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In processes involving disparate scales Q ≫ Q0, 
higher-order corrections are enhanced by large 
logarithms 

which can spoil perturbative expansion. Maximum 
power of logarithms depends on problem 

• Single logarithmic: m ≦ n  
• Sudakov (soft + collinear): m ≦ 2n   

Resum enhanced contributions to all orders. 
• Count ln(Q/Q0) ~ 1/αs   

• Systematic expansion: LL, NLL, NNLL, …  
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toy e
xa

mple!

Classic example is Z- or W-production at low 
transverse momentum  :  
Need all-order resummations for reliable extractions 
of  and  from the spectrum.

qT ≪ MZ L = ln(MZ /qT)
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→ talks by Florencia Castillo, Valentina Guglielmi, Oleg Kuprash, Giulia Marinelli

3



One can show that cross section has the form 

  

Accuracy: 

• LL: g1;  NLL: g1, g2;  NNLL: g1, g2, g3  

Expand in αs but count αs L as O(1)

Exponentiation
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small masses

 non-relativistic

threshold
soft radiation

jets

small qT

large rapidity

Many types of scale hierarchies, many different types 
of resummations … and by now many different EFTs
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Large logarithms arise due to soft and collinear 
emissions.  

Resummations are based on the factorization of 
cross sections in soft and collinear limits. 

This factorization is at the heart of collider physics 
and has implications in all its areas. 
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In cross sections with angular cuts, an intricate pattern of enhanced higher-order corrections
known as non-global logarithms arises. The leading logarithmic terms were computed numerically
two decades ago, but the resummation of subleading non-global logarithms remained a challenge
that we solve in this Letter using renormalization group methods in effective field theory. To achieve
next-to-leading logarithmic accuracy, we implement the two-loop anomalous dimension governing
the resummation of non-global logarithms into a large-Nc parton shower framework, together with
one-loop matching corrections. As a first application, we study the interjet energy flow in e+e�

annihilation into two jets. We then present, for the first time, resummed predictions at next-to-
leading logarithmic accuracy for a gap-between-jets observable at hadron colliders.

Introduction. — There has been impressive progress
in the perturbative calculation of processes at the
Large Hadron Collider (LHC). However, for observables
involving disparate scales, computations beyond fixed
perturbative order are necessary. These include cross sec-
tions involving a hard scale Q but with sensitivity to a
soft scale Q0. Such cross sections involve large logarithms
in the scale ratio L = ln(Q/Q0) that degrade the pertur-
bative expansion and should be resummed to all orders
to obtain reliable predictions.

A generic set of observables involving scale hierar-
chies are cross sections where hard radiation is vetoed
in certain angular regions. Prime examples are exclu-
sive jet cross sections which require a veto on additional
hard jets. While ubiquitous, the all-order resumma-
tion of such observables is challenging, since they in-
volve a complicated pattern of enhanced higher-order
corrections known as non-global logarithms, which arises
due to secondary emissions off hard partons [1–3]. At
leading-logarithmic (LL) ⇠ (↵sL)n accuracy, resummed
results both at large [1–3] and finite Nc [4–7] are avail-
able. Despite continued progress in the understand-
ing of non-global observables over the past 20 years [8–
35], a full resummation of next-to-leading logarithmic
(NLL) ⇠ ↵s (↵sL)n corrections remained elusive. In this
Letter we solve this problem based on a factorization the-
orem [13, 14] obtained in soft-collinear effective field the-
ory [36–38]. The factorization theorem splits the cross
section into hard and soft functions. To resum the large
logarithms, one solves the renormalization group (RG)
equations of the hard functions to evolve them from a
scale µ ⇠ Q down to µ ⇠ Q0. Since the associated
anomalous dimension is a matrix in the (infinite) space
of particle multiplicities, we resort to Monte Carlo (MC)
methods to solve the RG equations. A key ingredient
for NLL resummation is the recently extracted two-loop
anomalous dimension [39] that we implement into a par-
ton shower framework, which iteratively generates addi-
tional emissions to solve the RG equations. Combined
with the one-loop corrections to the hard and soft func-
tions we obtain in this Letter the full set of NLL contri-

Q

Q0

↵
�Y

FIG. 1. Representation of the factorization formula (1). The
blue lines depict hard radiation associated with the energy
scale Q, which is constrained inside the jet cones, while the
red lines represent the soft radiation at lower energies Q0.
The soft radiation can cover the entire phase space.

butions for gap-between-jets cross sections at lepton and
hadron colliders. For the lepton-collider case NLL results
were first presented in [40], based on a very different for-
malism [41], and we find full agreement within numerical
uncertainties.

Methodology. — The basis for our resummation are fac-
torization theorems for jet production in the presence of
a veto on radiation in certain angular regions of the phase
space. The simplest case is two-jet production in e

+
e
�

collisions, which factorizes as [13, 14]

�(Q, Q0) =
1X

m=2

⌦
Hm({n}, Q, µ) ⌦ Sm({n}, Q0, µ)

↵
, (1)

where Q is the center-of-mass energy and Q0 is the energy
scale above which we veto radiation in the gap outside
the jet cones. We impose the veto by demanding that
the transverse energy ET of the particles in the gap is
below Q0. At the order we are working, our constraint
is equivalent to imposing that the transverse momentum
of the leading jet in the gap region is below Q0. Fig-
ure 1 shows a pictorial representation of the factoriza-
tion theorem (1). The hard functions Hm describe m

hard partons, which we treat as massless, inside the jet
cones. To obtain Hm, one integrates the squared am-
plitudes over the energies of the m hard partons while
keeping their directions {n} = {n1, . . . , nm} fixed. The
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Insights into all-order structure of cross sections have 
lead to progress in all of the above areas.

jet substructure

fixed-order calculations

subtraction, slicing,

PDF factorization

accurate

parton showers

jet substructure

new observables

non-perturbative 

effects

physics of soft  
and collinear emissions
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These connections are exemplified by the many 
scientific achievements of Stefano Catani (’58-’24). 

A pioneer of resummation, but his deep insights into 
soft and collinear dynamics led him to contribute to 
all areas of collider QCD.
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Outline
• High-precision resummations 

• qT spectrum in Drell-Yan production; αs and MW 
determinations from ATLAS and CMS 

• New observables for jet substructure 
• energy-energy correlators and αs and mt determination 

• Resummation of jet observables and parton showers 
• non-global logs, clustering logs, super-leading logs  

• Back to the basics 
• all-order structure of wide-angle scattering 
• collinear factorization violation vs. PDF factorization



αs and mt from precision resummations of 
transverse momentum spectra 
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Figure 3: Determination of Us (</ ) at various different orders in the QCD perturbative expansion, using the MSHT20
PDF set. The filled area represents missing higher-order uncertainties estimated through scale variations, and the
vertical error bars include experimental and PDF uncertainties.

5 Determination of "s(m`)

The determination of Us(</ ) with central values of the QCD scales and using Eq. (1) yields Us(</ ) =
0.11847±0.00067, with contributions to the fit uncertainty from the experimental sources and from the PDFs
estimated as ±0.00044 and ±0.00051 respectively.6 Uncertainties arising from missing higher orders, due
to truncation of the perturbative series, are estimated through independent variations of `r, `f and & in the
range 0.5 ·

q
<

2
✓✓

+ ?
2
T  {`r, `f ,&}  2 ·

q
<

2
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+ ?
2
T with the constraints 0.5  {`f/`r,&/`r,&/`f}  2,

leading to 14 variations.

The fit is repeated for each scale variation, and the determined values of Us(</ ) range from a minimum of
0.11786 to a maximum of 0.11870. The midpoint of this range of Us(</ ) values, Us(</ ) = 0.11828, is
taken as the nominal result, and the range’s envelope of ±0.00042 is used as an estimate of the uncertainties
due to missing higher orders, henceforth referred to as ‘missing higher-order uncertainties’.

The procedure is repeated at lower orders, starting from next-to-leading-logarithm accuracy matched to
next-to-leading order (NLL+NLO). The MSHT20 PDF set is used throughout, and the order of the PDFs is
matched to the order required by the logarithmic terms included in the ?T-resummation, i.e. NNLO at
N3LL and NLO at NNLL.7 The results are shown in Figure 3. At every order, the estimate of missing
higher-order uncertainties obtained from the scale variations overlaps with determinations of Us(</ ) at
higher orders, giving confidence in the robustness and gradual convergence of these estimates.

6 The non-perturbative QCD parameters are left free in the fit, and, due to their correlation with Us (</ ), the experimental
uncertainties are significantly larger here than in the pseudo-fit, where they are kept fixed to assess the experimental sensitivity
to Us (</ ).

7 At NLL the NLO PDF set is used because the LO PDF set does not have Us (</ ) variations.
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pp → “EW bosons” + X  at low qT 

• Ingredients known to very high accuracy 

• three-loop beam functions Ebert, Mistlberger, Vita ‘20 

• three-loop hard functions for Z/W/γ (with singlet contributions Gehrmann, Primo ’21 
with top mass Chen, Czakon, Niggetiedt ’21), two-loop for diboson processes 

• four-loop hard anomalous dimensions  Manteuffel, Panzer, and Schabinger ’20 and 
anomaly exponent Duhr, Mistlberger, Vita ’22; Moult, Zhu, Zhu ’22 

• fixed-order matching to αs3 from MCFM and NNLOJet
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Figure 1: Structure and kinematics of the factorization theorem for electroweak boson pro-
duction at low transverse momentum. The wavy lines denote the bosons in the final state.
We can also include their leptonic decays in our framework.

the incoming parton, see Figures 1 and 2. We will discuss these functions and the associated
Fourier integral over the transverse separation x? in more detail below. Let us note that for
gluon-induced processes, such as Higgs production, two beam function structures arise. In
this case the factorization formula involves a sum of two products of beam functions rather
than just a product [18,33]. However, the second structure first arises at NNNLL and is thus
not relevant in the present paper.

Secondly, the resummed result also includes the virtual corrections to the Born level pro-
cess. These are part of the hard function Hij, which is given by the loop contribution to the
process, after subtracting its divergences in MS renormalization. We write the expansion of
the hard function in the form

Hij(p̂1, p̂2, q1, ..., qN , µ) = 1 +
↵s(µ)

4⇡
H(1)

ij (p̂1, p̂2, q1, ..., qN , µ) +O(↵2

s) . (6)

The one-loop hard function for quark-induced processes takes the form

H(1)

qq̄ = �2CF ln2
Q

2

µ2
+ 6CF ln

Q
2

µ2
+ h0(p̂1, p̂2, q1, ..., qN) . (7)

The µ dependence is universal since it is driven by the anomalous dimension of the operator
with a single collinear quark field for each beam direction. All nontrivial information about
the process resides in the scale independent piece h0. For Z boson production we have h0 =
CF (�16 + 7⇡2

/3). For more complicated processes, we use MadGraph5_aMC@NLO to
compute the one-loop corrections, as described in detail in [28]. Specifically, running the code
at an arbitrary reference scale µMad, the hard function is related to the finite part C0 of the
virtual contribution obtained from MadGraph5_aMC@NLO as follows:

h0(p̂1, p̂2, q1, ..., qN) = 2C0(p̂1, p̂2, q1, ..., qN , µMad) + CF


⇡
2

3
+ 2 ln2

Q
2

µ
2

Mad

� 6 ln
Q

2

µ
2

Mad

�
. (8)

We observe that (7) su↵ers from large logarithms when µ
2 ⌧ Q

2, while the beam functions
will involve large logarithms for µ2 � q

2

T . To avoid this problem, we solve the RG equation

4

beam functions 
soft + collinear emissions

hard function: Born + virtual corrections



Almost N4LL accuracy

• Missing for full N4LL +  accuracy 
• four-loop PDF evolution, i.e. N3LO PDFs. Note: approximate N3LO 

PDF exist  → talks by Sven Moch and Tongzhi Yang 
• five-loop cusp anomalous dimension (likely numerically irrelevant)
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Figure 1: Structure and kinematics of the factorization theorem for electroweak boson pro-
duction at low transverse momentum. The wavy lines denote the bosons in the final state.
We can also include their leptonic decays in our framework.

the incoming parton, see Figures 1 and 2. We will discuss these functions and the associated
Fourier integral over the transverse separation x? in more detail below. Let us note that for
gluon-induced processes, such as Higgs production, two beam function structures arise. In
this case the factorization formula involves a sum of two products of beam functions rather
than just a product [18,33]. However, the second structure first arises at NNNLL and is thus
not relevant in the present paper.

Secondly, the resummed result also includes the virtual corrections to the Born level pro-
cess. These are part of the hard function Hij, which is given by the loop contribution to the
process, after subtracting its divergences in MS renormalization. We write the expansion of
the hard function in the form

Hij(p̂1, p̂2, q1, ..., qN , µ) = 1 +
↵s(µ)
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The µ dependence is universal since it is driven by the anomalous dimension of the operator
with a single collinear quark field for each beam direction. All nontrivial information about
the process resides in the scale independent piece h0. For Z boson production we have h0 =
CF (�16 + 7⇡2

/3). For more complicated processes, we use MadGraph5_aMC@NLO to
compute the one-loop corrections, as described in detail in [28]. Specifically, running the code
at an arbitrary reference scale µMad, the hard function is related to the finite part C0 of the
virtual contribution obtained from MadGraph5_aMC@NLO as follows:
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We observe that (7) su↵ers from large logarithms when µ
2 ⌧ Q

2, while the beam functions
will involve large logarithms for µ2 � q

2

T . To avoid this problem, we solve the RG equation
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• aN4LL resummations from several groups with different 
formalisms 

• Results include αs3 fixed order from MCFM 

AT
LA

S 
‘2
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Comparison and uncertainties 
Resummed computations are performed in a variety of (equivalent) 
formalisms and with different of scheme choices 

• Scale setting in momentum space (CuTe, Radish) versus 
impact parameter space (everyone else) 

• Different formalisms for rapidity logs (CSS, collinear 
anomaly, RRG) and associated uncertainty 

• Different matching schemes / transition to fixed order 
Uncertainty estimates are much less standardized than for fixed-
order computations!


• Ongoing comparison/benchmark efforts by LHC EW sub-
group (since 2018, to be completed this year!)
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ATLAS αs extraction
• Reconstruct inclusive spectrum 

rate from angular coefficients   

• αs  from fit to DYTurbo  

• N3LO fixed order MCFM and 
NNLOJet 

• MSHT20 approximate N3LO PDFs 

• cross checks with NNLO sets 

• Non-perturbative effects based on 
two-parameter ansatz by Collins 
Rogers ‘14
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Figure 2: Transverse-momentum distribution of / bosons predicted with DYTurbo [31] at different values of Us (</ ),
using the MSHT20 PDF set [32].

range |[ | < 2.5. It consists of silicon pixel, silicon microstrip, and transition radiation tracking detectors.
Lead/liquid-argon (LAr) sampling calorimeters provide electromagnetic (EM) energy measurements
with high granularity. A steel/scintillator-tile hadron calorimeter covers the central pseudorapidity range
(|[ | < 1.7). The endcap and forward regions are instrumented with LAr calorimeters for both the EM and
hadronic energy measurements up to |[ | = 4.9. The muon spectrometer surrounds the calorimeters and is
based on three large superconducting air-core toroidal magnets with eight coils each. The field integral of
the toroids ranges between 2.0 and 6.0 T m across most of the detector. The muon spectrometer includes a
system of precision tracking chambers and fast detectors for triggering. A three-level trigger system is
used to select events. The first-level trigger is implemented in hardware and uses a subset of the detector
information to accept events at a rate of at most 75 kHz. This is followed by two software-based trigger
levels that together reduce the accepted event rate to 400 Hz on average depending on the data-taking
conditions during 2012. An extensive software suite [44] is used in data simulation, in the reconstruction
and analysis of real and simulated data, in detector operations, and in the trigger and data acquisition
systems of the experiment. The data were collected by the ATLAS detector in 2012 at a centre-of-mass
energy of

p
B = 8 TeV, and correspond to an integrated luminosity of 20.2 fb�1. The mean number of

additional ?? interactions per bunch crossing (pile-up events) in the data set is approximately 20.

3 Cross-section measurement

The /-boson transverse-momentum distribution is measured in the electron and muon decay channels,
which provide a clear signature with low background rates and a high precision measurement of the
momentum, as presented in Ref. [45]. The double-differential cross sections as functions of transverse
momentum and rapidity (H) of the / boson are measured in the pole region, defined as 80 < <✓✓ < 100 GeV,
where <✓✓ is the invariant mass of the dilepton system. The combination of 6.2 million electron and

4
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Figure 5: Comparison of the determination of Us (</ ) from the /-boson transverse-momentum distribution with
other determinations at hadron colliders [17, 18, 20, 21], with the PDG category averages [3], with the lattice QCD
determination [10], and with the PDG world average.

determination with simultaneous determination of PDFs and strong-coupling constant. The measured
value of Us(</ ) = 0.11828+0.00084

�0.00088 is compatible with other determinations and with the world-average
value, as illustrated in Fig. 5.

Among experimental determinations, this is the most precise to date and the first based on N4LLa+N3LO
predictions in perturbative QCD. This result marks the start of a new era in precision studies of QCD with
the Drell-Yan process. The strong-coupling constant can be investigated with higher precision and in higher
energy regimes with future larger datasets.
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Figure 3: Determination of Us (</ ) at various different orders in the QCD perturbative expansion, using the MSHT20
PDF set. The filled area represents missing higher order uncertainties estimated through scale variations, the vertical
error bars include experimental and PDF uncertainties.

Table 1: Summary of the uncertainties for the determination of Us (</ ).

Experimental uncertainty +0.00044 -0.00044
PDF uncertainty +0.00051 -0.00051

Scale variations uncertainties +0.00042 -0.00042
Matching to fixed order 0 -0.00008
Non-perturbative model +0.00012 -0.00020

Flavour model +0.00021 -0.00029
QED ISR +0.00014 -0.00014

N4LL approximation +0.00004 -0.00004

Total +0.00084 -0.00088

quoted uncertainty. The inclusion of NLO electroweak corrections yields a shift on Us(</ ) of +0.00006,
uncertainties related to missing electroweak higher orders are considered negligible.

Uncertainties related to the numerical approximation or the incomplete knowledge of some of the coefficients
required for N4LL accuracy of ?T-resummation are estimated to contribute at the level of ±0.00004, with
the largest contribution coming from the numerical approximation of the cusp anomalous dimension at
five loops [39], and from the incomplete knowledge of the hard-collinear contributions at four loops [42].
Uncertainties due to the numerical approximation of the four loop splitting functions are already included
in the MSHT20 PDF uncertainties.

A summary of the uncertainties in the determination of Us(</ ) is shown in Table 1.

The goodness of fit is assessed by computing the value of the j
2 function with the theory predictions

8
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With these high-order resummed and matched computations, 
we have entered a new regime of precision collider calculations. 

Unprecedented precision, but also difficult to be sure the 
uncertainties are reliably estimated … no previous experience 
with this level precision at hadron colliders!

→ talk by Giulia Marinelli



CMS MW extraction

• W-mass from Jacobian peak in charged-lepton pT spectrum and rapidity distribution. 

• Reweigh MiNNLOPS with resummation from SCETlib at N3LL, αs2 fixed-order 
matching through DYTurbo 

• Higher-order coefficients in resummation as theory nuisance parameters Tackmann, 
unpublished → talk by Giulia Marinelli 

• use statistical model for their distribution; can capture correlations since same 
coefficient enters different observables 

• values extracted from fit to data

9. The precise W boson mass measurement as a test of the SM 11

9 The precise W boson mass measurement as a test of the SM

In this paper we report the first W mass measurement by the CMS Collaboration at the CERN
LHC, with a precision very similar to that of the recent CDF measurement and better than that
of all other results. The W mass is extracted from a sample of W ! µn decays, collected in 2016
at the proton-proton collision energy of 13 TeV, via a highly granular maximum likelihood fit
to the three-dimensional distribution of the muon pµ

T, hµ, and electric charge. A number of
novel experimental techniques have been used, together with state-of-the-art theoretical mod-
els, to improve the measurement accuracy. Both the data analysis methods and the treatment
of the theory calculations used in the mW measurement have been validated in multiple ways,
including a muon momentum calibration using only J/y ! µµ events and the extraction of mZ
from a W-like analysis of Z boson dimuon decays.

Figure 4: The mW measurement from this analysis (in red) is compared with those of LEP [9],
D0 [14], CDF [17], LHCb [19], and ATLAS [20]. The global EW fit prediction [1] is represented
by the gray vertical band.

The measured value, mW = 80 360.2 ± 9.9 MeV, agrees with the expectation from the standard
model electroweak fit and is consistent with the present world average (excluding CDF), as
shown in Fig. 4. This measurement constitutes a significant step towards reaching an experi-
mental value with a precision approaching that of the standard model prediction.
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The robustness of the result with respect to the theory model is tested further by performing
the mW measurement with the helicity fit, in its nominal configuration and with more relaxed
constraints imposed on the helicity cross sections. The result, 80 360.8 ± 15.2 MeV, is consistent
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CMS MW extraction

• W-mass from Jacobian peak in charged-lepton pT spectrum and rapidity distribution. 

• Reweigh MiNNLOPS with resummation from SCETlib at N3LL, αs2 fixed-order 
matching through DYTurbo 

• Higher-order coefficients in resummation as theory nuisance parameters Tackmann, 
unpublished → talk by Giulia Marinelli 

• use statistical model for their distribution; can capture correlations since same 
coefficient enters different observables 

• values extracted from fit to data
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to the three-dimensional distribution of the muon pµ

T, hµ, and electric charge. A number of
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of the theory calculations used in the mW measurement have been validated in multiple ways,
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D0 [14], CDF [17], LHCb [19], and ATLAS [20]. The global EW fit prediction [1] is represented
by the gray vertical band.
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shown in Fig. 4. This measurement constitutes a significant step towards reaching an experi-
mental value with a precision approaching that of the standard model prediction.
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Theoretical uncertainties before and 
after fit of nuisance parameters to 
data using W measurements or W 
and Z measurements. 

A. Methods 41

Figure A.16: Comparison of the nominal result and its theory uncertainty, using
SCETLIB+DYTURBO at N3LL + NNLO, with the value of mW measured when using alter-
native approaches to the pW

T modeling and its uncertainty. The impact of correcting the pW
T

distribution with the pµµ
T data, both via bin-by-bin reweighting corrections and via a simultane-

ous maximum likelihood fit, is also shown. The dash-dotted black line represents the nominal
result, while the shaded gray band shows the pW

T -modeling uncertainty. The results from alter-
native approaches to the pW

T -modeling and uncertainty are shown as points. The pW
T -modeling

uncertainties are shown as the inner bars, while the outer bars denote the total uncertainty.

Figure A.17: The generator-level pW
T distribution, with three instances of the prediction and its

uncertainty: before the maximum likelihood fit, and reflecting the results of the two fits de-
scribed in the text. The distribution and uncertainties obtained from the combined (pµ

T, hµ, qµ)
and pµµ

T fit is shown in red, whereas the purple band shows the distribution obtained from the
nominal (pµ

T, hµ, qµ) fit. The generator-level distribution predicted by SCETLIB+DYTURBO
before incorporating in situ constraints is shown in gray. The ratio of the postfit predictions to
the prefit prediction (in gray), as well as their uncertainties, are shown by the shaded bands in
the bottom panel.

At the core of this alternative analysis method is the observation that variations in mW induce
a uniform scaling of the pµ

T spectrum, while changes in the W polarization or in the (pW
T , yW)

double-differential cross sections lead to a nonuniform sculpting of the pµ
T and hµ spectra. In

• Crucial new element of analysis is that theoretical predictions are 
fit to data to significantly reduce their uncertainties. 

• CMS validates this procedure on Z-production, but does not 
use Z-data for W-mass extraction 

• Effects not accounted for in the original theory prediction 
(higher-order electroweak corrections, quark masses,…)?
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N-jettiness event shape
• 3-loop soft function for 0-jettiness Baranowski, Delto, Melnikov, Pikelner, Wang 

’24 

• Also 3-loop beam functions are known  Ebert, Mistlberger, Vita ’20, 
Baranowski, Behring, Melnikov, Tancredi, Wever ’22 → all ingredients 
for 3-loop jettiness slicing available 

• New precise representations of the two-loop N-jettiness soft function Bell, 
Dehnadi, Mohrmann, Rahn’23; Agarwal, Melnikov, Pedron ’24 

• N3LL resummation of 1-jettiness for Z-boson plus jet in Geneva Alioli, Bell, 
Billis, Broggio, Dehnadi, Lim, Marinelli, Nagar, Napoletano, Rahn ’23

Goal of is not comparison with measurements, 
but use for fixed-order computations and 
simulations of jet processes (slicing,…)
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 Kyle Lee

Energy Correlators in various region
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Matrix elements 

characterize energy flow into the detector 

A lot of new interesting developments in using these energy-energy 
correlators to study jet subtructure, determine αs and mt, … 

Correlators have many good properties 

• weighted by energy: insensitive to soft radiation: 

• factorization, light-ray OPE, CFT techniques Hofman, Maldacena ‘08
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Energy Flow Operators

• From a field theory perspective, jets are the study of matrix elements
of Energy Flow/ ANEC/ Lightray operators

I +

One of the simplest observables from the theoretical perspective is the Energy-Energy

Correlator (EEC), defined as [2, 3]

d�

dz
=

�

i,j

�
d�

EiEj

Q2
�

✓
z �

1 � cos �ij

2

◆
. (1.1)

Here Ei and Ej are the energies of final-state partons i and j in the center-of-mass frame,

and their angular separation is �ij . d� is the product of the squared matrix element and the

phase-space measure. The EEC can also be defined in terms of correlation function of ANEC

operators [4–7]

E(~n) =

��

0

dt lim
r��

r2niT0i(t, r~n) , (1.2)

where it is given by

d�

dz
=

hOE(~n1)E(~n2)O†
i

hOO†i
, (1.3)

for some source operator O. This provides a connection between event shape observables and

correlation functions of ANEC operators allowing the study of event shapes to profit from

recent developments in the study of ANEC operators, and conversely, the EEC provide a

concrete situation for studying the behavior of ANEC operators.

There has recently been significant progress in the understanding of the EEC from a

number of di�erent directions. For generic angles, the EEC has been computed at next-to-

leading order (NLO) in QCD [8, 9] for both an e+e� source, and Higgs decaying to gluons,

and up to NNLO in N = 4 SYM [7, 10]. It has also been computed numerically in QCD at

NNLO [11, 12].

There has also been progress in understanding the singularities of the EEC, which occur as

z � 0 (the collinear limit) and z � 1 (the back-to-back limit). In the back-to-back limit, the

EEC exhibits Sudakov double logarithms, whose all orders logarithmic structure is described

by a factorization formula [13, 14]. In the z � 0 limit, which will be studied in this paper,

the EEC exhibits single collinear logarithms, originally studied at leading logarithmic order

in [15–19]. Formulas describing the behavior of the EEC in the collinear limit were recently

derived in [20] for a generic field theory, and in [21–24] for the particular case of a CFT. This

limit is of theoretical interest for studying the OPE structure of non-local operators, and of

phenomenological interest as a jet substructure observable.

The two-point correlator is particularly simple since it depends on a single variable, z.

Indeed, in a conformal field theory (CFT), its behavior in the collinear limit is fixed to be a

power law

�(z) =
1
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C(�s) z�N=4

J (�s) , (1.4)

– 2 –

I �

One of the simplest observables from the theoretical perspective is the Energy-Energy

Correlator (EEC), defined as [2, 3]
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2

◆
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Here Ei and Ej are the energies of final-state partons i and j in the center-of-mass frame,

and their angular separation is �ij . d� is the product of the squared matrix element and the

phase-space measure. The EEC can also be defined in terms of correlation function of ANEC

operators [4–7]
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correlation functions of ANEC operators allowing the study of event shapes to profit from

recent developments in the study of ANEC operators, and conversely, the EEC provide a
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by a factorization formula [13, 14]. In the z � 0 limit, which will be studied in this paper,

the EEC exhibits single collinear logarithms, originally studied at leading logarithmic order

in [15–19]. Formulas describing the behavior of the EEC in the collinear limit were recently

derived in [20] for a generic field theory, and in [21–24] for the particular case of a CFT. This

limit is of theoretical interest for studying the OPE structure of non-local operators, and of

phenomenological interest as a jet substructure observable.

The two-point correlator is particularly simple since it depends on a single variable, z.

Indeed, in a conformal field theory (CFT), its behavior in the collinear limit is fixed to be a
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• These correlation functions completely characterize the flow of energy
(or other charges) at infinity. Have a direct correspondence with
“calorimeter cells” in real experiments.

h |E(n̂1) · · · E(n̂k)| i

E(~n) =

1Z

0

dt lim
r!1

r2niT0i(t, r~n)

[Hofman, Maldacena]
[Sveshnikov, Tkachov; Korchemsky, Sterman]
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How does intrinsic heavy quark mass affect each of these regions of particle collisions?

Energy Correlators mapping high energy collider events
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Simplest example is the two-point function 
  

large logarithms both for small and large 
angles. For large angle N4LL is known!

Ingredients:  

• 3-loop jet functions Ebert, Mistlberger, Vita ’20   

• 4-loop rapidity anomalous dimension Duhr, Mistlberger, Vita ’22, Moult, Zhu, Zhu ‘22.  

• four-loop hard anomalous dimensions Manteuffel, Panzer, and Schabinger ’20; Lee, 
Manteuffel, Schabinger, Smirnov, Smirnov, and M. Steinhauser ’22. 

• four-loop cusp Henn, Korchemsky, Mistlberger ’19; Manteuffel, Panzer, and Schabinger 
’20 + … 5-loop cusp is missing, estimated to have very small effect.
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FIG. 2 Resummed result for the EEC in the back-to-
back region up to N4LL accuracy. Uncertainty bands
reflect the residual perturbative uncertainty and are ob-
tained with a 15-point scale variation of the resummation

scales. See text for details.

cross section by evaluating eq. (18) with di↵erent bound-
ary scales. Here, we vary the scales individually by a
factor of 1

2 or 2 around their canonical value and remove
the configurations with simultaneous variations of factors
greater than 2 or smaller than 1

2 . Next, we take the en-
velope of the results as our estimate of the perturbative
uncertainty. This results in a 15-point scale variation
procedure very analogous to the usual 7-point scale vari-
ation employed to estimate perturbative uncertainties in
fixed order calculations. To treat the large bT behavior
in the Fourier transform we use the b

⇤ prescription [2, 3]
employed in ref. [50].

Note that the cusp anomalous dimension is known at
5 loops only in approximate form [110] with an 80% rel-

ative uncertainty, �(5)
cusp = 0.21±0.17, but it is in general

expected that its numerical impact to be very small. In
figure 3 we show the e↵ect of varying the 5 loops cusp
anomalous dimension coe�cient around the values of the
uncertainty, {�(5)

Cusp,+ = 0.38, �(5)
Cusp = 0.21, �(5)

Cusp,� =
0.04}. We see that it generates a sub-per-mille variation,
confirming that it is indeed the case that its numerical
impact is small and that the approximation of ref. [110] is
more than enough for current phenomenological studies.

We leave a full phenomenological study of the EEC in-
cluding fixed order predictions [47, 70, 71], state of the
art resummation in the z ! 0 limit [44, 49] as well as esti-
mation of parametric and non-perturbative uncertainties
to future work.

CONCLUSION

Throughout this Letter we have discussed the com-
putation of the four-loop corrections to the quark and
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FIG. 3 Comparison of the central value for the EEC
distribution between the resummed result computed with
di↵erent values of the 5-loop cusp anomalous dimension.

gluon rapidity anomalous dimensions, which control the
all-order structure of large logarithms for several quan-
tities of phenomenological interest, including transverse
momentum distributions at proton colliders and event
shape observables at e

+
e
� colliders. Our computation is

built on our recent determination of the four-loop soft
anomalous dimension and the conjectured duality be-
tween the soft and rapidity anomalous dimensions. Our
result is fully analytic, up to four constant that are only
known numerically. Remarkably, our results exhibit gen-
eralized Casimir scaling, a property which was observed
to hold also for the cusp anomalous dimension through
four loops. We also applied our results for the rapidity
anomalous dimension to obtain for the first time phe-
nomenological results for the EEC in the back-to-back
region at N4LL, providing the most precise resummed
calculation for this observable to date and the first ex-
ample of the resummation of a TMD observable to fourth
logarithmic order. This shows that our result will play an
important role in the future precisely determine several
quantities of phenomenological interest.
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FIG. 1 Boundary term of the rapidity quark anoma-
lous dimension as a function of bT through four loops.
The bT dependence enters only through the coupling con-
stant. The diverging behavior at large bT is due to ap-
proaching the Landau pole. For recent work on extract-
ing the anomalous dimension non-perturbatively at large

bT see refs. [29–39].

quadratic and quartic Casimir operators

CR =
1

dR
tr(T a

R
T

a

R
) , (12)

C
4
R0R =

1

(4!)2
tr
⇣
T

{a1

R0 · · · T
a4}
R0

⌘
tr
⇣
T

{a1

R
· · · T

a4}
R

⌘
,

where R
0
2 {F, A}, T

a

R
are the generators of the repre-

sentation R and dR is the dimension of the color rep-
resentation. This property is referred to as generalized
Casimir scaling, which has also been observed to hold
for the four-loop cusp anomalous dimension [21, 22, 40].
We stress that we have computed �

i

r,4 independently for
i 2 {q, g}, so that generalized Casimir scaling was not
used as an input to our computation.

ENERGY-ENERGY CORRELATION AT N
4
LL

In this section we use our new result for �
q

r
to obtain

the first resummation for an event shape at N4LL. In par-
ticular, we consider the Energy-Energy Correlation [41]
(EEC) in electron-positron annihilation,

EEC(�) =
X

a,b

Z
d�

e+e�!a+b+X

EaEb

Q2
�(cos�ab � cos�) , (13)

which was one of the first infrared and collinear safe
observables proposed for an e

+
e
� collider. The EEC

measures the angle �ab between two final state parti-
cles weighted by the energies of the particles relative
to the total center-of-mass energy of the colliding e

+
e
�

pair. Furthermore, the EEC is symmetrized over all pos-
sible final state particle pairs, as implemented by the sum

in eq. (13). It is convenient to introduce a change of vari-
ables and to express the EEC in terms of z ⌘

1
2 (1�cos �),

z 2 [0, 1]. The small angle limit (� ! 0) is reproduced
by the z ! 0 limit, and the z ! 1 limit describes the
dijet/back-to-back (� ! ⇡) configuration. In these lim-
its, the observable becomes strongly sensitive to collinear
configurations of the QCD radiation generating large log-
arithms whose presence spoils the convergence of the per-
turbative expansion in the strong coupling constant. An
all-order understanding in the coupling, which allows for
the resummation of these logarithms, can be achieved
using factorization theorems [2, 3, 42–51].

Throughout its history the EEC has provided the
playground for exploring a variety of crucial aspects of
QCD and non abelian quantum field theories in gen-
eral, such as maximally supersymmetric Yang-Mills the-
ory (N = 4 sYM ). As a matter of fact, not only the EEC
has been measured in multiple experiments [52–61], but
it has been at the intersection of a variety of di↵erent
theoretical fields. The EEC has been studied at strong
coupling using the AdS/CFT correspondence [62], per-
turbatively in N = 4 sYM [63–69] and in QCD [43, 45–
50, 70–74], and it constitutes one of the simplest example
of energy correlators which have spurred renewed interest
in exploring the connections between QCD and N = 4,
see for example [75–80]. Moreover, the EEC can be used
for the extraction of the strong coupling constant (see for
example [59, 61, 81]), and its generalizations to ep and
hardon colliders as high precision probe for TMD physics
at present and future colliders [82–87].

EEC in the back-to-back limit

The back-to-back asymptotics of the EEC can be
described using Soft and Collinear E↵ective Theory
(SCET) [88–91] via the following factorization theorem
[51]

d�

dz
=

�̂0

8
Hqq̄(Q, µ)

Z 1

0
d(bTQ)2 J0

�
bTQ

p
1 � z

�
(14)

⇥ Jq

⇣
bT , µ,

QbT

�

⌘
Jq̄

⇣
bT , µ, QbT�

⌘
[1 + O(1 � z)] .

In eq. (14), J0 is the Bessel function arising from the
Fourier transform due to the azymuthal symmetry of the
EEC measurement, Hqq̄ is the quark color singlet SCET
hard function, which is related to the IR finite part of
the quark form factors [92–101] and can be extracted up
to 4 loops from the recent result of ref. [101], and Jq is
the quark EEC jet function which is known up to N3LO
[50, 51].

The EEC in the back-to-back limit is a SCETII ob-
servable, and therefore requires the handling of rapidity
divergences [1, 2, 12, 15, 102–108]. Eq. (14) is derived in
pure rapidity renormalization [51, 108], with � being the

Energy-Energy Correlator 



• By now, several measurements of transverse EECs within jets at hadron 
colliders (ALICE, ATLAS, CMS, STAR). 

• CMS αs determination based on aNNLL resummation Chen, Gao, Li, Xu, Zhang, 
Zhu ‘23 

•                                                                   αs(MZ) =

``Conformal Colliders Meet the LHC’’ 

24

NLL: Lee, Mecaj, Moult ‘22

Summary

Primordial fluctuations

What cosmic history gave rise to primordial fluctuations?
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One of the simplest observables from the theoretical perspective is the Energy-Energy

Correlator (EEC), defined as [2, 3]

d�

dz
=
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i,j

�
d�

EiEj

Q2
�

�
z � 1 � cos �ij

2

�
. (1.1)

Here Ei and Ej are the energies of final-state partons i and j in the center-of-mass frame,

and their angular separation is �ij . d� is the product of the squared matrix element and the

phase-space measure. The EEC can also be defined in terms of correlation function of ANEC

operators [4–7]

E(�n) =

��

0

dt lim
r��

r2niT0i(t, r�n) , (1.2)

where it is given by

d�

dz
=

hOE(�n1)E(�n2)O†i
hOO†i , (1.3)

for some source operator O. This provides a connection between event shape observables and

correlation functions of ANEC operators allowing the study of event shapes to profit from

recent developments in the study of ANEC operators, and conversely, the EEC provide a

concrete situation for studying the behavior of ANEC operators.

There has recently been significant progress in the understanding of the EEC from a

number of di�erent directions. For generic angles, the EEC has been computed at next-to-

leading order (NLO) in QCD [8, 9] for both an e+e� source, and Higgs decaying to gluons,

and up to NNLO in N = 4 SYM [7, 10]. It has also been computed numerically in QCD at

NNLO [11, 12].

There has also been progress in understanding the singularities of the EEC, which occur as

z � 0 (the collinear limit) and z � 1 (the back-to-back limit). In the back-to-back limit, the

EEC exhibits Sudakov double logarithms, whose all orders logarithmic structure is described

by a factorization formula [13, 14]. In the z � 0 limit, which will be studied in this paper,

the EEC exhibits single collinear logarithms, originally studied at leading logarithmic order

in [15–19]. Formulas describing the behavior of the EEC in the collinear limit were recently

derived in [20] for a generic field theory, and in [21–24] for the particular case of a CFT. This

limit is of theoretical interest for studying the OPE structure of non-local operators, and of

phenomenological interest as a jet substructure observable.

The two-point correlator is particularly simple since it depends on a single variable, z.

Indeed, in a conformal field theory (CFT), its behavior in the collinear limit is fixed to be a

power law

�(z) =
1

2
C(↵s) z�N=4
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One of the simplest observables from the theoretical perspective is the Energy-Energy

Correlator (EEC), defined as [2, 3]

d�

dz
=

�

i,j

�
d�

EiEj

Q2
�

�
z � 1 � cos �ij

2

�
. (1.1)

Here Ei and Ej are the energies of final-state partons i and j in the center-of-mass frame,

and their angular separation is �ij . d� is the product of the squared matrix element and the

phase-space measure. The EEC can also be defined in terms of correlation function of ANEC

operators [4–7]

E(�n) =

��

0

dt lim
r��

r2niT0i(t, r�n) , (1.2)

where it is given by

d�

dz
=

hOE(�n1)E(�n2)O†i
hOO†i , (1.3)

for some source operator O. This provides a connection between event shape observables and

correlation functions of ANEC operators allowing the study of event shapes to profit from

recent developments in the study of ANEC operators, and conversely, the EEC provide a

concrete situation for studying the behavior of ANEC operators.

There has recently been significant progress in the understanding of the EEC from a

number of di�erent directions. For generic angles, the EEC has been computed at next-to-

leading order (NLO) in QCD [8, 9] for both an e+e� source, and Higgs decaying to gluons,

and up to NNLO in N = 4 SYM [7, 10]. It has also been computed numerically in QCD at

NNLO [11, 12].

There has also been progress in understanding the singularities of the EEC, which occur as

z � 0 (the collinear limit) and z � 1 (the back-to-back limit). In the back-to-back limit, the

EEC exhibits Sudakov double logarithms, whose all orders logarithmic structure is described

by a factorization formula [13, 14]. In the z � 0 limit, which will be studied in this paper,

the EEC exhibits single collinear logarithms, originally studied at leading logarithmic order

in [15–19]. Formulas describing the behavior of the EEC in the collinear limit were recently

derived in [20] for a generic field theory, and in [21–24] for the particular case of a CFT. This

limit is of theoretical interest for studying the OPE structure of non-local operators, and of

phenomenological interest as a jet substructure observable.

The two-point correlator is particularly simple since it depends on a single variable, z.

Indeed, in a conformal field theory (CFT), its behavior in the collinear limit is fixed to be a

power law

�(z) =
1

2
C(↵s) z�N=4
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theoretical elegance of this approach, the jet pT has large
experimental uncertainties, making a precise determina-
tion of mt challenging in practice. We therefore believe
that identifying a top-mass-sensitive observable that is
simultaneously experimentally feasible at the LHC, com-
pletely robust to hadronization and UE, and calculable
to high perturbative orders remains an important open
problem.

In this Letter, we introduce an EEC-based observable
for precision top quark mass measurements, which over-
comes previous experimental difficulties. Our observable
is inspired by cosmology, where it is common that pre-
cisely measured observables, such as luminosity, are not
directly related to quantities of interest, such as dis-
tances. The use of standard candles then plays a cru-
cial role, providing a methodology for converting between
two independent dimensionful quantities. This is similar
to the present case of extracting masses from measure-
ments of high-multiplicity hadronic states: the dimen-
sionless angular scales [42] are robust observables, neces-
sitating the development of standard candles to enable
their use for precision mass measurements. Crucially,
the top quark predominately decays into an electroweak
scale particle whose mass has been measured with spec-
tacular accuracy, the W boson. This particle provides
the needed standard candle by introducing another di-
mensionless parameter, mt/mW , into the observable. In
this Letter, we study a hadronization and UE insensitive
standard candle constructed from EECs measured on the
W boson, allowing us to build a distance ladder all the
way back through the complicated QCD dynamics to the
time scales of the top quark. The outcome is a mea-
surement of the top mass in terms of the W mass. We
emphasize that this approach is distinct from current top
mass extractions [43, 44], which reconstruct the W decay
only to achieve a fine-grained calibration of the jet energy
scale to reduce experimental uncertainties. We demon-
strate the feasibility and properties of our approach at
the LHC through a Monte Carlo study and lay out a
roadmap for an experimental and theoretical program to
achieve a record top mass measurement.

Energy Correlators on Top Decays.—EECs map out
the angular scales of the asymptotic energy flux. There
has been rapid progress in our understanding of multi-
point energy correlators and their application to jet sub-
structure (see e.g. [32, 45–60]). Following their first cal-
culation in the collinear limit in [49], they have since been
calculated for generic angles [61, 62], analyzed theoret-
ically [63, 64], and measured on QCD jets [45, 51]. In
Ref. [32], the three-point correlator was applied to detect
the angular scale associated with the top decay. Since
at the leading order this is a hard three-body decay, it
was proposed that this could be detected in an equilat-
eral configuration for the correlator. However, the full
three-point correlator on top decays is a rich function of
three angles whose shape has not yet been explored.

(a) The shape of the three-point correlator on boosted top quark
jets, eq. (1). A large value of �S selects the hard top decay process,
but by lowering �S , the W peak emerges. Slices for specific values
of �S are shown on the boundaries of the plot.

(b) Slices for specific values of �S which emphasize the sharpness
of the W and top peaks. The green line with the small bump
corresponds to the equilateral projection considered in [32].

FIG. 1: Illustrative plots produced from Pythia showing
the imprint of top quark and W boson on the 3-point
EEC in eq. (1).

The key object of our analysis is the following inte-
grated EEC (weighted cross-section) which enables the
simultaneous extraction of the top and W character-
istic angular scales. We express the angles between
the momenta of the correlated final state particles as
�ij = ��2

ij + ��2
ij in terms of the standard rapidity-

azimuth coordinates. The observable we define is

T (�, �S , �A) �
�

hadrons
i,j,k

�
d�ijk

pT,i pT,j pT,k�
pT,jet

�3

d3�i,j,k

d�ijk

� �(�ij � �jk � �ki > �S) �

�
� �

(
�

�ij +
�

�jk)2

2

�

� �
�
�A > (

�
�ij �

�
�jk)2

�
. (1)

Here the sum is over all (not necessarily distinct) triplets

• Insights from formal theory are transforming
the way we think about jet substructure.

• Jet substructure is now a precision science:
more quantitative measurements of SM
parameters to come!

• Jet substructure provides an exciting example
of combining deep theoretical ideas with new
experimental data to learn about the real world.
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where the variables vm and vth are the measured and predicted differential E3C/E2C ratios,
respectively, and Vm is the covariance matrix of the unfolded data. The experimental and the-
oretical uncertainties are considered through n nuisance parameters, ~q = (q1, . . ., qn), where qj

is the number of standard deviations by which the uncertainty “j” is varied. The qj variation
changes the shapes of the E2C and E3C distributions simultaneously across all the bins.

The best fit value of aS(mZ) is 0.1229+0.0014
�0.0012 (stat)+0.0030

�0.0033 (theo)+0.0023
�0.0036(exp), where theo and exp

stand for theoretical and experimental systematic uncertainties, respectively. The central value
is determined by minimizing the c2 with respect to the nuisance parameters, simultaneously
varied, and the uncertainties are given by the aS(mZ) values that lead to c2 values exceeding the
minimum by 1. The high precision stems from the cancelation of most E2C and E3C systematic
uncertainties in their ratio. The largest sources of uncertainty are the renormalization scale in
the theoretical calculation (2.4%) and the energy scales of the jet constituents (2.3%).

In summary, the two- and three-particle jet substructure observables E2C and E3C have been
measured using a sample of proton-proton collision events at

p
s = 13 TeV, collected by the

CMS experiment and corresponding to an integrated luminosity of 36.3 fb�1. A multidimen-
sional unfolding has been performed, of the jet pT, of the (largest) distance between particles in
a pair or a triplet, and of the product of their energy weights, to compare the data with distribu-
tions simulated with several parton showering and hadronization models. This high-precision
measurement of jet properties described by QCD can help validate future higher-order cor-
rections in parton shower algorithms. The strong coupling at the Z boson mass is extracted
by comparing the measured E3C/E2C ratio with calculations at approximate next-to-next-to-
leading logarithmic accuracy matched to a next-to-leading perturbative QCD order corrected
for nonperturbative effects. The result, aS(mZ) = 0.1229+0.0040

�0.0050, is consistent with the world
average, 0.1180. This is the most precise determination of aS using jet substructure techniques.
The result benefits from the development of novel jet substructure observables, which reduce
the sensitivity to the quark-gluon composition, and from the availability of high-precision the-
oretical calculations.
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Measurement of Two-Point Energy Correlators Within Jets in ?? Collisions at
p
B = 200 GeV at STAR

Andrew Tamis, for the STAR Collaboration
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Figure 2: Corrected distributions of the normalized EEC plotted differentially in �' for R = 0.4 (upper) and
R = 0.6 (lower), for jet transverse momentum selections 15 < ?T < 20 GeV/c (left) and 30 < ?T < 50 GeV/c
(right). The free-hadron regime, transition region, and quark-and-gluon regime are highlighted in green,
gray and purple respectively. NLL-pQCD calculations are presented for 3GeV/?T,jet < � R < R.

Figure 3: Corrected distributions of the normalized EEC (top) plotted differentially in �' for R = 0.4, for
jet transverse momentum selections 15 < ?T < 20 GeV/c (left) and 30 < ?T < 50 GeV/c (right). Comparisons
with PYTHIA-8 Detroit Tune are also presented. The ratio of the PYTHIA distribution over the corrected
data is also shown (bottom) alongside the magnitude of the systematic uncertainties for scale.
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Measurement of the energy-energy correlators in pp collisions at
p

s = 5.02 TeV ALICE Collaboration
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Figure 3: Normalized SEEC as a function of hp
ch jet
T iRL. lnhp

ch jet
T i in the y-axis represents ln(hp

ch jet
T i/(GeV/c)) as

explained in footnote 2. The gray line corresponds to the maximum location of the distribution and the gray band
corresponds to a ±0.17 GeV/c uncertainty along the x-axis. The orange curves show pQCD calculations [42],
which are normalized to data such that the integral inside RL range of [12 GeV/c/hp

ch jet
T i, 0.4] are the same. The

purple curve represents a linear functional form that is fit to data in the RL range of [0.01, 0.7 GeV/c/hp
ch jet
T i].

Bottom: Ratios of the pQCD calculation and linear fit to data. As the fitting range for the linear curve is mostly
accessible by the data in 20–40 GeV/c, the ratio of linear fit to data is only shown for 20–40 GeV/c. As the
normalization range for the orange pQCD curve is mostly accessible by the data in 60–80 GeV/c, the ratio of
pQCD to data is only shown for 60–80 GeV/c.
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Top quark mass from EECs

Proposals to extract ratio  from 3-point correlator in 
top decays Holguin, Moult, Pathak, Procura, Schöfbeck, 
Schwarz ’23, ’24; Xiao, Ye, Zhu ‘24

mt /mW

Application 1: Weighing the Top Quark

• The top quark mass is one of the most
important parameters of the SM. e.g.
electroweak vacuum stability/criticality,
electroweak fits, etc.

• Need simple observables with top mass
sensitivity that can be computed from first
principles field theory.

4

FIG. 3. Gauge dependence of the SM potential at its maxi-
mum with mpole

h = 125.14 GeV and mpole
t = 173.34 GeV.

approach at 1-loop. Decent fits are (12)
�
V 1-loop, trad.

max

�1/4 � (2.50 � 109 GeV)e�0.02�t+0.0003�2
t

�
�V 1-loop, trad.

min

�1/4
� (3.08 � 1029 GeV)e0.001�t�0.0001�2

t

The consistent gauge-invariant values at NLO are

�
V NLO

max

�1/4
= 2.88 � 109 GeV (13)

�
�V NLO

min

�1/4
= 2.40 � 1029 GeV

Note that �Vmin corresponds to an energy density well
above the Planck scale. Thus, the potential at the mini-
mum will surely be e�ected by quantum gravity and pos-
sible new physics not included in our calculation. Previ-
ous analyses have defined stability to be Planck-sensitive
if the instability scale �I > MPl [1, 2]. As we have ob-
served, the instability scale is gauge dependent, so this
is not a consistent criterion. An alternative criterion is
that new operator, such as O6 � 1

�2
NP

h6 be comparable

to Vmin when h = hhi. Although O6 and Vmin are gauge-
invariant, the value of O6 at the field value h where the
minimum occurs is gauge dependent, so this condition
is also unsatisfactory. A consistent and satisfactory cri-
terion was explained in [13]: the new operator must be
added to the classical theory and its e�ect on Vmin eval-
uated.

Adding O6 to the potential, we find that the the po-
tential is still negative at its minimum in the SM even
for operators with very large coe�cients. For example,
taking �NP = MPl = 1.22 � 1019 GeV, we find that
µmin

X = 6.0 � 1017 GeV and Vmin = �(1.1 � 1017 GeV)4.
Comparing to Eq. (13) we see that the energy of the true
vacuum is very Planck-sensitive.

More generally, a good fit is given by

Vmin = �(0.01 �NP)4, �NP � 1012 GeV (14)

When �NP < 3.6�1012 GeV, Vmin becomes positive and
for �NP < 3.1 � 1012 GeV the maximum and minimum

Metastability

Rapid instability
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FIG. 4. Boundaries of absolute stability (lower band, NLO)
and metastability (upper line, LO). The thickness of the
lower boundary indicates perturbative and �s uncertainty.
The theoretical uncertainty of the metastability boundary is
unknown. The elliptical contours are 68%, 95% and 99%
confidence bands on the Higgs and top masses: mpole

h =

(125.14±0.23) GeV and mpole
t = (173.34±1.12) GeV. Dotted

lines are scales in GeV at which Vmin can be lifted positive by
new physics.

disappear. Thus the stability of the Standard Model can
be modified by new physics at the scale 1012 GeV.

If we vary the Higgs and top masses in the Standard
Model, we can compute the boundary of absolute stabil-
ity. This bound is shown in Figs. 4 and 5. The dotted
lines show where Vmin becomes positive when in the pres-
ence of O6 for the indicated value of �NP. Unexpectedly,
we find that three independent conditions (1) that Vmin

goes to zero, (2) that Eq. (5) have no solution, and (3)
that Vmin goes positive when �NP = MPl all give nearly
identical boundaries in the mpole

h /mpole
t plane. Know-

ing that quantum gravity is relevant at MPl, we should
therefore be cautious about giving too strong of an in-
terpretation of the perturbative absolute stability bound
in the SM. We also show in this plot the metastability
bound, that the lifetime of our vacuum be larger than
the age of the universe. At lowest order this translates to
�( 1

R )�1 < �14.53 + 0.153 ln[R GeV] for all R [30]. Since
�(µ) is gauge invariant, so is this criterion. Although for
the Standard Model this approximation is probably suf-
ficient, it has not been demonstrated that the bound can
be systematically improved in a guage-invariant way [31].

In this paper, we have only discussed a single physical
feature of the e�ective action: the value of the e�ective
potential at its extrema. There is of course much more
content in the e�ective action, especially when tempera-
ture dependence is included. Unfortunately, many uses
of the e�ective action involve evaluating it for particu-
lar field configurations, a procedure that has repeatedly
been shown to be gauge-dependent. For example, the

�̇3

2[mBH�i2`�H

�

�

b[m22x2/

7QH/2/

e�ik�

Figure 5: Illustration of the di�erent types of non-Gaussianity described in the text: 1) Local interactions in

the bulk produce the “equilateral” shape; 2) Excited initial states create an enhanced signal in the “folded”

configuration; and 3) The production and decay of massive particles leave an imprint in the “squeezed” limit.

where x2 � k2/k1 and x3 � k3/k1. The shape function S(x2, x3) is normalized so that S(1, 1) � 1.

As we will see below, the shape of the non-Gaussianity contains a lot of information about the

microphysics of inflation (see Fig. 5). This is to be contrasted with the power spectrum, which is

described by just two numbers, As and ns, and not a whole function.

Equilateral In slow-roll inflation, the flatness of the inflationary potential constrains the size

of the inflaton self-interactions. However, interesting models of inflation have been suggested

in which higher-derivative corrections—such as (��)4—play an important role during inflation.

These interactions lead to cubic interactions of the inflaton perturbations—like �̇3 and �̇(�i�)2—

and hence a nonzero bispectrum.8 Since the inflaton fluctuations interact locally at points in the

bulk spacetime, this produces a bispectrum with an enhanced signal for “equilateral” triangles,

with k1 � k2 � k3.

Folded The Gaussianity of slow-roll inflation also relies on the fact that we evaluated the quan-

tum fluctuations in the Bunch–Davies vacuum (corresponding to the ground state of the harmonic

oscillator). In contrast, starting from an excited initial state would lead to non-Gaussianity. The

detailed shape of this non-Gaussianity depends on the model for the excited initial state. A

universal feature is that the correlations are enhanced for “folded” triangles where two of the

wavevectors become colinear, so that k1 + k2 � k3. The signal in the folded configuration also

provides an interesting test of the quantum origin of the fluctuations [? ]. While classical fluctua-

tions would generically have non-vanishing correlations in the folded limit, quantum fluctuations

in the Bunch–Davies vacuum are characterized by the absence of such a signal.

8A systematic way to classify these derivative interactions is in terms of an EFT for the inflationary fluctua-

tions [10, 11].
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Many new ideas and results
• EECs for b- and c-quarks Lee, Mecaj Moult ’22 

• Non-Gaussianities in collider energy flux Chen, Moult, Thaler, Zhu ’22 

• Nucleon energy correlators Liu, Zhu ’22, Cao, Liu, Zhu ‘23 

• TMDs from Semi-inclusive Energy Correlators Liu, Xhu ‘24 

• EECs for nuclear matter at the electron-ion collider (EIC) Devereaux, Fan, Ke, Lee, Moult 
’23 

• EECs for studying the quark-gluon plasma Andres, Dominguez, Holguin, Marquet, Moult 
’23, ‘24; Liu, Liu, Pan, Yuan and Zhu ’23 

• Non-perturbative effects in EECs Schindler, Stewart, Sun ’23; Lee, Pathak, Stewart, Sun 
’24; Chen, Liu, Ma ’24, Chen, Monni, Xu, Zhu ’24;  

• ν-point energy correlators Budhraja, Chen, Waalewijn ’24 

• Higgs decay EECs Yang, Zhang ’24 

• EECs on tracks Lee, Moult ’23; Jaarsma, Moult, Waalewijn, Zhu ’23 

• N3LL for transverse EEC in back-to-back limit Gao, Li, Moult, Zhu ‘23 

• …
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Resummation for jet processes: 
 non-global, clustering  

and super-leading logarithms  



Traditional resummation methods limited to a small set 
of simple, inclusive (``global’’) observables. 

Any observable with angular cuts is non-global:  

• isolation cones (e.g. in photon production) 

• exclusive jet cross sections 

• gaps beween jets, veto regions 

A lot of progress in resumming logarithms in more 
complicated observables.
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Non-global logs (NGLs)

• soft gluons from 
secondary emissions 

• QCD only

Clustering logs (CLs)
• phase-space 

constraints of new 
emissions depends 
on all existing partons 

• even in QED

Super-leading logs (SLLs)
• Glauber phases spoil 

collinear cancellations 
• QCD only 
• hadron-hadron colliders 

only

Q

Q0

Q

Q0
Q

Q0

Dasgupta, Salam ‘00 Appleby, Seymour ‘02 Forshaw, Seymour  ‘06
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Super-Leading Logs (SLLs)
Consider gap between jets at hadron collider, cone 
around beam direction 
  

  

Large logarithms           with 

• e+e− :  m ≤ n, leading logs m = n 

• p p : 

30
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By now, we have all-order factorization theorems, which 
enable resummation for  

• NGLs in e+e−  TB, Neubert, Rothen, Shao ‘16 

• SLLs TB, Neubert, Shao ’21 + Stillger ‘23 
• CLs TB, Haag ’23 

New results  
• First resummations of SLLs TB, Neubert, Shao ’21 

+ Stillger ‘23 and Glauber phases Böer, Neubert, 
Stillger ’23 + Hager, Xu ’23, ’24  

• Resummation of subleading NGLs TB, Schalch, 
Xu ‘23
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Factorization for gaps between jets
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Hard functions
m hard partons along  

fixed directions {n1, …, nm} 

σ =
∑
a,b

∫ 1

0
dx1dx2 σ̂ab(Q, x1, x2, µf ) fa(x1, µf) fb(x2, µf ) +O(ΛQCD/Q) (1)

σ =
∑
a,b

∫ 1

0
dx1dx2 Cab(Q, x1, x2, µ)〈P (p1)|Oa(x1)|P (p1)〉 〈P (p2)|Ob(x2)|P (p2)〉+O(ΛQCD/Q)

(2)

〈qa′(x′p)|Oa(x)|qa′(x′ p)〉 = δaa′ δ(x′ − x)

Cab(Q, x1, x2) = σ̂ab(Q, x1, x2)

Vm =2
∑
(ij)

∫
dΩ(nk)

4π
(Ti,L · Tj,L + Ti,R · Tj,R)W

k
ij

− 2 iπ
∑
(ij)

(Ti,L · Tj,L − Ti,R · Tj,R)Πij (3)

Rm =− 4
∑
(ij)

Ti,L · Tj,R Wm+1
ij Θin(nm+1)

Hm ∝ |Mm〉〈Mm| (4)

Soft + collinear function 
squared amplitude  
for m Wilson lines 
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FIG. 1. Sample perturbative contribution to the gap-between-
jets cross section. The gray inner subdiagrams make up the
hard function Hm, while the remainder is part of Wm. The
orange gluon is soft and enters the veto region, the blue and
green partons are collinear to the beams. Possible scalings of
the virtual gluon momentum k will be analyzed below.

wherem0 = 2+M is the number of partons at Born-level,
⇠i are the momentum fractions of the initial-state par-
tons, and the sum includes all partonic subprocesses. The
hard functions Hm are the squared amplitudes for pro-
ducing the energetic partons inside the jets, integrated
over the energies of the final-state particles, while keeping
the parton directions {n} = {n1, . . . , nm} fixed. Their
explicit form can be found in (2.3) of [14]. The inte-
gration over the final-state parton directions is indicated
by the symbol ⌦ in (??). The color indices of the hard
partons are kept open and h. . . i denotes the color trace,
which is taken after combining the hard functions with
the low-energy matrix elements Wm, which contain the
dynamics associated with the perturbative scale Q0, as
depicted in Fig. 1, as well as non-perturbative QCD ef-
fects. The main result of our Letter is that, at least up
to three-loop order, the perturbative part of Wm is con-
sistent with PDF factorization.

The SLL analysis in [13, 14] was based on the
renormalization-group evolution of the hard functions
from the high scale µh = Q to a low scale µs ⇠ Q0.
The leading logarithms were obtained by iterating the
one-loop anomalous dimension [32]

�H = �cusp(↵s)
⇣
�c ln

µ2

Q2
+ V G

⌘
+

↵s

4⇡
�+ �C , (1)

where �cusp = ↵s/⇡ + . . . is the light-like cusp anoma-
lous dimension. The soft piece consists of �c and V G,
which account for soft+collinear emissions from one of
the two initial-state partons and complex phases arising

from virtual gluon exchange between them, respectively.
� corresponds to gluon emission into the gap, and �C

denotes purely collinear contributions. The anomalous
dimension is an operator in color space and a matrix
in the space of parton multiplicities m. An application
of �H can either increase the number of partons, corre-
sponding to a real emission, or leave them unchanged for
virtual terms. The SLLs originate from �c. Using simple
identities among the various terms in (1) [13], one finds
that the relevant color traces are of the form

Crn =
⌦
H

(0)
m0

(�c)r V G (�c)n�r V G �⌦ 1
↵
. (2)

Performing the associated scale integrals for evolution
from Q down to the scale µs ⇠ Q0 produces single loga-
rithms for V G and �, but double logarithms for �c. The
color traces Crn thus contribute at order ↵n+3

s
L2n+3
s

in
perturbation theory, where Ls = ln(Q/µs). SLLs first
arise at four-loop order and involve C01 and C11. In (2),
H

(0)
m0

are the Born-level hard functions and we use that

W
(0)
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/ 1 at lowest order.
The fact that the cross section �(Q0) must be indepen-

dent of the renormalization scale µs imposes non-trivial
conditions on the low-energy matrix elementsWm(µs) =
ZW

bare
m

. The renormalization factor Z is related to
the anomalous dimension (1) [33], and using its three-
loop expression one finds that the leading UV poles in
d = 4� 2" dimensions must be of the form

W
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We only show terms which, after combining with the hard
functions in (??) and taking the color trace, produce con-
tributions compatible with SLLs at four-loop order and
beyond. Under the color trace, the above expressions can
be simplified [14], e.g.

�cV G � ! 16i⇡Nc if
abc

X

j>2

Jj T
a

1 T b

2 T
c

j
. (4)

This sum extends over all final-state partons j > 2 in the
Born-level process, and the angular integral Jj has been
given in (16) of [13].
We now compute the perturbative part of Wbare

m
or-

der by order in ↵s and check whether it matches the

gap



Renormalized hard functions fulfill RG equation 

One-loop hard anomalous dimension:
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FIG. 1. Sample perturbative contribution to the gap-between-
jets cross section. The gray inner subdiagrams make up the
hard function Hm, while the remainder is part of Wm. The
orange gluon is soft and enters the veto region, the blue and
green partons are collinear to the beams. Possible scalings of
the virtual gluon momentum k will be analyzed below.

wherem0 = 2+M is the number of partons at Born-level,
⇠i are the momentum fractions of the initial-state par-
tons, and the sum includes all partonic subprocesses. The
hard functions Hm are the squared amplitudes for pro-
ducing the energetic partons inside the jets, integrated
over the energies of the final-state particles, while keeping
the parton directions {n} = {n1, . . . , nm} fixed. Their
explicit form can be found in (2.3) of [14]. The inte-
gration over the final-state parton directions is indicated
by the symbol ⌦ in (??). The color indices of the hard
partons are kept open and h. . . i denotes the color trace,
which is taken after combining the hard functions with
the low-energy matrix elements Wm, which contain the
dynamics associated with the perturbative scale Q0, as
depicted in Fig. 1, as well as non-perturbative QCD ef-
fects. The main result of our Letter is that, at least up
to three-loop order, the perturbative part of Wm is con-
sistent with PDF factorization.

The SLL analysis in [13, 14] was based on the
renormalization-group evolution of the hard functions
from the high scale µh = Q to a low scale µs ⇠ Q0.
The leading logarithms were obtained by iterating the
one-loop anomalous dimension [32]

�H = �cusp(↵s)
⇣
�c ln

µ2

Q2
+ V G

⌘
+

↵s

4⇡
�+ �C , (1)

where �cusp = ↵s/⇡ + . . . is the light-like cusp anoma-
lous dimension. The soft piece consists of �c and V G,
which account for soft+collinear emissions from one of
the two initial-state partons and complex phases arising

from virtual gluon exchange between them, respectively.
� corresponds to gluon emission into the gap, and �C

denotes purely collinear contributions. The anomalous
dimension is an operator in color space and a matrix
in the space of parton multiplicities m. An application
of �H can either increase the number of partons, corre-
sponding to a real emission, or leave them unchanged for
virtual terms. The SLLs originate from �c. Using simple
identities among the various terms in (1) [13], one finds
that the relevant color traces are of the form

Crn =
⌦
H

(0)
m0

(�c)r V G (�c)n�r V G �⌦ 1
↵
. (2)

Performing the associated scale integrals for evolution
from Q down to the scale µs ⇠ Q0 produces single loga-
rithms for V G and �, but double logarithms for �c. The
color traces Crn thus contribute at order ↵n+3

s
L2n+3
s

in
perturbation theory, where Ls = ln(Q/µs). SLLs first
arise at four-loop order and involve C01 and C11. In (2),
H

(0)
m0

are the Born-level hard functions and we use that

W
(0)
m

/ 1 at lowest order.
The fact that the cross section �(Q0) must be indepen-

dent of the renormalization scale µs imposes non-trivial
conditions on the low-energy matrix elementsWm(µs) =
ZW

bare
m

. The renormalization factor Z is related to
the anomalous dimension (1) [33], and using its three-
loop expression one finds that the leading UV poles in
d = 4� 2" dimensions must be of the form

W
bare
m

= 1+
↵s

4⇡

�

2"
+

⇣↵s

4⇡

⌘2
✓
V G �

2"2
+ . . .

◆

+
⇣↵s

4⇡

⌘3
✓
V GV G �

3"3
�

�cV G �

3"3
ln

Q2

µ2
s

+ . . .

◆

+O(↵4
s
) . (3)

We only show terms which, after combining with the hard
functions in (??) and taking the color trace, produce con-
tributions compatible with SLLs at four-loop order and
beyond. Under the color trace, the above expressions can
be simplified [14], e.g.
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j>2
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. (4)

This sum extends over all final-state partons j > 2 in the
Born-level process, and the angular integral Jj has been
given in (16) of [13].
We now compute the perturbative part of Wbare

m
or-

der by order in ↵s and check whether it matches the
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FIG. 1. Sample perturbative contribution to the gap-between-
jets cross section. The gray inner subdiagrams make up the
hard function Hm, while the remainder is part of Wm. The
orange gluon is soft and enters the veto region, the blue and
green partons are collinear to the beams. Possible scalings of
the virtual gluon momentum k will be analyzed below.

wherem0 = 2+M is the number of partons at Born-level,
⇠i are the momentum fractions of the initial-state par-
tons, and the sum includes all partonic subprocesses. The
hard functions Hm are the squared amplitudes for pro-
ducing the energetic partons inside the jets, integrated
over the energies of the final-state particles, while keeping
the parton directions {n} = {n1, . . . , nm} fixed. Their
explicit form can be found in (2.3) of [14]. The inte-
gration over the final-state parton directions is indicated
by the symbol ⌦ in (??). The color indices of the hard
partons are kept open and h. . . i denotes the color trace,
which is taken after combining the hard functions with
the low-energy matrix elements Wm, which contain the
dynamics associated with the perturbative scale Q0, as
depicted in Fig. 1, as well as non-perturbative QCD ef-
fects. The main result of our Letter is that, at least up
to three-loop order, the perturbative part of Wm is con-
sistent with PDF factorization.

The SLL analysis in [13, 14] was based on the
renormalization-group evolution of the hard functions
from the high scale µh = Q to a low scale µs ⇠ Q0.
The leading logarithms were obtained by iterating the
one-loop anomalous dimension [32]

�H = �cusp(↵s)
⇣
�c ln

µ2

Q2
+ V G

⌘
+

↵s

4⇡
�+ �C , (1)

d

d lnµ
Hm = �

mX
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Hl �
H
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where �cusp = ↵s/⇡+ . . . is the light-like cusp anoma-
lous dimension. The soft piece consists of �c and V G,
which account for soft+collinear emissions from one of
the two initial-state partons and complex phases arising
from virtual gluon exchange between them, respectively.
� corresponds to gluon emission into the gap, and �C

denotes purely collinear contributions. The anomalous
dimension is an operator in color space and a matrix
in the space of parton multiplicities m. An application
of �H can either increase the number of partons, corre-
sponding to a real emission, or leave them unchanged for
virtual terms. The SLLs originate from �c. Using simple
identities among the various terms in (1) [13], one finds
that the relevant color traces are of the form

Crn =
⌦
H

(0)
m0

(�c)r V G (�c)n�r V G �⌦ 1
↵
. (3)

Performing the associated scale integrals for evolution
from Q down to the scale µs ⇠ Q0 produces single loga-
rithms for V G and �, but double logarithms for �c. The
color traces Crn thus contribute at order ↵n+3

s
L2n+3
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in
perturbation theory, where Ls = ln(Q/µs). SLLs first
arise at four-loop order and involve C01 and C11. In (2),
H
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are the Born-level hard functions and we use that
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/ 1 at lowest order.
The fact that the cross section �(Q0) must be indepen-

dent of the renormalization scale µs imposes non-trivial
conditions on the low-energy matrix elementsWm(µs) =
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. The renormalization factor Z is related to
the anomalous dimension (1) [33], and using its three-
loop expression one finds that the leading UV poles in
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We only show terms which, after combining with the hard
functions in (??) and taking the color trace, produce con-
tributions compatible with SLLs at four-loop order and
beyond. Under the color trace, the above expressions can
be simplified [14], e.g.

�cV G � ! 16i⇡Nc if
abc

X

j>2

Jj T
a

1 T b

2 T
c

j
. (5)

This sum extends over all final-state partons j > 2 in the
Born-level process, and the angular integral Jj has been
given in (16) of [13].

purely soft

purely 
collinear

cusp-piece 
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and color space

generates NGLs and CLs



In this framework resummation is obtained by solving 
the associated RG equations.  

Challenge: Γ(1) is infinite matrix in the space of particle 
multiplicities and colors! 

• NGLs: implemented Γ(1) and Γ(2) in the large Nc limit 
into MC framework MARZILI to solve RG 
equation numerically  

• SLLs: need full color to see effect. Compute 
leading SLLs order by order, sum up series → talk 
by Philipp Böer

34



MARZILI

Monte Carlo code to solve the RG equation in the large Nc limit 
• LL equivalent to Dasgupta-Salam shower. Full-color LL is available   

Hatta, Ueda ’13; De Angelis, Forshaw and Plätzer ’20 
• NLL has one insertion of Γ(2), which includes double-real, real-

virtual, and purely virtual terms

Nicolas Schalch, 03.07.24 – p.15/25

Parton Shower at LL accuracy

� In practice coupled RGEs for hard functions Hm, however these simplify at LL due to the form of �(1)

�(1) =

0

BBBBBBBB@

V2 R2 0 0 . . .

0 V3 R3 0 . . .

0 0 V4 R4 . . .

0 0 0 V5 . . .

...
...

...
...

. . .

1

CCCCCCCCA

d

dt
Hm(t) = Hm(t)Vm + Hm�1(t)Rm�1

Hm(t) = Hm(t0)e(t�t0)Vm +

Z t

t0

dt
0 Hm�1(t0)Rm�1e

(t�t0)Vm

� Introduce shower-time t
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[Balsiger et. al., 1803.07045]

t0
t1

t2

t

.

.

.

Nicolas Schalch, 03.07.24 – p.16/25

Parton Shower: NLL

� Include corrections of Hm due to �(2) ) NLL resummation

�Hm(t) = Hk(t0)�Ukm(t, t0)

= Hk(t0)

Z t

t0

dt
0 Ukl(t
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LL evolution Insertion of �(2) LL evolution

LL shower NLL correction

Γ(2)
Γ(1)

resummation with a parton shower
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Corrections scale as           or                   
First NGL resummation at this accuracy level!  
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Subleading NGLs at the LHC

Z-production with veto 
 on radiation in 

rapidity slice around Z. 
Compute fraction of 

 of events which 
pass the veto.

pT < Q0

R(Q0)
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Resummed gap fraction for pp ! Z ! `+`� + Xhad
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� Many ingredients the same as for e
+

e
� case

� Nc = 3 LL obtained from [Hatta and Ueda; 1304.6930]

nothingGlauber phases neglected, but superleading

logarithms turn out to be small for qq ! Z

MARZILI

TB, Schalch, Xu ‘23



First resummations for SLLs

• Small effects for , , but sizable for 
dijet production TB, Neubert, Shao ’21 + Stillger ‘23 
• Similar-size effects in hadronic cross sections, but will need to 

combine SLL+NGLs to assess phenomenolgical significance 
• By now also resummation including higher Glauber terms Böer, 

Neubert, Stillger ’23 + Hager, Xu ‘24 and running coupling Böer, 
Hager, Neubert, Stillger, Xu ‘24  is available.

pp → Z/H pp → Z/H + j
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Figure 4: Numerical results for SLL contributions to partonic qg ! qg forward scattering (left)

and gg ! gg small-angle scattering (right) as a function of the jet-veto scale Q0. The meaning of

the curves and the yellow bands is the same as in Figure 2. We choose a rapidity gap �Y = 2

and Q = 1TeV.

for gg ! gg small-angle scattering (right panel) the fixed-coupling approximation becomes
worse at small values of Q0, necessitating an RG-improved treatment using a running
coupling ↵s(µ) inside the scale integrals. The band indicating the scale uncertainty in the
right plot has a somewhat special shape for Q0 < 20GeV, because the SLL contribution
peaks near µs ⇡ Q0 in this region.

7 Conclusions

In this paper we have reformulated the resummation of super-leading logarithms and the
Glauber series for non-global LHC observables in such a way that it can be systematically
performed in RG-improved perturbation theory. Compared to the previous works [19–22],
including the running of the coupling ↵s(µ) constitutes an important step forward toward
reliably estimating the perturbative uncertainties and providing a systematically improvable
framework for analyzing such contributions. This step is achieved by means of a new
strategy that involves treating the Glauber operator V

G perturbatively and expanding
the evolution operator in (3.4) accordingly, as shown in (3.3). This re-ordering results
in the collection of all double-logarithmic corrections in the evolution operator Uc(µi, µj)
in (3.2), which takes the form of a matrix-valued Sudakov operator. This operator is no
longer path-ordered but instead an ordinary matrix exponential, and its evaluation becomes
straightforward with the help of the bases of color operators developed in [21, 22]. The

remaining task is then to obtain the relevant coe�cient vectors (l)
SLL(µh, µs) & in (3.12).

We have explicitly solved this problem for the case of quark-initiated scattering processes

27

 ΔY = 2
Q = 1TeV

→ talk by Philipp Böer
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Connection to parton showers

 



• analytical 

• very simple 
observables 

•  accuracy (by 
now up to n=4!) 

• exact color 

• non-perturbative matrix 
elements, fits

NnLL

• numerical 

• fully general 

•   + many 
subleading effects + 
tuning 

• large-Nc  limit  + some 

• hadronization models

LL

In the past, not much cross talk between parton 
shower MCs and resummation

As discussed, resummation is being extended to more 
complicated observables and is using MC methods…
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Development of parton showers which systematically include 
higher-log effects PanScales, Alaric, … → talk by Alexander 
Karlberg 

PanScales shower: van Beekveld, Dasgupta, El-Menoufi, Ferrario Ravasio, Hamilton,  
Helliwell,  Karlberg, Monni, Salam, Scyboz, Soto-Ontoso, Soyez ‘24

… and parton shower are moving to higher accuracy!

4

FIG. 2. Test of NNLL accuracy of the PanGlobal (PGsdf
�=0)

shower for the cumulative distribution of the Cambridge y23

resolution variable, compared to known results for Z !
qq̄ [52] (left) and H ! gg [77] (right). The curves show the
di↵erence relative to NNLL for various subsets of ingredients.
Starting from the red curve, DS additionally includes double
soft contributions and 2-jet NLO matching; 3` includes 3-loop
running of ↵s and the Kresum

2 term. Including all e↵ects (blue
line) gives a result that is consistent with zero, i.e. in agree-
ment with NNLL.

FIG. 3. Summary of NNLL tests across observables and
shower variants. Results consistent with zero (shown in green)
are in agreement with NNLL. The observables correspond to
the event shapes used in Ref. [5] and they are grouped accord-
ing to the power (�obs) of their dependence on the emission
angle. All showers that include the corrections of this Letter
agree with NNLL.

Tests across a wider range of observables and shower
variants are shown in Fig. 3 for a fixed value of � =
↵s ln v = �0.4. With the drifts and all other contribu-
tions included, there is good agreement with the NNLL
predictions [45–52, 58, 61, 77].

Earlier work on NLL accuracy had found that the co-
e�cients of NLL violations in common showers tended
to be moderate for relatively inclusive observables like
event shapes [5]. In contrast, here we see that non-NNLL

FIG. 4. Results for the Thrust and Durham y23 [78] ob-
servables with the PanGlobal showers compared to ALEPH
data [79], using ↵s(MZ) = 0.118. The lower (middle) panel
shows the ratios of the NNLL (NLL) shower variants to data.

showers di↵er from NNLL accuracy with coe�cients of
order one. That suggests a potential non-negligible phe-
nomenological e↵ect.
Fig. 4 compares three PanGlobal showers with ALEPH

data [79] using Rivet v3 [80], illustrating the showers in
their NLL and NNLL variants, with ↵

ms
s (MZ) = 0.118 for

both. We use 2-jet NLO matching [74], and the NODS
colour scheme [6], which guarantees full-colour accuracy
in terms up to NLL for global event shapes. Our showers
are implemented in a pre-release of PanScales [81] v0.2.0,
interfaced to Pythia v8.311 [3] for hadronisation, with
non-perturbative parameters tuned to ALEPH [79, 82]
and L3 [83] data (starting from the Monash 13 tune [84],
cf. Ref. [72] § 5; the tune has only a modest impact on the
observables of Fig. 4). The impact of the NNLL terms is
significant and brings the showers into good agreement
with ALEPH data [79], both in terms of normalisation
and shape. Some caution is required in interpreting the
results: given that the logarithms are not particularly
large at LEP energies, NLO 3-jet corrections (not in-
cluded) may also play a significant role and should be
studied in future work. Furthermore, the PanGlobal
showers do not include finite quark-mass e↵ects. Still,
Fig. 4 suggests that NNLL terms have the potential to
resolve a long-standing issue in which a number of dipole
showers (including notably the Pythia 8 shower, but also
the PanGlobal NLL shower) required an anomalously
large value of ↵s(mZ) & 0.130 [84] to achieve agreement
with the data.
The parton showers developed here are expected to

achieve NNLL (leading-colour) accuracy also for non-
global event shapes such as hemisphere or jet observ-
ables, and ↵

n
sL

n�1 (NSL) accuracy [54, 62–64, 68, 85, 86]
for the soft-drop [87, 88] family of observables, in the
limit where either their zcut parameter is taken small
or �sd > 0. (We have not carried out corresponding
logarithmic-accuracy tests, because the small zcut limit
renders them somewhat more complicated than those of

parton showers with resummation 
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Amplitude evolution, development of full color showers. 
Deductor Nagy, Soper, CVolver Plätzer, Sjodahl, De Angelis, 
Forshaw, Holguin, … 

→ talks by Simon Plätzer and Fernando Torre González

De Angelis, Forshaw, Plätzer ‘21

of SUð3Þc, depending on the number of hard and soft
partons considered at the current state of the algorithm.
Soft gluon evolution proceeds iteratively starting from
a hard-scattering operator, H ¼ jMihMj with A0ðEÞ ¼
VE;QHV†

E;Q. A general observable Σ can be computed
using

ΣðμÞ ¼
Z X

n

dσnunðk1; k2;…; knÞ; ð3Þ

where the un are the observable dependent measurement
functions and the ki are soft gluon momenta. We suppress
the dependence on the hard partons and integration over
their phase space. Although we assume energy ordering,
this is not essential and the algorithm can readily be adapted
to account for a different ordering variable. We should take
the limit μ → 0 in Eq. (3), though it is also correct to put
μ ¼ Q0 if the observable is fully inclusive over gluon
emissions with E < Q0.
This iterative form of the algorithm is well suited to a

Monte Carlo implementation. The kinematic part of the
evolution is diagonal and does not pose any new problems.
The main challenge is to account for the independent color
evolution in the amplitude and the conjugate amplitude. To
do this we use the color-flow basis in which quarks and
antiquarks are represented by color and anticolor lines (an
incoming quark is represented by an anticolor line), while
gluons are represented by a pair of color and anticolor lines.
A basis vector in the color space is then represented by
stating how the color and anticolor lines are connected.
Amplitudes are decomposed as

jMi ¼
X

σ

Mσjσi; ð4Þ

where σ denotes a permutation, which identifies a basis
vector [8,14]. A general state consisting of n color lines has
a basis of dimension n! corresponding to all possible
permutations of the numbers ð1; 2;…; nÞ. We normalize
the basis vectors so that

hαjβi ¼ Nn−#ðα;βÞ
c ; ð5Þ

where #ðα; βÞ is the minimum number of pairwise swaps by
which the permutations α and β differ. This basis is
overcomplete and not orthogonal but is very simple to
implement and provides excellent opportunities for impor-
tance sampling. We introduce a dual basis jα$ such that
hαjβ$ ¼ ½αjβi ¼ δαβ, where δαβ is unity if the two permu-
tations are equal and zero otherwise. Also,

P
α jαi½αj ¼ 1.

The trace in Eq. (1) is then computed using

TrAn ¼
X

σ;τ

½τjAnjσ$hσjτi: ð6Þ

Figure 1 illustrates how we sample over intermediate color
states by inserting the unit operator between successive real
emission and virtual correction operators. We select initial
color flows σ and σ̄ and compute the corresponding hard-
scattering matrix ½σjHjσ̄$. As long as the evolution has not
terminated, Eq. (2) can be rewritten explicitly in terms of
matrix elements such that one step in the evolution is
determined by

Mρρ̄ðEÞ ¼ −
αs
π
dE
E

dΩ
4π

X

τ;σ
τ̄;σ̄

½ρjDEjτi½τjVE;E0 jσi

×Mσσ̄ðE0Þhσ̄jV†
E;E0 jτ̄$hτ̄jD†

Ejρ̄$; ð7Þ

where E is the energy of the latest emission and E0 is the
previous energy. This expression is the core of our
implementation and starting from color flows ðσ; σ̄Þ, our
Monte Carlo algorithm selects the color flows ðτ; τ̄Þ after
the virtual evolution, the emission scale and momentum,
and color flows ðρ; ρ̄Þ after the emission. If the evolution
terminates, the final product of matrix elements must be
further multiplied by the scalar product matrix hσmjσ̄mi,
where m labels the final color flows. This induces a 1=Nc
suppression factor for every swap by which the final color
flows differ.
Calculating the real emission matrix elements and virtual

corrections involves computing matrix elements ½τjTijσi
and ½τjTi · Tjjσi. Explicit expressions for these are pre-
sented in Ref. [8]. For the real emissions, the calculations
are simplified since the real emission operator can either
(a) add a new color line without changing any of the
existing color connections or (b) add a new color line and
then make a single swap. In the case that the gluon is
emitted off a color line, this swap connects the color of the
emitted gluon to the anticolor partner of the emitter (and
likewise if the gluon is emitted off an anticolor line). Taken

FIG. 1. One contribution to the A1 operator, starting from the
hard scattering with two color lines. It corresponds to single-
gluon emission with two virtual gluon exchanges. The vertical
dotted lines are to help identify the intermediate color states. The
algorithm works iteratively outwards, starting from the hard
process in the middle and multiplying matrix elements as it goes.

PHYSICAL REVIEW LETTERS 126, 112001 (2021)

112001-2
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Resummation of subleading soft logarithms in jet processes using 
MC method: Gnole Banfi, Dreyer, Monni ’21 Marzili TB, Schalch, Xu, 
’23 … 

… and same result from PanScales MC  Ferrario Ravasio, Hamilton, 
Karlberg, Salam, Scyboz, Soyez ’23. 

Numerical agreement to better than 1% among the three 
approaches.

Resummation of Next-to-Leading Non-Global Logarithms at the LHC

Thomas Bechera,⇤ Nicolas Schalcha,† and Xiaofeng Xub‡
a
Institut für Theoretische Physik & AEC, Universität Bern, Sidlerstrasse 5, CH-3012 Bern, Switzerland

b
PRISMA

+
Cluster of Excellence, Johannes Gutenberg University, 55099 Mainz, Germany

In cross sections with angular cuts, an intricate pattern of enhanced higher-order corrections
known as non-global logarithms arises. The leading logarithmic terms were computed numerically
two decades ago, but the resummation of subleading non-global logarithms remained a challenge
that we solve in this Letter using renormalization group methods in effective field theory. To achieve
next-to-leading logarithmic accuracy, we implement the two-loop anomalous dimension governing
the resummation of non-global logarithms into a large-Nc parton shower framework, together with
one-loop matching corrections. As a first application, we study the interjet energy flow in e+e�

annihilation into two jets. We then present, for the first time, resummed predictions at next-to-
leading logarithmic accuracy for a gap-between-jets observable at hadron colliders.

Introduction. — There has been impressive progress
in the perturbative calculation of processes at the
Large Hadron Collider (LHC). However, for observables
involving disparate scales, computations beyond fixed
perturbative order are necessary. These include cross
sections involving a hard scale Q but with sensitivity to
a soft scale Q0. Such cross sections involve large loga-
rithms in the scale ratio L = ln(Q/Q0) that degrade the
perturbative expansion and should be resummed to all
orders to obtain reliable predictions. For jet and other
observables involving angular constraints on the radi-
ation, a complicated pattern of enhanced higher-order
corrections known as Non-Global Logarithms (NGLs)
arises due to secondary emissions off hard partons [1–
3]. At leading-logarithmic (LL) ⇠ (↵sL)n accuracy, re-
summed results both at large [1–3] and finite Nc [4–7]
are available. Despite continued progress in the under-
standing of non-global observables over the past 20 years
[8–34], a full resummation of next-to-leading logarithmic
(NLL) ⇠ ↵s (↵sL)n corrections remained elusive. In this
letter we solve this problem based on a factorization the-
orem [13, 14] obtained in soft-collinear effective field the-
ory [35–37]. The factorization theorem splits the cross
section into hard and soft functions. To resum the large
logarithms, one solves the renormalization group (RG)
equations of the hard functions to evolve them from a
scale µ ⇠ Q down to µ ⇠ Q0. Since the associated
anomalous dimension is a matrix in the (infinite) space
of particle multiplicities, we resort to Monte Carlo (MC)
methods to solve the RG equations. A key ingredient
for NLL resummation is the recently extracted two-loop
anomalous dimension [38], which we implement into a
parton shower framework, which iteratively generates ad-
ditional emissions to solve the RG equations. Combined
with the one-loop corrections to the hard and soft func-
tions we obtain in this Letter the full set of NLL contri-
butions for gap-between-jets cross sections at lepton and
hadron colliders. For the lepton-collider case NLL results
were first presented in [39], based on very different for-
malism [40], and we find full agreement within numerical
uncertainties.

Q

Q0

↵
�Y

FIG. 1. Representation of the factorization formula (1). The
blue lines depict hard radiation associated with the energy
scale Q, which is constrained inside the jet cones, while the
red lines represent the soft radiation at lower energies Q0.
The soft radiation can cover the entire phase space.

Methodology. — The basis for our resummation are fac-
torization theorems for jet production in the presence of
a veto on radiation in certain angular regions of the phase
space. The simplest case is two-jet production in e+e�

collisions, which factorizes as [13, 14]

�(Q, Q0) =
1X

m=2

⌦
Hm({n}, Q, µ) ⌦ Sm({n}, Q0, µ)

↵
, (1)

where Q is the center-of-mass energy and Q0 is the energy
scale above which we veto radiation in the gap outside
the jet cones. We impose the veto by demanding that
the transverse energy ET of the particles in the gap is
below Q0. At the order we are working, our constraint
is equivalent to imposing that the transverse momentum
of the leading jet in the gap region is below Q0. Fig-
ure 1 shows a pictorial representation of the factoriza-
tion theorem (1). The hard functions Hm describe m
hard partons, which we treat as massless, inside the jet
cones. To obtain Hm, one integrates the squared am-
plitudes over the energies of the m hard partons while
keeping their directions {n} = {n1, . . . , nm} fixed. The
bare hard functions in d = 4 � 2✏ are defined as

Hm =
1

2Q2

mY

i=1

Z
dEi Ed�3

i

c̃✏ (2⇡)2
|Mm({p})ihMm({p})|

⇥ (2⇡)d �
⇣
Q �

mX

i=1

Ei

⌘
�(d�1)(~ptot) ⇥in({n}) , (2)
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1. Momentum regions in wide-angle scattering 
2. Collinear factorization violation and PDF factorization?
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1.) New insights into the MoR
Soft-Collinear Effective theory is based on method of 
regions (MoR) expansion of loop (and phase-space) 
integrals.  

Long-standing open question whether usual soft and 
collinear regions are sufficient to all orders? 

• Yes, for massless wide-angle scattering! Gardi, 
Herzog, Jones, Ma, Schlenk, ’22; proof: Ma ’23 

• but proof only applies to “facet regions” and Gardi, 
Herzog, Jones, Mao ‘24 have identified a set of 
“inside regions” for special topologies.
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Gardi, Herzog, Jones, Mao ‘24 conjecture 

Hidden inside region correspond to multiple hard 
scattering. Compatible with SCET and power 
suppressed in QCD. 

Hidden regions in forward scattering correspond 
to Glauber modes.

Regions in the on-shell expansion

24

Conjecture:

facet inside
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2.) PDF Factorization vs SLLs

• Scale separation


• perturbative hard-scattering  at scale  

• non-perturbative PDFs  at scale  

• No low-energy interactions between incoming hadrons 
• cancellation of soft and Glauber physics CSS ’85 (for DY) 

• Purely collinear, single logarithmic DGLAP evolution 

̂σij Q

fi(x) ΛQCD

46

P2

P1

x2P2

x1P1

fj(x2)

fi(x1)

�̂ij . (2.9)

Figure 2: A hard scattering process described in the parton model. [2]

The cross section of hard scattering processes initiated by two hadrons with momenta P1 and P2 are

�(P1, P2) =
X

i,j=q,q̄,g

Z
dx1dx2 fi(x1, µ)fj(x2, µ) �̂ij(p1, p2,↵s(µ), µ), (2.10)

where p1 = x1P1 and p2 = x2P2 [2]. On parton level, it also now becomes evident that

ŝ = x1x2s, (2.11)

where s is the center of mass energy squared for the incoming beams, and ŝ only involves the
momentum of the particles that actually participate in the hard scattering process we’re looking
at. f1(x1, µ) and f2(x2, µ) are the parton distributions functions of the incoming partons. We then
sum over all channels that contribute to a certain process. This gives us the fully inclusive jet cross
section.

2.4. Gap Between Jets

A gap between jets cross section refers to the cross section of an event where there are two jets are
emitted in roughly opposite directions in the center of mass frame, and there is a „gap” between
them without particle emission. The jets occur at energies ⇠ Q. One then introduces a veto scale
Q0 for the gap region , which is much lower. Any event that involves a jet with pT > Q0 in the gap
region is vetoed [3].

Technically, when one eventually would like to integrate over the rapidity (or the angle ✓), one would
have to include everything that is not part of the jets. However, to simplify, we will only consider
a rectangular region that cuts off at the outer radius of the jets [3]. Figure 3 shows a schematic of
what that looks like. The gap lies between y1 and y2, so the rapidities of jet 1 and 2 (or, in the
simplified case we will be using, the outer limits of the jets). If we use the center of mass frame, then
y1 = �y2. Generally, we can define a gap via �Y = |y2 � y1|.

4

μ

Q

ΛQCD

DGLAP



Collinear Factorization Violation

For space-like collinear limit  the splitting amplitude  Sp 
depends on the colors and directions of the partons not 
involved in the splitting! 

• Related to non-cancellation due to soft phases

1 ∥ j
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Mm Sp

Figure 9: facorize2.eps
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Figure 10: facorize3.eps
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Catani, de Florian, Rodrigo ’11;  Forshaw, Seymour, Siodmok ’12;

Implications for PDF factorization?

New results for Sp 
Henn, Ma,Xu, Yan, Zhang, Zhu ’24 
Guan, Herzog, Ma, Mistlberger, 
Suresh ’24



SLLs vs DGLAP
• Double-logarithmic SLLs 

directly related to collinear 
factorization breaking 

• SLLs generated from double 
logarithmic running  

• If PDF factorization holds, 
something interesting must 
happen at scale Q0 which 
converts between the two 
evolutions

μ

Q

ΛQCD

SLL evolution

DGLAP

Q0

phase factors 
soft+collinear contributions 

  

double-log evolution

single-log evolution?

PDFs?

?
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EFT analysis
In our effective theory framework questions about PDF factorization on 
previous slides can be formulated concisely and answered 

• Use RG to predict the form of the low-energy matrix elements 
 required for consistency with PDF factorization 

• Show that form of  requires soft-collinear interactions at 
three-loop order 

• Perform a systematic method of region analysis of the relevant 
diagrams contributing to  

• Identify a hidden active-active Glauber region, well defined in 
dimensional regularization 

• Computing this Glauber contribution, we find that it indeed has 
the required form to convert the double logarithmic SLL to 
single-log running

𝒲m

𝒲m

𝒲m

49

TB, Hager, Jaskiewicz, Neubert, Schwienbacher ‘24
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Collinear factorization  
breaking at μ = Q

soft-collinear factorization  
breaking by Glauber modes  

at μ = Q0
x

= PDF factorization 
for μ < Q0

“factorization restoration”

Note: Analysis is a consistency check at 4-loop order, not a 
factorization proof. Nevertheless remarkable that factorization 
survives; all elements for the breaking are present at this order.

TB, Hager, Jaskiewicz, Neubert, Schwienbacher ‘24



Summary
• High-precision resummations up to N4LL for qT spectra, 

but experiment is far ahead of theory! 

• Energy-energy correlators are a promising new class of 
LHC observables 

• many new ideas and new measurements 

• Resummations for logarithms in jet observables are 
becoming available: CLs, NGLs, SLLs

• new insights into soft-collinear interplay and 
factorization 

• New partons showers with higher-logarithmic 
resummations
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Extra Slides
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mW Measurement

Now with all elements in place, on to the mW measurement:

For the nominal measurement, total uncertainty is 9.9MeV

Most precise measurement at the LHC and comparable to CDF precision

J. Bendavid (MIT) CMS mW Measurement 45
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To identify the relevant mechanism and clarify whether
it is perturbative or non-perturbative, we have performed
a method-of-regions analysis of the three-loop QCD di-
agrams contributing to Wm, specifically those that can
produce the structure �cV G �. These graphs feature
a soft-gluon emission into the gap, a collinear emission,
and a virtual gluon exchange with, as of yet, unspecified
kinematic scaling of its loop-momentum k. In dimen-
sional regularization, diagrams of this type vanish due
to scalelessness, unless the soft emission is directly ra-
diated o↵ a virtual gluon connecting the collinear and
anti-collinear sectors, as depicted in Fig. 1. Two other
relevant diagrams are obtained by attaching the virtual
gluon to the upper quark line either before or after the
collinear gluon emission.

We begin our investigation by stripping o↵ the tensor
structure of the numerators and considering the regions
decomposition of the dimensionally regulated scalar in-
tegrals. As the scaling of the real emissions is restricted
by the external kinematics, we focus on the loop integral
over k, which can be mapped onto box and pentagon
structures, as depicted in Fig. 2 for the latter case. This
allows for a direct comparison of the regions results and
the known full expressions, thus ascertaining that all re-
gions are correctly identified. To perform the analysis, we
introduce a small power-counting parameter � = Q0/Q
and two light-cone vectors n and n̄ (with n2 = n̄2 = 0 and
n · n̄ = 2) along the directions of pc and p̄c̄. The external
legs carry collinear momenta pc, qc, whose components
scale as (n · pc, n̄ · pc, pc?) ⌘ (p+

c
, p�

c
, pc?) ⇠ Q(�2, 1,�),

an anti-collinear momentum p̄c̄ ⇠ Q(1,�2,�), and a soft
momentum ls ⇠ Q(�,�,�). In the following, we focus on
the two pentagon structures, for which a complete set of
invariants is given by si,i+1 = (pi + pi+1)

2 and m2 = p25
for inflowing external momenta pi associated with the
external lines. At leading power in �, they are given by
(choosing pc? = p̄c̄? = 0)

s12 = �p�
c
q+
c
, s23 = q�

c
l+
s
, s45 = �(p�

c
� q�

c
)l+
s
,

s34 = �p̄+
c̄
l�
s
, s51 = �q�

c
p̄+
c̄
, m2 = (p�

c
� q�

c
)p̄+

c̄

(10)

for the upper graph in Fig. 2. For the lower graph
s23 = �p�

c
l+
s

and s51 = p�
c
p̄+
c̄ , while all other invariants

remain the same. Before studying the physical case, we
consider Euclidean kinematics, where all si,i+1 < 0 and
m2 < 0. To identify the contributing regions, we utilize
pySecDec [39] and translate the parameter-space output
into momentum regions. At leading power in �, the only
non-zero contribution for both pentagon integrals stems
from the soft-collinear region k ⇠ Q(�,�2,�3/2) [40]. For
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FIG. 2. Mapping of low-energy contributions to Wm onto
pentagon diagrams. The external momentum p25 6= 0 flows
into the hard amplitude Mm.

example, the upper diagram in Fig. 2 corresponds to

Isc = i(4⇡)2�"

Z
ddk

(2⇡)d
1

k2 + i0

1

�l+s k� + i0

1

q�c k+ + i0

⇥
1

p̄+
c̄ (k� � l�s ) + i0

1⇥
�(p�c � q�c )k+ � p�c q

+
c + i0

⇤

=
�2(")�(1� ")

s45s51
2F1(1, 1; 1� "; 1�

m2s23
s45s51

)

⇥ (�s12)
�1�" (�s34)

�1�"
�
�m2

�1+"

, (11)

with sij ⌘ sij + i0 and m2
⌘ m2+ i0. Expressed in these

variables, the result also holds for the lower diagram.
After expanding in ", it agrees with the � expansion of
the full expression for this pentagon integral given in (5.8)
of [41], confirming that the leading-power contribution is
fully captured by the soft-collinear region. The diagram
where the virtual gluon is attached to the quark line after
the collinear emission (not shown in Fig. 2) corresponds
to a box with two massive adjacent legs. We find that
two regions, the soft and the soft-collinear, fully account
for the entire contribution in Euclidean kinematics.
We now analytically continue to the physical region,

in which all the light-cone components are positive and
p�
c

> q�
c
. An interesting feature of the expressions for

the diagrams in Fig. 2 are combinations that entail the
cancellation of two O(�) terms, resulting in an O(�2)
contribution, e.g. for the kinematics (10) belonging to
the upper diagram in Fig. 2, with p2

T
⌘ �p2? > 0,

s45s51| {z }
�

�m2s23| {z }
�

= p�
c
p̄+
c̄

�
qcT + lsT

�2
| {z }

�2

> 0 . (12)


