provide analytic extrapolation of lepton cuts and enables a richer interpretation programme

Parameters of interests are the 8 A_i + 1 cross section in(p_T -y)bins: 9 parameters in 352 bins

$$\begin{array}{c}
\textbf{ATLAS} \\
\bullet & \bullet \\
\bullet &$$

Truth (p_

 $\frac{\operatorname{Reco}\left(\mathbf{p}_{\mathsf{T}}^{\mathsf{Z}}, \mathbf{y}^{\mathsf{Z}}, \operatorname{cos}\boldsymbol{\theta}, \boldsymbol{\phi}\right) \operatorname{bin}}{N_{\exp}^{n}(A, \sigma, \theta)} = \left\{ \sum_{j=1}^{N_{\mathrm{bins}}^{ana}} \mathcal{L}_{\sigma_{j}}^{\mathsf{Cross section}} \left[t_{8j}^{n}(\beta) + \sum_{i=0}^{7} \mathcal{A}_{ij} t_{ij}^{n}(\beta) \right] \right\} \gamma^{n} + \sum_{B}^{\operatorname{Background template}} \mathcal{T}_{B}^{n}(\beta)$

Templated polynomial

Z pT and rapidity at 8 TeV: Differential cross section

Eur. Phys. J. C 84 (2024) 315

- Statistically dominated measurement
- Achieved precision at the 0.1% level in the central region.
- Less than 1% uncertainties for |y| < 3.6, thanks by dedicated forward electron calibration

Z pT and rapidity at 8 TeV: Differential cross section

Eur. Phys. J. C 84 (2024) 315

• First comparison to aN3LO PDF sets. Comparison to other NNLO PDFs are also provided (DYTurbo)

• Only the aN3LO MSHT, NNLO CT18A and NNLO MSHT PDF sets show reasonable agreement with the data

Drell-Yan FB asymmetry and the weak mixing angle

arXiv:2408.07622

- $Z \rightarrow \ell \ell$ used full Run 2
- $\bullet\,A_{FB}$ is sensitive to near Z peak

 $\frac{d\sigma}{d\cos\theta_{\rm CS}} \propto 1 + \cos^2\theta_{\rm CS} + A_4\cos\theta_{\rm CS} + 0.5A_0*(1 - 3\cos^2\theta_{\rm CS}) \qquad A_{\rm FB} = \frac{3}{8}A_4 = \frac{\sigma_{\rm F} - \sigma_{\rm B}}{\sigma_{\rm F} + \sigma_{\rm B}}$

Collin-Soper frame

 $\sigma_F(cos(heta_{CS}) > 0) \quad \sigma_B(cos(heta_{CS}) < 0)$

- Three $sin^2 \theta_{eff}^{\ell}$ measurements:
 - Directly from the reco-level A_{FB}
 - small systematic uncertainty
 - Unfolded angular coefficient A_4 and $sin\theta_{CS}$ distribution
 - allows for reinterpretations in future
 - Backgrounds
 - QCD multijet data-driven
 - W/EW/top from simulation (validated in CR)

Drell-Yan FB asymmetry and the weak mixing angle

arXiv:2408.07622

- Three fit results are shown
 - $\circ A_{FB}$ detector-level
 - $\circ A_4$ unfolded
 - $\circ cos \theta_{CS}$ distribution

- Comparable with e^+e^- results precision, dominated by the PDF \rightarrow uncertainty
- Differential A_4 coefficient measurement can be used in combination with \rightarrow other experiments to improve further precision $sin^2\theta_{eff}^{\ell}$

Precise W and Z pT measurements

- The hadronic recoil (u_T) is the primary factor limiting of p_T^W measurements:
 - Recoil resolution worsens with increased pileup.
 - add energy to the recoil
- p_T^W : unfolded from the hadronic recoil u_T
- p_T^Z : unfolded from $p_T^{\ell,\ell}$ and checked to be consistent with u_T
- Reasonable agreement from the tune from ATLAS 7 TeV (AZNLO) data in $p_T^{W/Z}{<}$ 40 GeV region
- DYTURBO: the best agreement across the spectrum

Precise W and Z pT measurements

arXiv:2408.03744 CMS-PAS-SMP-22-017

- W signal distribution $m_T = \sqrt{2p_T^\ell p_T^\nu [1 \cos(\Delta \phi)]}$ $\circ p_T^\nu$ estimated by p_T^{miss}
- Z signal distribution $m_{\ell^+\ell^-}$
- 3 low pile-up runs:
 - L= 298 *pb*⁻¹at √s=5.02 TeV L=201 *pb*⁻¹at √s=13 TeV 0
 - 0
 - L=5.04 *fb*⁻¹ √s=13.6 TeV 0

- Cross sections, ratios and double ratios measured
 - Dominated by the lumi uncertainty 0
 - ATLAS and CMS in agreement Ο
- CMS compared with DYTURBO
 - Very good agreement across runs at low pileup Ο

Florencia Castillo - LAPP

Z

Z decaying to four leptons at 8 and 13 TeV

L= 19.7 fb^{-1} at \sqrt{s} = 8 TeV L=138 fb^{-1} at \sqrt{s} = 13 TeV

- Motivation
 - Study rare decays
 - Calculate branching ratios, test SM
 - Fit of data using templates from POWHEG
 - Search for new physics

- → The most significant sources of systematic uncertainty are the lepton identification and reconstruction efficiencies
- → $B(Z \rightarrow 4\ell)$ more precise than the combined value reported
- → All measured branching fractions are consistent with the SM expectations.

$$\mathcal{B}(Z \to 4\ell) = \mathcal{B}(Z \to \ell^+ \ell^-) (1 - f_{\rm nr}) \frac{(A \times \epsilon)_{\ell^+ \ell^-}}{(A \times \epsilon)_{4\ell}} \frac{(N^{\rm obs} - N^{\rm bkg})_{4\ell}}{(N^{\rm obs} - N^{\rm bkg})_{\ell^+ \ell^-}}$$

	${\cal B}(Z o 4\ell)$ [×10 ⁻⁶]				
Channel	Expected	Observed			
4μ 2μ2e 4e	$\begin{array}{c} 1.20 \pm 0.01 \\ 2.31 \pm 0.01 \\ 1.20 \pm 0.01 \end{array}$	$\begin{array}{c} 1.25 \pm 0.04 \ (\text{stat}) \ \pm 0.03 \ (\text{syst}) \\ 2.17 \pm 0.08 \ (\text{stat}) \ \pm 0.06 \ (\text{syst}) \\ 1.16 \pm 0.09 \ (\text{stat}) \ \pm 0.06 \ (\text{syst}) \end{array}$			
4ℓ	4.70 ± 0.02	4.67 ± 0.11 (stat) ±0.10 (syst)			

Z decaying to four leptons at 8 and 13 TeV

34

Data

POWHEG

55

Differential decay rates

- Backgrounds are subtracted bin-by-bin
- The shape of the nonprompt-lepton background is taken from the loose control region
- Shapes of other backgrounds are taken from simulations
- The unfolded distributions are corrected to the • full phase space and normalised to the measured width
- Overall, the agreement of the simulation is good

Florencia Castillo - LAPP

CMS-PAS-SMP-19-007

Z decaying to four leptons at 8 and 13 TeV

- → Search for Physics beyond the SM
 - A light gauge boson may be produced on shell in Z boson decays.
 - Looking for a scalar or vector boson U with a significant coupling to leptons
 - Insensitive to assumptions about the U boson total width

upper limits branching fractions							
	95% CL UL [×10 ⁻⁶]						
Channel	Expected	Observed					
4μ	1.28	1.34					
2µ2e	2.48	2.33					
4e	1.37	1.32					
4ℓ	4.95	4.91					

→ The region above and to the left of the curve is excluded

→ These limits are more stringent than those set using previous measurements

Z+jets processes

Omnifold Z+jets

arXiv:2405.20041

- OmniFold weights particle-level Gen to be consistent with Data once passed through the detector
 - This technique bypass the current unfolding (fixed binned data, not feasible for unfolding multiples dimensions)
 - Advantages of Omnifold
 - Can capture all detector effects
 - Unbinned: final result is a list of events with a weight, user can construct any binning and any possible variable
- The output of OmniFold is an event-by-event reweighting function that adjusts the Generation to match the Truth.

arXiv:2405.20041

Z+jet unbinned unfolding

- $Z \rightarrow \mu\mu + jets$ Sherpa 2.2.1.1 Madgraph 5 interfaced to Pythia 8.240
 - Detector Simulation
 - ATLAS detector -> Geant4
- Jets Anti-kT=0.4 $p_T^{\mu\mu}$ > 200 GeV
- → The results align with the predictions
- → Unfolded 24 observables simultaneously
- → Omnifold total uncertainties similar, but slightly larger than those found with Bayesian comparison (3.0% average bin uncertainty vs. 3.9% for Omnifold)
 - primarily due to the NN initialization uncertainty

MET+jets differential x-section at 13 TeV

JHEP 08 (2024) 223

Schema from link **Signal region**: missing transverse momentum + jets

Signal region: $\vec{p}_{T}^{\text{recoil}} \equiv \vec{p}_{T}^{\text{miss}}$

For example: $Z \rightarrow \nu \nu$, $W \to \ell \nu$, $Z' \to \chi \chi$

- Unfolded differential measurements of pT miss produced in association with jets
 - Process-specific ($Z \rightarrow vv$) 0
 - Dominant in "mono-jet" region
 - After subtraction of all sub-dominant processes
 - Important background for BSM processes Ο
 - Simplified DM models
 - 2HDM+a models

- Measurement made in 6 phase-space • regions and their ratios
 - Allow cancellation of systematics 0 and modelling effects

SR:
$$p_T^{miss} + jets$$
Aux: $\mu + jets$ Aux: $e + jets$ Aux: $2\mu + jets$ Aux: $2e + jets$ Aux: $\gamma + jets$

MET+jets differential x-section at 13 TeV

Experimental systematics from

Inclusive >= 1jet

JHEP 08 (2024) 223

Florencia Castillo - LAPP

MET+jets differential x-section at 13 TeV

JHEP 08 (2024) 223

- Measurement compatible with SM
 - Use to set limits on contribution from BSM particles
 - Can be reinterpreted for different models.
- Sensitivity is similar to that of dedicated ATLAS searches
 - Phys. Rev. D 103, 112006
 - ➤ arXiv:2306.00641

Axial-vector DM: benchmarked to dedicated DM search

2HDM+a model: Higgs doublet and scalar couple to DM

Outlook

- W/Z+ jets processes are abundant in the LHC, offering valuable opportunities for precision testing of Standard Model predictions.
- Recent ATLAS and CMS results highlight the wide variety of tests that can be performed, achieving higher levels of precision.
- Innovative unfolding techniques will facilitate easier reuse of data for future analyses.
- Inclusive particle-level measurement offers good sensitivity to BSM physics and can be reinterpreted for different models.
- Run 3 will bring numerous opportunities for exciting new discoveries! Stay Tune!

Thank you!

BACKUP

Florencia Castillo - LAPP

Precise W and Z pT measurements

excellent agreement data-MC from 0.63 TeV up to 13.6 TeV using DYTURBO@NNLO

Precise W and Z pT measurements

Process	$\sigma_{\rm fid}(\sqrt{s} = 13 {\rm TeV})/\sigma_{\rm fid}(\sqrt{s} = 5.02 {\rm TeV})$		
$W^- \to \ell^- \nu$	2.516 ± 0.005 (stat.) ± 0.010 (syst.) ± 0.036 (lumi.)		
$W^+ \to \ell^+ \nu$	2.050 ± 0.003 (stat.) ± 0.008 (syst.) ± 0.029 (lumi.)		
$Z \to \ell \ell$	2.344 ± 0.011 (stat.) ± 0.011 (syst.) ± 0.032 (lumi.)		

Z decaying to four leptons at 8 and 13 TeV

	signal $Z \to 4\ell$ events N_+ (N) in which $\sin \phi > 0$ (< 0),			
NI NI	Channel	N_+	N_{-}	$A_{\sin\phi}$ (%)
$A_{\sin\phi} = \frac{N_+ - N}{N + N}$	4μ	412	450	-4.3 ± 3.4 (stat) ±0.3 (syst)
$N_+ + N$	2µ2e	372	406	-4.3 ± 3.6 (stat) ±0.4 (syst)
	4e	98	101	-1.4 ± 7.1 (stat) ±0.6 (syst)
	4ℓ	882	956	-4.0 ± 2.3 (stat) ± 0.2 (syst)

 ϕ : the angle between the decay planes of Z1 and Z2 in the Z boson rest frame.

no evidence of CP invariance violation (no difference between amplitudes)

Omnifold + CMS geometry

Phys. Rev. Lett. 124, 182001 (2020). Anders Andreassen, Patrick T. Komiske, Eric M. Metodiev, Benjamin Nachman, and Jesse Thaler

- $Z \rightarrow \mu \mu + jets$ "Data"- HERWIG 7.1.5 MC- PYTHIA 8.243
- Detector Simulation CMS-> DELPHES 3.4.2
- Jets Anti-kT=0.4 $p_T^{\mu\mu}$ > 200 GeV, Assumed excellent muon detector resolution

- → six widely used jet substructure observable
- → OmniFold equals or outperforms OmniFold equals or

outperforms Iterated Bayesian Unfolding (IBU)