

### Valentina Guglielmi

QCD@LHC2024, Freiburg, 7.10.2024

HELMHOLTZ







# **Motivation**

- Single free parameter of QCD in the  $m_q \rightarrow 0$  limit
- Impact physics at the Planck scale: EW vacuum stability, GUT
- $\alpha_{\rm S}$  is among the major uncertainties of many precision measurements: Higgs couplings at the LHC



DESY.





# The strong coupling constant $\alpha_S(m_Z)$ in the years



### arXiv:2203.08271

| G world a                       | average                                                                                            |
|---------------------------------|----------------------------------------------------------------------------------------------------|
|                                 | $\delta \alpha_{\rm S}(\%) = 0.8\%$                                                                |
|                                 | <u>.</u>                                                                                           |
|                                 |                                                                                                    |
|                                 |                                                                                                    |
|                                 |                                                                                                    |
|                                 | of all interaction couplings !<br>-7 $c$ $10-5$ $c$ $10-2$                                         |
| <b>known</b> $G_F \sim 10^{-1}$ | of all interaction couplings !<br>$-^7 \ll \delta G \sim 10^{-5} \ll \delta \alpha_S \sim 10^{-2}$ |
| known c $G_F \sim 10^{-1}$      | of all interaction couplings !<br>$-^7 \ll \delta G \sim 10^{-5} \ll \delta \alpha_S \sim 10^{-2}$ |
| $G_F \sim 10^{-10}$             | of all interaction couplings !<br>$-^7 \ll \delta G \sim 10^{-5} \ll \delta \alpha_S \sim 10^{-2}$ |
| $G_F \sim 10^{-10}$             | of all interaction couplings !<br>$-^7 \ll \delta G \sim 10^{-5} \ll \delta \alpha_S \sim 10^{-2}$ |

# The state of the art





### **QCD PDG Review 2024**

← World average (PDG 2024):  $\alpha_S(m_Z) = 0.118 \pm 0.0009$ 

 $\rightarrow \alpha_S$  "runs" as  $\approx \ln(Q^2/L^2)$  at LO,  $L \approx 0.2 \text{ GeV}$ 

# The state of the art of $\alpha_S(m_Z)$

| Category                 | $\alpha_{S}(m_{Z})$ | Unc.   | Rel. Unc. |
|--------------------------|---------------------|--------|-----------|
| Tau decays and low Q2    | 0.1173              | 0.0017 | 1.5%      |
| $Q\bar{Q}$ bound states  | 0.1181              | 0.0037 | 3.1%      |
| PDF fits                 | 0.1161              | 0.0022 | 1.9%      |
| $e^+e^-$ jets and shapes | 0.1189              | 0.0037 | 3.1%      |
| Hadron colliders         | 0.1168              | 0.0027 | 2.3%      |
| EW boson decays          | 0.1203              | 0.0028 | 2.3%      |
| Lattice QCD              | 0.1184              | 0.0008 | 0.7%      |
| PDG 24 World Average     | 0,118               | 0.0009 | 0.8%      |

### • 7 PDG categories

 Currently, most precise determinations from lattice QCD and tau decays



# Where LHC has made/can make an impact?

| Category                 | $\alpha_{S}(m_{Z})$ | Unc.   | Rel. Unc. |
|--------------------------|---------------------|--------|-----------|
| Tau decays and low Q2    | 0.1173              | 0.0017 | 1.5%      |
| $Q\bar{Q}$ bound states  | 0.1181              | 0.0037 | 3.1%      |
| PDF fits                 | 0.1161              | 0.0022 | 1.9%      |
| $e^+e^-$ jets and shapes | 0.1189              | 0.0037 | 3.1%      |
| Hadron colliders         | 0.1168              | 0.0027 | 2.3%      |
| EW boson decays          | 0.1203              | 0.0028 | 2.3%      |
| Lattice QCD              | 0.1184              | 0.0008 | 0.7%      |
| PDG 24 World Average     | 0,1180              | 0.0009 | 0.8%      |

### • 7 PDG categories

 Currently, most precise determinations from lattice QCD and tau decays





# How to extract $\alpha_s$ at LHC?

$$\sigma_{pp \to X} = \sum_{ij} f_i(x_1, \mu_F^2) \times f_j(x_2, \mu_F^2) \otimes \hat{\sigma}_{ij}(x_1, x_2, \alpha_S(\mu_R), \frac{Q^2}{\mu_R}, \frac{Q^2}{\mu_F}) + O(\frac{\Lambda_{QCD}^2}{Q^2})$$
Data  $\sigma(exp)$ 
PDFs  $f_i(\mu, x)$ 
PDFs  $f_i(\mu, x)$ 
Partonic XS (pQCD)
DGLAP eq. Exp. measurements
need to be corrected by non perturbative

### Two methods to compare $\sigma(exp)$ to $\sigma(pQCD)$ :

- **Profiling**  $\alpha_S$  using varying PDF+ $\alpha_S$  (predefined PDF from global PDF)  $\bullet$
- Simultaneous fit of  $\alpha_S$  and PDFs
  - Correlation between PDFs and  $\alpha_{\rm S}$  took into account
  - Reduced bias
  - BUT time consuming

ve effects



# **Determinations of** $\alpha_{S}(m_{Z})$ **at the LHC**

### **Desirable features:**

- Experimental precision
- High accuracy of theory prediction  $\rightarrow$  NNLO, N3LO
- Small non perturbative QCD effects





New observable:  $\mathbf{Z} p_T$ 

 $\rightarrow$  Inclusive  $t\bar{t}$  cross-sections

 $\rightarrow$  Inclusive W/Z cross-sections

 $\rightarrow$  Jet cross-sections



# Outlook

- ATLAS Z pT @8TeV: <u>arXiv2309.12986</u>, submitted to Nat. Phys.
- ATLAS (A)TEEC @13TeV: <u>JHEP 07 (2023) 085</u>
- ATLAS cross-section ratios @13TeV: arXiv2405.20206, submitted to PRD
- @NLO: CMS azimuthal correlation  $R_{\Delta\phi}$  @13TeV: EPJC 84 842 (2024)
- @NNLL<sub>approx</sub>: CMS energy correlators @13TeV: <u>PRL 133 071903 (2024)</u>
- CMS dijets @13TeV: <u>arXiv312.16669</u>, *submitted to the EPJC*
- CMS Inclusive jets @13 TeV: <u>JHEP 02 (2022) 142 + Addendum (Nov. 2022)</u>  $\bullet$
- **CMS Inclusive jets @2.76, 7, 8, 13 TeV**



### Today I will focus on most recent measurements (not yet in PDG), special focus at $\geq$ NNLO



**CMS-PAS-SMP-24-007** 

## **Sensitivity of Z** $p_T$ **to** $\alpha_S(m_Z)$

bosons produced boosted at LHC by recoil against QCD ISR • ∠



- Sudakov factor responsible for the existence of a peak in the Z  $p_T$  distribution around 4 GeV
- Linear sensitivity to  $\alpha_{S}(m_{Z})$
- Semi-inclusive (radiation inhibited) observable, requires resummation

More details in parallel talk of O. Kuprash, this afternoon



10

# ATLAS cross-section measurement at 8 TeV EPJC 84 (2024) 315

|y| < 0.4

Cross-section  $g^{1}i\beta^{5}p_{T} - y$  in **full lepton phase space**:

- Clean experimental signature
- High experimental sensitivity









# **Extraction of** $\alpha_{S}(m_{Z})$ **from ATLAS Z** $p_{T}$ **at 8 TeV** 0.9

**MSHT20aN3LO PDF** set used to extract  $\alpha_S(m_Z)$ 

Summary of the uncertainties in units <sup>10</sup>/<sub>8</sub>/<sub>9</sub>/<sub>9</sub>

| Experiment              | al uncertainty     | $\pm 0.$                                                                                                                                               | 44       |
|-------------------------|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
| PDF uncert              | tainty             | <u>≥</u> ±0.                                                                                                                                           | 51       |
| Scale variat            | tion uncertainties | <u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u> | 42       |
| Matching to             | o fixed order      |                                                                                                                                                        | -0.08    |
| Non-pertur              | bative model       | +0.12                                                                                                                                                  | -0.20    |
| Flavour mo              | del                | $+0.40^{9.9}$                                                                                                                                          | -0.29    |
| QED ISR                 | 1<br>1.2           | 240                                                                                                                                                    | 2.8 ≥ ∦∦ |
| N <sup>4</sup> LL appro | oximation          | $\pm 0$ .                                                                                                                                              | 04       |
| Total                   | 1                  | +0.91 1                                                                                                                                                | -0.88    |

0.9

## Final result: $a_{s}(m_{z}) = 0.1183 \pm 0.0009$

Most precise experimental measurement to date! p<sub>+</sub> [GeV]

0.9



# ATLAS TEEC measurement at 13 TeV More details in parallel talk of A. Ziaka, this afternoon

- differences between final-state jet pairs
- Sensitive to gluon radiation and to  $\alpha_{\rm S}(m_{\rm Z})$

$$\frac{1}{\sigma} \frac{\mathrm{d}\Sigma}{\mathrm{d}\cos\phi} \equiv \frac{1}{N} \sum_{A=1}^{N} \sum_{ij} \frac{E_{\mathrm{T}i}^{A} E_{\mathrm{T}j}^{A}}{\left(\sum_{k} E_{\mathrm{T}k}^{A}\right)^{2}} \delta(\cos\phi - \cos\phi_{ij})$$

Measured as a function of  $cos\phi$  in 10 bins of  $H_{T2}$  ( $H_{T2} = p_T^{jet1} + p_T^{jet2}$ )

• Transverse energy-energy correlations (TEEC): tranverse-energy-weigthed distribution of  $\phi$ 



13



# ATLAS ATEEC measurement at 13 TeV More details in parallel talk of A. Ziaka, this afternoon

- cosφ cancelled out
- Sensitive to gluon radiation and to  $\alpha_{S}(m_{Z})$

$$\frac{1}{\sigma} \frac{\mathrm{d}\Sigma^{\mathrm{asym}}}{\mathrm{d}\cos\phi} = \frac{1}{\sigma} \frac{\mathrm{d}\Sigma}{\mathrm{d}\cos\phi} \bigg|_{\phi} - \frac{1}{\sigma} \frac{\mathrm{d}\Sigma}{\mathrm{d}\cos\phi} \bigg|_{\pi-\phi}$$

Measured as a function of  $cos\phi$  in 10 bins of  $H_{T2}$  ( $H_{T2} = p_T^{jet1} + p_T^{jet2}$ )

• Its asymmetry (ATEEC): forward-backward difference of TEEC  $\rightarrow$  uncertainties symmetric in





# **Fixed order pQCD for (A)TEEC**

- Extraction of  $\alpha_{S}(m_{Z})$  at NNLO using prediction of 3-jet production
- Improved agreement with data and scale uncertainty reduced by factor of 3 w.r.t. NLO

**Particle-level TEEC** 







# **Extraction of** $\alpha_{S}(m_{Z})$ **from (A)TEEC**

- Determined value of  $\alpha_{S}(m_{Z})$  in agreement with PDG world average
- Agreement with the RGE predictions up to ~2TeV



 $\alpha_{\rm S}({\rm m_Z}) = 0.1175 \pm 0.0006({\rm exp})^{+0.0034}_{-0.0017}({\rm theo}) = 0.1175^{+0.0035}_{-0.0018}$ **TEEC:** 

ATEEC:  $\alpha_{\rm S}({\rm m_Z}) = 0.1185 \pm 0.0009({\rm exp})^{+0.0025}_{-0.0012}({\rm theo}) = 0.1185^{+0.0027}_{-0.0015}$ 





# ATLAS cross-section ratios More details in parallel talk of A. Ziaka, this afternoon

### **Measurement:** $\bullet$

- Differential cross sections of multijet events
- Ratios of inclusive jet-multiplicity bins  $(R_{32}, R_{42}, R_{43})$
- e.g.  $R_{32} = 3 jet/2 jet$
- Variable sensitive to  $\alpha_S(m_Z)$ 
  - $H_{T2} = p_T^{jet1} + p_T^{jet2}$  ( $p_T^{jet3}$  sensitive to resummation effects)
  - $p_T^{Nincl}$  : inclusive jet  $p_T$  in bins of multiplicity







# ATLAS cross-section ratios More details in parallel talk of A. Ziaka, this afternoon

- Jet energy scale calibration dominant uncertainty  $\rightarrow$  Significantly improved (especially at higher  $p_T$ )
- Theoretical predictions available at NNLO
  - $\rightarrow$  Good agreement data and theory
- $\rightarrow$  All ingredients to extract  $\alpha_{\rm S}(m_{\rm Z})$











Probe confinement and asymptotic freedom of  $\alpha_S$ 

Fit data to NLO+NNLL<sub>approx</sub> with different  $\alpha_s(m_Z)$ 

$$\alpha_S(m_Z) = 0.1229^{+0.0040}_{-0.0050} (< 4.1\% \text{ rel})$$

Most precise  $\alpha_s(m_Z)$  from substructure

DESY.

# More details in parallel talk of O. Kuprash, this afternoon

### **Energy-weighted distances between two** (E2C) or three particles (E3C)

E3C/E2C (at LL)  $\propto \alpha_{\rm S}(Q) \ln x_{\rm L} + O(\alpha_{\rm S}^2)$ 



- perturbative and virtual electroweak effects



21





# CMS dijet production at 13 TeV More details in parallel talk of A. Ziaka, this afternoon

- 2-D cross sections: vs rapidity of the outermost jet  $|y_{max}|$  and dijet invariant mass  $m_{12}$
- - $\rightarrow$  Idea: probe  $x_1$  and  $x_2$  using different event topologies



Data compared to NNLO QCD corrected by non-perturbative and electroweak effects

# • **3-D cross sections:** vs $m_{12}/\langle p_T \rangle_{1,2}$ , rapidity separation $y^* = \frac{1}{2}|y_1 - y_2|$ and boost $y_b = \frac{1}{2}|y_1 + y_2|$

22



# Method: simultaneous fit of $\alpha_{s}(m_{7})$ and PDFs

Simultaneous fit  $\rightarrow$  Reduced dependence of  $\alpha_{S}(m_{Z})$  from PDFs PDFs cannot be extracted with only LHC data  $\rightarrow$  Inclusive lepton-proton DIS data (HERA, <u>EPJ C75(2015) no. 12, 580</u>)

- Parametrise PDFs at a starting scale
- **Evolve PDFs at the scale of the measured** data with DGLAP evolution
- Compute theory predictions:
  - DIS at NNLO with different mass schemes
  - For jets using interpolation grids
- Compare theory with data using  $\chi^2$

Same approach as HERAPDF2.0

DESY.





# **CMS** $\alpha_{S}(m_{Z})$ from jet production at 13 TeV

- Simultaneous fit of PDFs and  $\alpha_s$  at NNLO
- Hera+jets fits compared to HERA-only fit

### **Gluon distribution**



Inclusive jets and dijets dominated by fit uncertainty: experimental + PDF

# HERA DIS + CMS 13 TeV dijets (2D) HERA DIS + CMS 13 TeV dijets (3D) Dijets (HERA+2D)/HERA (HERA+3D)/HERA $10^{-2}$ $10^{-1}$ X

### **Inclusive jets result:**

$$\alpha_S(m_Z) = 0.1166 \pm 0.0017$$

### **Dijets 2-D result:**

$$\alpha_S(m_Z) = 0.1179 \pm 0.0019$$

### **Dijets 3-D result:**

 $\alpha_S(m_Z) = 0.1181 \pm 0.0022$ 







### **Inclusive jets at CMS** NEW! <



### More details in parallel talk of O. Kuprash, this afternoon

- Inclusive jets at 2.76, 7, 8, 13 TeV
- Simultaneous fit of PDF and  $\alpha_{\rm S}(m_{\rm Z})$ at NNLO
- Jet clustered with anti-kT (R=0.7)  $\bullet$

|          | у      | рТ              | Nda |
|----------|--------|-----------------|-----|
| 13 TeV   | y <2.0 | 97 < pT < 3103  | 78  |
| 8 TeV    | y <3.0 | 74 < pT < 1784  | 16  |
| 7 TeV    | y <2.5 | 114 < pT < 2116 | 13  |
| 2.76 TeV | y <3.0 | 74 < pT < 592   | 8-  |

Using all measurements crucial to probe different PDF distributions













# **Correlation of uncertainties in CMS jet data**

- **Correlation between the individual measurements** 
  - Global PDF fitters treat the different measurements uncorrelated
  - Here, correlation among CMS inclusive jets is investigated  $\bullet$
  - JES dominant uncertainty  $\rightarrow$  focus on JES correlations

| Data     | # unc | # JES |
|----------|-------|-------|
| 13 TeV   | 30    | 22/30 |
| 8 TeV    | 28    | 24/28 |
| 7 TeV    | 25    | 20/25 |
| 2.76 TeV | 25    | 22/25 |

### Correlation within a dataset investigated during the measurements or individual QCD interpretation



| ور<br>در | <br>در |
|----------|--------|
| veF      | SR     |
|          |        |
|          |        |
|          |        |
|          |        |
|          |        |
|          |        |
|          |        |
|          |        |
|          |        |
|          |        |
|          |        |
|          |        |
|          |        |
|          |        |
|          |        |
|          |        |
|          |        |
|          |        |
|          |        |
|          |        |
|          |        |
|          |        |
|          |        |
|          |        |
|          |        |
|          |        |
|          |        |
|          |        |
|          |        |
|          |        |
|          |        |
| ļ        |        |

13 TeV 8 TeV 7 TeV 2.76 TeV 13 TeV 8 TeV 7 TeV 2.76 TeV

# **Correlation of uncertainties in CMS jet data**

- **Correlation between the individual measurements** 
  - Global PDF fitters treat the different measurements uncorrelated
  - Here, correlation among CMS inclusive jets is investigated
  - JES dominant uncertainty  $\rightarrow$  focus on JES correlations

| Data     | # unc | # JES |
|----------|-------|-------|
| 13 TeV   | 30    | 22/30 |
| 8 TeV    | 28    | 24/28 |
| 7 TeV    | 25    | 20/25 |
| 2.76 TeV | 25    | 22/25 |

### Correlation within a dataset investigated during the measurements or individual QCD interpretation



13 TeV 8 TeV 7 TeV 2.76 TeV 13 Te\ 8 TeV

# Data/Theory agreement for all data sets at one glance

### Data/theory comparison after simultaneous fit of PDFs and $\alpha_S(m_Z)$



**Good agreement data/theory** 



CMS All inclusive jets + HERA DIS data, compared to only-HERA fit



DESY.



\*Fit, Model and Missing Higher order added in quadrature, while PDF parametrisation added line<mark>arly</mark>

Final result:  $\alpha_S(m_Z) = 0.1176^{+0.0014}_{-0.0016}$ 

# **Comparison** $\alpha_{s}(m_{z})$

- Improvement of uncertainty respect Inclusive jets and dijets at 13 TeV
- Dominant contribution is the scale uncertainty

**Most precise measurement from jets!** 

DESY.





# **Extraction of** $\alpha_S$ **running**

### **Divide CMS data into 5 independent** $p_T$ ranges

- In each  $p_T$  range, fit PDFs and  $\alpha_S(m_Z)$  simultaneously
- Define the center of gravity of each  $p_T$  range < Q >
- Evolve  $\alpha_s(m_Z)$  to < Q > (CRunDec package)

| $p_{\rm T}$ (GeV) | $\langle Q \rangle$ | $\alpha_{\rm S}(m_{\rm Z})$ (tot) | $\alpha_{\rm S}(Q)$ (to                              |
|-------------------|---------------------|-----------------------------------|------------------------------------------------------|
| 74–220            | 103.06              | $0.1182 \ {}^{+0.0013}_{-0.0012}$ | $0.1160 \begin{array}{c} +0.00 \\ -0.00 \end{array}$ |
| 220–395           | 266.63              | $0.1184 \ _{-0.0012}^{+0.0011}$   | $0.1019 \ ^{+0.00}_{-0.00}$                          |
| 395–638           | 464.31              | $0.1179 \ _{-0.0012}^{+0.0012}$   | $0.0947 \ ^{+0.00}_{-0.00}$                          |
| 638–1410          | 753.66              | $0.1184 \ ^{+0.0013}_{-0.0012}$   | $0.0898 \stackrel{+0.00}{_{-0.00}}$                  |
| 1410–3103         | 1600.5              | $0.1170 \ _{-0.0016}^{+0.0020}$   | $0.0821 \ ^{+0.00}_{-0.00}$                          |

 $\alpha_{S}(Q)$  in the five  $p_{T}$  ranges are compared to the world average and its uncertainty

 $\rightarrow$  Running probed up to 1.6 TeV

 $\rightarrow$  Good agreement in the entire range



# Summary and conclusions

- The strong coupling constant is a key parameter of QCD
- Various methods/observables to determine  $\alpha_S$
- Recent determinations at the LHC achieved %-level
- $\rightarrow$  Impact the PDG world average
- Z  $p_T$  most precise: experimentally accurate, further improvement in theory
- How to improve further the precision of  $\alpha_S(m_Z)$ ?
  - Push theory predictions: NNLO  $\rightarrow$  N3LO
  - Observables that can reduce uncertainty: e.g.  $R_{\Delta\phi}$



32

# Thank you

# Backup

# ATLAS cross-section measurement at 8 TeV









# **ATLAS Z** $p_T$ : nominal results



DESY.

- Experimental sensitivity evaluated with pseudodata:  $\Delta \alpha_S / \alpha_S = 0.05\%$
- Postfit  $\chi^2$ /dof = 82/72
- Determination performed at lower orders demonstrating convergence of the perturbative series



# **ATLAS Z** $p_T$ : theory uncertainties

### Summary of the uncertainties in units of $10^{-3}$

Experimental uncer PDF uncertainty Scale variation unce Matching to fixed o Non-perturbative n Flavour model QED ISR N<sup>4</sup>LL approximatio

Total

- Scale: 14 indipendent variations ( $\mu_R, \mu_F, Q$ )
- QED ISR uncertainty from half the LL corrections, validated at NLL
- order uncertainties from scale variations
- Flavour model: effect of charm- and bottom-quark masses and threshold

| rtainty    | $\pm 0$ | .44   |
|------------|---------|-------|
|            | $\pm 0$ | .51   |
| ertainties | $\pm 0$ | .42   |
| order      | 0       | -0.08 |
| nodel      | +0.12   | -0.20 |
|            | +0.40   | -0.29 |
|            | $\pm 0$ | .14   |
| on         | $\pm 0$ | .04   |
|            | +0.91   | -0.88 |

• Matching uncertainty estimated by removing the unitarity constraint (canonical logarithms) Uncertainty of the N4LL approximation one order of magnitude smaller than missing higher



# **ATLAS Z** $p_T$ : fit and profiling

- At N4LL+N3LO only one N3LO PDF set is available: MSHT20an3lo
- NNPDF4.0-CT18A difference (with CT14 the spread would be a factor of 2 smaller)
- central value of 0.11804

• Different PDF sets studied at N3LL+N3LO: spread of NNLO PDFs is ±0.00102, driven by

• Adding HERA data to the fit (counted twice), the spread is reduced to  $\pm 0.00016$ , around a

# **ATLAS Z** $p_T$ : fit and profiling



### Final result compared to:

- NNLO PDF profiling
- NNLO PDF fit

| PDF set           | $\alpha_{ m s}(m_Z)$ | PDF uncertainty | $g \ [GeV^2]$ | $q \; [GeV^4]$ |
|-------------------|----------------------|-----------------|---------------|----------------|
| MSHT20 [37]       | 0.11839              | 0.00040         | 0.44          | -0.07          |
| NNPDF4.0 [84]     | 0.11779              | 0.00024         | 0.50          | -0.08          |
| CT18A [29]        | 0.11982              | 0.00050         | 0.36          | -0.03          |
| HERAPDF2.0 $[65]$ | 0.11890              | 0.00027         | 0.40          | -0.04          |

- NNLO PDF spread is ±0.00102
- Adding HERA data to the fit (counted twice), the spread is reduced to ±0.00016, around a central value of 0.11804

# **CMS Inclusive jets: comparison with 13 TeV**

### **13 TeV**

 $\alpha_{S}(m_{Z}) = 0.1166 \pm 0.0014_{fit} \pm 0.0004_{scale} \pm 0.0007_{model} \pm 0.0001_{param}$  $= 0.1166 \pm 0.0017$ 

### All jets

 $\alpha_{S}(m_{Z}) = 0.1176 + 0.0009 \text{ (fit)} + 0.0009 \text{ (scale)} + 0.0006 \text{ (model)} + 0 - 0.0004 \text{ (param)}$  $= 0.1176^{+0.0014}_{-0.0016}$ 

- Fit uncertainty reduced of ~37%
- Model and parametrisation similar order of magnitude
- Scale uncertainty dominant contribution considering all jets

# **CMS Inclusive jets: comparison with HERA-only fit**



DESY.

# **CMS Inclusive jets: comparison with global PDF fitters**



DESY.

# **Results:** $\chi^2$ per measurement

Dataset HERA I+II neutral current HERA I+II charged current CMS jets 2.76 TeV CMS jets 7 TeV CMS jets 8 TeV

CMS jets 13 TeV

Correlated  $\chi^2$ 

Total  $\chi^2/N_{dof}$ 

- Somewhat high  $\chi^2$  for HERA data known, in agreement with the detailed study in arxiv1506.06042 • CMS jet data consistent with each other:  $\chi^2/ndp = 427/453$





## **PDF** parametrisation

Parametrisation from [JHEP 02 (2022) 142] (13 TeV jet analysis) used as a starting parametrisation

- At  $\mu_0^2 = 1.9$  GeV<sup>2</sup>, parameterised PDFs are:
  - gluon distribution: xg(x), valence distributions:  $xu_v(x)$  and  $xd_v(x)$ ,
  - antiquark distributions:  $x\overline{U}(x)$  and  $x\overline{D}(x)$

$$\begin{split} xg(x) &= A_g x^{B_g} (1-x)^{C_g} (1+D_g x+E_g x) \\ xu_v(x) &= A_{u_v} x^{B_{u_v}} (1-x)^{C_{u_v}} (1+E_{u_v} x^2), \\ xd_v(x) &= A_{d_v} x^{B_{d_v}} (1-x)^{C_{d_v}}, \\ x\overline{U}(x) &= A_{\overline{U}} x^{B_{\overline{U}}} (1-x)^{C_{\overline{U}}} (1+D_{\overline{U}} x), \\ x\overline{D}(x) &= A_{\overline{D}} x^{B_{\overline{D}}} (1-x)^{C_{\overline{D}}} (1+E_{\overline{D}} x^2). \end{split}$$

$$x^{2}),$$

• 
$$x\overline{U}(x) = x\overline{u}(x)$$
 and  $x\overline{D}(x) = x\overline{d}(x) + x\overline{s}(x)$ 

•  $B_{\bar{U}} = B_{\bar{D}}$  and  $A_{\bar{U}} = A_{\bar{D}}(1 - f_s)$  with the strangeness fraction  $f_s = x\bar{s}/(x\bar{d} + x\bar{s}) = 0.4$ 



## **Parametrisation uncertainty**

**Parametrisation scan:** Add D and E parameters (where missing) one by one until no further improvement in the *bayesian information criterion* 

$$\begin{aligned} xg(x) &= A_g x^{B_g} (1-x)^{C_g} (1+D_g x+E_g x^2) \\ xu_v(x) &= A_{u_v} x^{B_{u_v}} (1-x)^{C_{u_v}} (1+D_{u_v} x+E_{u_v} x^2) \\ xd_v(x) &= A_{d_v} x^{B_{d_v}} (1-x)^{C_{d_v}} (1+D_{d_v} x+E_{d_v} x^2) \\ x\bar{U}(x) &= A_{\bar{U}} x^{B_{\bar{U}}} (1-x)^{C_{\bar{U}}} (1+D_{\bar{U}} x+E_{\bar{U}} x^2) \\ x\bar{D}(x) &= A_{\bar{D}} x^{B_{\bar{D}}} (1-x)^{C_{\bar{D}}} (1+D_{\bar{D}} x+E_{\bar{D}} x^2) \end{aligned}$$

PDF parametrisation uncertainties taken as the envelope between all the other PDF parametrisations and the nominal one (i.e. between nominal and nominal+Ddv)

$$BIC = k \times \log(N) + \chi^2$$

where N = dof + k*k* free parameters in the fit

No improvement in the BIC

Improvement in the BIC

## **CMS** $\alpha_S(m_Z)$ at **NNLL**<sub>approx</sub>: energy corellators at 13 TeV More details parallel talk from O. Kuprash



### **Datasets and trigger strategy:**

- $L = 36.3 \, fb^{-1} \, (2016)$
- Leading jets with  $p_T^{HLT} > 60$  GeV, jets ak4

### **Phase space selection:**

- Exactly two jets
- $|\eta| < 2.1, 97 < p_T^{jet} < 1784 \text{ GeV} (8 \text{ bins})$
- $p_T^{particle} > 1 \text{GeV}$
- **D'Agostini unfolding in 3D** ( $x_L$ ,  $p_T^{jet}$ , energy weight)

DESY.

$$3C/E2C \text{ (at LL)} \propto \alpha_{\rm S}(Q) \ln x_{\rm L} + O(\alpha_{\rm S}^2)$$

$$2C = \frac{d\sigma}{dx_L} = \sum_{i,j}^n d\sigma \frac{E_i E_j}{E^2} \delta(x_L - \Delta R_{i,j})$$

$$3C = \frac{d\sigma}{dx_L} = \sum_{i,j,k}^n d\sigma \frac{E_i E_j E_k}{E^2} \times \delta(x_L - \max(\Delta R_{i,j}, \Delta R_{i,k}, \Delta$$

 $\Delta R$ : angular distance  $\blacktriangleright$  Large weight: energetic  $x_L$ : maximum  $\Delta R$ Low weight: soft

 $\rightarrow$  "mapping" of parton stages in jet formation







**CMS**  $\alpha_S(m_Z)$  at NNLL<sub>*approx*</sub>: energy corellators at 13 TeV



Measured (unfolded) and simulated E2C  $x_L$  distributions, in four  $p_T$  bins. The lower panels show the ratios to the PYTHIA8 FIG. 1. reference. The data statistical (bars) and systematic (boxes) uncertainties are also shown, as is the PYTHIA8 uncertainty (blue band).

### time

47 47



## **CMS** $\alpha_S(m_Z)$ at **NNLL**<sub>*approx*</sub>: energy corellators at 13 TeV

# **Unfolded** $\frac{E3C}{E2C}$ vs MC simulations $\rightarrow$ Slope of $\frac{E3C}{E2C}$ sensitive to $\alpha_s$

### **Benefit of ratio:**

- Suppressed ambiguity in jet quark/gluon composition
- Reduced uncertainty
  - Exp. syst:  $\sim 8\% \rightarrow \sim 3\%$
  - Data/MC difference  $\sim 10\% \rightarrow \sim 3\%$

# $\alpha_{S}(m_{z}) = 0.1229^{+0.0014}_{-0.0012}$ (stat) $^{+0.0030}_{-0.0033}$ (theo) $^{+0.0023}_{-0.0036}$ (exp)

Largest sources:

- Renormalisation scale
- Energy scales of jet constituents

# **Chi2 definition**



- In the limit where stat and syst uncertainties are gaussian  $\rightarrow$  equivalent to a profile likelihood minimisation
- PDFs and  $\alpha_S$  minimised with MINUIT, uncertainties computed asymmetrically with Pumplin method (CTEQ)
- Systematic uncertainties minimised analytically with matrix inversion

# **Correlations of systematic uncertainties within/across data sets is the key aspect** (*advantage of a fit within experiment*)



# **ATLAS (A)TEEC measurement**



- Full Run 2 dataset: 139 fb-1
- Anti-kT calibrated PF jets with  $p_T > 60$  GeV and  $|\eta| < 2.4$
- Experimental uncertainties dominated by jet modeling and JES/JER
- Small size of parton-to-particle corrections, except in the collinear region

DESY.

# **ATLAS (A)TEEC measurement**



- Scale: envelope of 6 variations ( $\mu_R$ ,  $\mu_F$ ), still dominant contribution PDF: computed with PDF replicas/eigenvectors NP: envelope of different generators and tunes





# **CMS** $\alpha_S(m_Z)$ at NLO: azimuthal correlations at 13 TeV

Topologies with at least 3 jets ( ~ 
$$\alpha_s^3$$
) (LO)  

$$R_{\Delta\phi}(p_T) = \frac{\sum_{i=1}^{N_{jet}(p_T)} N_{nbr}^{(i)}(\Delta\phi, p_{Tmin}^{nbr})}{N_{jet}(p_T)} = \frac{N_{jet}(p_T)}{N_{jet}(p_T)}$$
Inclusive jets ( ~  $\alpha_s^2$ ) (LO)

- **Datasets and trigger strategy** •  $L = 134 fb^{-1}$  (2016-2018), leading jets with  $p_T^{HLT} > 40$  GeV, jets ak7
- **Phase space selection:** •  $p_{T \min}^{nbr} > 100 \text{ GeV and } \frac{2\pi}{3} < \Delta \phi < \frac{7\pi}{8}$

![](_page_51_Picture_5.jpeg)

neighbouring jets need to exceed

 $\Delta \phi$ : azimuthal angle separation

# Results of azimuthal correlations among jets

![](_page_52_Figure_1.jpeg)

DESY.

![](_page_52_Picture_3.jpeg)

- Unfolded results vs QCD predictions (NLOJet++ × fastNLO) using different PDFs
- **Unfolded observable:**

$$R_{\Delta\phi}(p_T) = \frac{\sum_{n=0}^{\infty} nN(p_T, n)}{\sum_{n=0}^{\infty} N(p_T, n)}$$

Scales 
$$\mu_r = \mu_f = \hat{H}_T/2$$
;  
( $\hat{H}$  = sum of parton energies)

- Scale uncertainty dominant
- **PDF uncertainty reduced in the ratio**

# **CMS** $\alpha_S(m_Z)$ at NLO: azimuthal correlations at 13 TeV

![](_page_53_Figure_1.jpeg)

 $^{+0.0114}_{-0.0068}$  (scale)  $\pm 0.0013$  (exp)  $\pm 0.0011$  (NP)  $\pm 0.0010$  (PDF)  $\pm 0.0003$  (EW)  $\pm 0.0020$  (PDF choice)

### **Using different PDFs: Sensitivity to** $\alpha_{S}(m_{7})$

| DF set | $\alpha_{\rm S}(m_Z)$ | Exp.   | NP     | PDF    | EW     | Scale                  | χ |
|--------|-----------------------|--------|--------|--------|--------|------------------------|---|
| 16     | 0.1197                | 0.0008 | 0.0007 | 0.0007 | 0.0002 | $+0.0043 \\ -0.0042$   |   |
|        | 0.1159                | 0.0013 | 0.0009 | 0.0014 | 0.0002 | $+0.0099 \\ -0.0067$   | - |
| 20     | 0.1166                | 0.0013 | 0.0008 | 0.0010 | 0.0003 | $+0.0112 \\ -0.0063$   | - |
| F3.1   | 0.1177                | 0.0013 | 0.0011 | 0.0010 | 0.0003 | $^{+0.0114}_{-0.0068}$ | 2 |

### • Spread in results due to PDF choice: ±0.0020 (PDF choice)

Final result:  $\alpha_S(m_Z) = 0.117^{+0.0117}_{-0.0074}$ 

![](_page_53_Figure_9.jpeg)

# **CMS** $\alpha_{S}(m_{Z})$ at NLO: azimuthal correlations at 13 TeV, NP and EW

![](_page_54_Figure_1.jpeg)

DESY.

![](_page_54_Figure_5.jpeg)

# **Multi-differential 2-jet production**

### **Datasets and trigger strategy**

- $L \sim 35 \, fb^{-1} \, (2016)$
- Single-jet (di-jets) HLT selections  $p_T^{HLT} > 40$  for 2-D (3-D)
- jets ak4 and ak8

### **Event Selection**

Dijet system

### **Experimental dominant contribution: JES, JER, luminosity**

![](_page_55_Figure_11.jpeg)

![](_page_56_Picture_0.jpeg)

# 2D $\alpha_{\rm S}(m_Z) = 0.1179 \pm 0.0015 \, ({\rm fit}) \pm 0.000 = 0.1179 \pm 0.0019 \, ({\rm total}),$

# 3D $\alpha_{\rm S}(m_Z) = 0.1181 \pm 0.0013 \, ({\rm fit}) \pm 0.000 = 0.1181 \pm 0.0022 \, ({\rm total}),$

![](_page_56_Picture_3.jpeg)

2D  $\alpha_{\rm S}(m_Z) = 0.1179 \pm 0.0015$  (fit)  $\pm 0.0008$  (scale)  $\pm 0.0008$  (model)  $\pm 0.0001$  (param.)

3D  $\alpha_{\rm S}(m_Z) = 0.1181 \pm 0.0013$  (fit)  $\pm 0.0009$  (scale)  $\pm 0.0006$  (model)  $\pm 0.0002$  (param.)

## $\alpha_{\rm S}(m_7)$ from inclusive LHC $t\bar{t}$ x-sections

## Compare $\sigma(exp, t\bar{t})$ to $\sigma(NNLO, t\bar{t})$ for diff PDFs and $\alpha_{S}$

- Pro: Direct sensitivity to  $\alpha_{S}$  at LO (via  $gg \rightarrow t\bar{t}$ )
- Cons:  $\alpha_S$ ,  $m_{top}$ , g(x) correlated in  $\sigma(t\bar{t})$  $\rightarrow$  only one parameter can be extracted from inclusive cross sections

# Combined extraction from LHC: from Klinjisma et al. EPJC 77, 778 (2017)

![](_page_58_Figure_2.jpeg)

Procedure extends to 7 LHC data sets and combined  $\alpha_{\rm S}(m_{\rm Z})$  extracted

![](_page_58_Figure_5.jpeg)

# $\alpha_{\rm S}({\rm m_Z}) = 0.1177^{+0.0034}_{-0.0036}$

Largest unc. > missing higher orders and PDFs

![](_page_58_Picture_9.jpeg)

![](_page_58_Figure_11.jpeg)

# Latest extraction from CMS@13TeV EPJC 79 (2019) 368

![](_page_59_Figure_1.jpeg)

**PDF correlation of**  $\alpha_{S}(m_{Z})$ , g(x) and  $m_{top}$ 

![](_page_59_Figure_7.jpeg)

![](_page_59_Picture_8.jpeg)

![](_page_59_Picture_9.jpeg)

# $\alpha_{S}(m_{Z})$ from inclusive LHC W, Z x-scetions

## Compare $\sigma(exp, W, Z)$ to $\sigma(NNLO, W, Z)$ for different PDFs and $\alpha_S$

- **Pro:** O(1-2%) exp/th uncertainties
- Cons: No LO sensitivity to  $\alpha_S(m_Z)$  (only via  $k_{NNLO}$ ~1.3)

![](_page_60_Figure_4.jpeg)

![](_page_60_Figure_7.jpeg)

# First extraction from CMS@7,8 TeV JHEP06 (2020) 018

![](_page_61_Figure_1.jpeg)

CMS @7TeV:  $(W_e^+, W_\mu^+, W_e^-, W_\mu^-, Z_e, Z_\mu)$ CMS @8TeV:  $(W_e^+, W_\mu^+, W_\mu^-, W_e^-, W_\mu^-, Z_e, Z_\mu)$ 

Four different PDF sets:

- HERAPDF2.0
- CT14
- MMHT14
- NNPDF3.1

# Combined extraction from LHC JHEP 06 (2020) 016

Extended to 29 LHC data sets by D. D'enterria and A. Poldaru CMS @7TeV:  $(W_e^+, W_\mu^+, W_e^-, W_\mu^-, Z_e, Z_\mu)$ CMS @8TeV:  $(W_e^+, W_\mu^+, W_e^-, W_u^-, Z_e, Z_u)$ ATLAS @7TeV:  $(W^+, W^-, Z)$ ATLAS @8TeV: (Z)ATLAS @13TeV:  $(W^+, W^-, Z)$ LHCb @7TeV:  $(W^+, W^-, Z)$ LHCb @8TeV:  $(W_e^+, W_\mu^+, W_e^-, W_\mu^-, Z_\mu)$ LHCb @13TeV: (Z)

![](_page_62_Picture_3.jpeg)

# $\alpha_S(m_Z)$ from inclusive LHC W, Z x-scetions <u>JHEP 06 (2020) 016</u>

- Measurement dominated by PDF and luminosity uncertainties
- Advantage wrt to global PDF fits → single out the sensitivity to as(mZ) of inclusive DY cross sections, which is an experimentally and theoretically clean signature
- The analysis could be upgraded to N3LO in the near future

| PDF        |    |
|------------|----|
| CT14       | (  |
| MMHT14     | (  |
| HERAPDF2.0 | (  |
| NNPDF3.0   | 0. |

![](_page_63_Figure_6.jpeg)

 $\alpha_{\rm S}({\rm m_Z}) = 0.1180^{+0.0017}_{-0.0015}$ 

# **Motivation**

- Single free parameter of QCD in the  $m_q \rightarrow 0$  limit
- Impact physics at the Planck scale: EW vacuum stability, GUT

![](_page_64_Figure_4.jpeg)

•  $\alpha_{\rm S}$  is among the major uncertainties of many precision measurements: Higgs couplings at the LHC

![](_page_64_Figure_9.jpeg)

![](_page_64_Picture_10.jpeg)