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Setting the scene

d� ⇠ L⇥ d�H(Q)⇥ PS(Q ! µ)⇥MPI⇥Had(µ ! ⇤)⇥ ...

<latexit sha1_base64="/TlEsv/VVeQcHbYVRS/RaZhAh50="></latexit>

Central for realistic description of the observed complexity.

Description of IR sensitive observables — 
shower and hadronization factored, but intertwined

100’s of GeV 1-2 GeV few 100’s MeV



Probabilistic algorithms with QCD coherence or large-N limit
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no emission probabilityemission rate

All probabilistic algorithms 
determine the effect of gluon 
exchange and virtual 
corrections by unitarity.
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Exploit QCD coherence:



Parton branchings
order in angle.

Dipole branchings order
in transverse momentum.

• Driven by QCD coherence
• Recoil global
• Links to analytic use of 

coherent branching

• Driven by large-N dipole 
pattern and colour flows

• Momentum conservation for 
each emission

• Advantageous for matching & 
merging

Herwig 7

Herwig 7, Pythia 8, Sherpa, PanScales, Deductor

Current 
release 
series

Hard 
matrix 

elements

Shower 
algorithms

NLO 
Matching

Multijet 
merging MPI

Hadronizat
ion

Shower 
variations

Herwig 7
Internal, 
libraries,

event files

QTilde, 
Dipoles

Internally 
automated

Internally 
automated

Eikonal Clusters, 
(Strings)

Yes

Pythia 8
Internal,

event files

Pt ordered, 
DIRE, 

VINCIA
External

Internal, 
ME via 

event files
Interleaved Strings Yes

Sherpa 2
Internal, 
libraries

CSShower, 
DIRE,

ALARIC

Internally 
automated

Internally 
automated Eikonal

Clusters,
Strings Yes

Plethora of approaches to 
compare — need to go 
beyond in understanding 
and controlling shower 
algorithms.

Favorite probabilistic algorithms



Main lines of current parton shower research

Shower development is a broad field, fortunately back on the agenda.
Hadronziation is not exactly shower development, but enters at a similar level,

Matching/Merging (N)NLL accuracy

Amplitude evolution

Genuine quantum effects: 
not limited to subleading colour.

Hadronization

Interactions beyond QCD

See Schumann’s talk. Always needs to 
accompany shower development.

Comprehensive, factorized picture 
and construction of algorithms.

Control and demonstration of 
perturbative accuracy.

Remaining focus of this talk:

• Perturbative accuracy
• Beyond probabilistic algorithms.
• Factorisation and hadronization.

Description of electroweak effects 
and BSM scenarios.



The struggle with QED, EW and other interactions

ATLAS - 8TeV
Dijet ⊗ QCD⊕QED⊕EW PS
W+dijet ⊗ QCD⊕QED PS
W+jet ⊗ QCD⊕QED PS
Inc. W+jet(s) ⊗ QCD⊕QED PS
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Adding QED and EW interactions in dipole showers: the Vincia solution 

➤Apply a similar factorisation to break the giant QED multipole 
[Verheyen, Skands 2002.04939]

➤VINCIA is a sector shower: phase space available for an 
emission sectorised with  mimicking jet clustering  
[Brooks, Preuss, Skands 2003.00702; Lopez-Villarejo, Skands 1109.3608]

Θ

➤For photon emissions, all 
charged particles contribute 
equally  multipole→

➤Dipole showers reproduce the soft QCD 
radiation pattern, exploting the large 
number of colour approximation

• The absence of a large-N limit forces us to question existing structures
• Accuracy from interleaving with QCD needs to be carefully addressed
• The inner workings and role of coherence is entirely unknown

[Verheyen, Skands— ’21]

Halfway safe ground in the quasi-collinear limit, should be exploring these algorithms.
Spin correlations are vital — amplitude evolution will be crucial to build algorithms.

Recent examples:

Sectorised QED multipoles and 
electroweak splittings in VINCIA

Multiscale interleaved angular 
ordering in Herwig

Interactions beyond QCD



Dark sector showers

[Kulkarni, Masouminia, Plätzer, Stafford — ’24]

Interactions beyond QCD
QCD-like dark sectors can in principle build on existing QCD showering.
Hadronization and scale hierarchy can differ significantly: no safe territory.

New in Herwig and the cluster model — more investigations and pheno to follow.

[Stafford at PSR ’24]
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Fig. 9: The correlation functions for all visible particles
within each jet for the considered dark shower benchmarks
and pair production of SM quarks by the Z 0 mediator. All
processes are normalised to unity.

where ✓i is the angle of the ith particle in a jet to the jet
axis, Ei is the energy of this particle, ETot is the total
energy in the event, and the final approximation holds for
✓i ⌧ 1. These variables probe the structure of the jet at
different angular and energy scales depending on the val-
ues of ↵ and � - small values of ↵ probe particles close to
the jet axis, which is sensitive to the distance between the
decay products of individual light dark hadrons and larger
values probe wide-angle emissions, which can correspond
to both the angular scales of the decay products of heav-
ier dark hadrons and the separation between dark hadrons
for the lighter benchmarks. These observables are infrared
safe for all ↵ � 0; here we consider ↵ 2 [0.1, 2]. Similarly
small values of � probe soft emissions, while higher val-
ues probe the harder particles in the jet, however these
observables are infrared safe only for � = 1, so we will
consider this value here. As can be seen in figure 10, the
dark shower scenarios tend to higher values of angular-
ities, as one would expect since the visible particles are
more widely separated. This is most dramatic for the sce-
nario B ⇤D = 10 GeV benchmark which has a large frac-
tion of emissions at wide angles in the jets, however one
can change the relative sensitivity by changing the an-
gular power, with ↵ = 0.1 improving the sensitivity to
the lower ⇤D benchmarks where the angular separation
between the particles is on average smaller, and higher
values of ↵, such as 1.5, being particularly sensitive to the
high ⇤D benchmarks where there is a lot of wide-angle
radiation.

Finally we briefly investigated the impact of varying
the number of diagonal dark pions which decay for the
scenario A ⇤D=10 GeV benchmark on the visible final
state distributions. For this benchmark there are two di-
agonal dark pions, and so far we have considered the case
that both decay to the SM. When only one is allowed to
decay, there are fewer particles in the final state, which
for the correlation functions (figure 11) means the second
peak, due to the angular distance between different dark
hadrons is reduced, but the first peak, due to the distance
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Fig. 10: Angularities of visible jets with ↵ = 0.1,� = 1
(top), and ↵ = 1.5,� = 1 (bottom) for the considered dark
shower benchmarks and pair production of SM quarks by
the Z 0 mediator. All processes are normalised to unity.

between the decay products of a single hadron, is more
prominent. Similarly for the angularities (figure 12) little
change is observed for ↵ = 0.1 (except for an increase in
events with very low angularities due to almost or com-
pletely invisible events), which is sensitive to the angular
distance between decay products of a single dark hadron,
while for ↵ = 1.5 the distribution decreases more rapidly
due to there being fewer dark hadrons decaying visibly to
populate these wide angles.

5 Impact of Parton Shower and
Hadronisation Parameters

As discussed in section 3.3, the parton shower and cluster
hadronisation model have a number of parameters which
must be set based on intuition from the Standard Model,
however since these are not physical parameters the exact
best values are often unclear. There are ongoing efforts
to update the cluster hadronisation model to reduce the
dependence on the parton shower cutoff and introduce a
more physical model for cluster evolution [35,36]; these
features would be particularly useful for dark shower pre-
dictions in the future, since one cannot tune the parame-
ters to data, however we do not explore this in the context
of dark showers for this study. In this section we instead
investigate the effect of variations of the current parame-
ters on the variables discussed in section 4. For this study

Angularities, correlations … extremely 
useful observables.

[See also recent Les Houches study (in 
progress) and Kiebacher @ PSR ’24].LEP at the Z pole
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Figure: Correlations for � = 2.0
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Dark sector showers

[Kulkarni, Masouminia, Plätzer, Stafford — ’24]

Interactions beyond QCD
QCD-like dark sectors can in principle build on existing QCD showering.
Hadronization and scale hierarchy can differ significantly: no safe territory.

New in Herwig and the cluster model — more investigations and pheno to follow.

[Stafford at PSR ’24]
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Fig. 9: The correlation functions for all visible particles
within each jet for the considered dark shower benchmarks
and pair production of SM quarks by the Z 0 mediator. All
processes are normalised to unity.

where ✓i is the angle of the ith particle in a jet to the jet
axis, Ei is the energy of this particle, ETot is the total
energy in the event, and the final approximation holds for
✓i ⌧ 1. These variables probe the structure of the jet at
different angular and energy scales depending on the val-
ues of ↵ and � - small values of ↵ probe particles close to
the jet axis, which is sensitive to the distance between the
decay products of individual light dark hadrons and larger
values probe wide-angle emissions, which can correspond
to both the angular scales of the decay products of heav-
ier dark hadrons and the separation between dark hadrons
for the lighter benchmarks. These observables are infrared
safe for all ↵ � 0; here we consider ↵ 2 [0.1, 2]. Similarly
small values of � probe soft emissions, while higher val-
ues probe the harder particles in the jet, however these
observables are infrared safe only for � = 1, so we will
consider this value here. As can be seen in figure 10, the
dark shower scenarios tend to higher values of angular-
ities, as one would expect since the visible particles are
more widely separated. This is most dramatic for the sce-
nario B ⇤D = 10 GeV benchmark which has a large frac-
tion of emissions at wide angles in the jets, however one
can change the relative sensitivity by changing the an-
gular power, with ↵ = 0.1 improving the sensitivity to
the lower ⇤D benchmarks where the angular separation
between the particles is on average smaller, and higher
values of ↵, such as 1.5, being particularly sensitive to the
high ⇤D benchmarks where there is a lot of wide-angle
radiation.

Finally we briefly investigated the impact of varying
the number of diagonal dark pions which decay for the
scenario A ⇤D=10 GeV benchmark on the visible final
state distributions. For this benchmark there are two di-
agonal dark pions, and so far we have considered the case
that both decay to the SM. When only one is allowed to
decay, there are fewer particles in the final state, which
for the correlation functions (figure 11) means the second
peak, due to the angular distance between different dark
hadrons is reduced, but the first peak, due to the distance
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Fig. 10: Angularities of visible jets with ↵ = 0.1,� = 1
(top), and ↵ = 1.5,� = 1 (bottom) for the considered dark
shower benchmarks and pair production of SM quarks by
the Z 0 mediator. All processes are normalised to unity.

between the decay products of a single hadron, is more
prominent. Similarly for the angularities (figure 12) little
change is observed for ↵ = 0.1 (except for an increase in
events with very low angularities due to almost or com-
pletely invisible events), which is sensitive to the angular
distance between decay products of a single dark hadron,
while for ↵ = 1.5 the distribution decreases more rapidly
due to there being fewer dark hadrons decaying visibly to
populate these wide angles.

5 Impact of Parton Shower and
Hadronisation Parameters

As discussed in section 3.3, the parton shower and cluster
hadronisation model have a number of parameters which
must be set based on intuition from the Standard Model,
however since these are not physical parameters the exact
best values are often unclear. There are ongoing efforts
to update the cluster hadronisation model to reduce the
dependence on the parton shower cutoff and introduce a
more physical model for cluster evolution [35,36]; these
features would be particularly useful for dark shower pre-
dictions in the future, since one cannot tune the parame-
ters to data, however we do not explore this in the context
of dark showers for this study. In this section we instead
investigate the effect of variations of the current parame-
ters on the variables discussed in section 4. For this study

Angularities, correlations … extremely 
useful observables.

[See also recent Les Houches study (in 
progress) and Kiebacher @ PSR ’24].LEP at the Z pole
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Figure: Correlations for � = 2.0
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This is QCD@LHC — why bother?

Think of this as BSM4QCD: all of QED, EW and BSM scenarios force us 
to think about showers and hadronisation in an unprecedented way.



Main lines of current parton shower research

Shower development is a broad field, fortunately back on the agenda.
Hadronziation is not exactly shower development, but enters at a similar level,

Matching/Merging (N)NLL accuracy

Amplitude evolution Hadronization

Interactions beyond QCD

See Schumann’s talk. Always needs to 
accompany shower development.

Comprehensive, factorized picture 
and construction of algorithms.

Control and demonstration of 
perturbative accuracy.

Remaining focus of this talk:

• Perturbative accuracy
• Beyond probabilistic algorithms.
• Factorisation and hadronization.

Description of electroweak effects 
and BSM scenarios.

Genuine quantum effects: 
not limited to subleading colour.



Accuracy of parton showers

Fragmentation is fine if we get 
collinear physics right.



Accuracy of Parton Showers

H(↵s)⇥ exp (Lg1(↵sL) + g2(↵sL) + ↵sg3(↵sL) + ...)
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LL — qualitative NLL — quantitative NNLL — precision ↵sL ⇠ 1
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Global event shapes from coherent 
branching — for two jets.

Fragmentation is fine if we get 
collinear physics right.

[Catani, Trentadue, Webber, Marchesini ….]
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Accuracy of Parton Showers

if fi i

x t

Tate T T Tutu
i

large-N limit

Global event shapes from coherent 
branching — for two jets.

Fragmentation is fine if we get 
collinear physics right.

Coherence breaks down for non-
global observables.

[Banfi, Marchesini, Smye ’02]

contribution to the non-global logarithms:
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where the hard partons have momenta pa and pb, ti = (N↵s/⇡) ln(Ei/⇢) and we used the
notation !

i

ab
= !ab(q̂i).

The ⌃n can also be obtained by iteratively solving the BMS equation, as we will now
illustrate. The BMS equation can be written as follows,
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and our observable corresponds to

⌃(⇢) = Gab(tQ) (3.39)

with Gab(0) = 1 and tQ = (N↵s/⇡) ln(Q/⇢). To solve the BMS equation iteratively, we
will first rewrite it by replacing Gij(t) = V

⇢,E
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gij(t), which gives

@gab(t)

@t
=

Z

out

d⌦k

4⇡
!ab(k)

"
V

E,⇢

ak
V

E,⇢

kb

V
E,⇢

ab

gak(t)gkb(t) � gab(t)

#
. (3.40)

Putting g
(0)
ab

(t) = 1 on the RHS of the BMS equation immediately gives ⌃1, i.e.
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which gives the desired result after integrating over 0 < t < tQ. The next iteration gives
⌃2, i.e. we substitute gij(t) on the RHS of the BMS equation by g

(1)
ab
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Can we push this to NLLglobal / LLnon-global in one (dipole) algorithm?

(N)NLO with matching
NLL with coherent branching

Issues in dipole showers
Issues in coherent branching

LL with dipole showers

The quest for NLL precision

↵sL ⇠ 1
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NLL with coherent branching

Issues in dipole showers
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LL with dipole showers

The quest for NLL precision
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Demonstrate NLL accurate evolution:

• PanScales — numerical

• Forshaw/Holguin/Plätzer — analytical

• Deductor — numerical/analytical

• Sherpa — numerical/analytical

• Apollo — numerical

[Nagy, Soper]

[aim at improving Herwig 7 dipole shower]

[PanScales — Dasgupta, Monni, Salam, Soyez + ….]

Based on 
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plitude 
evolution.}
[Herren, Höche, Krauss, Reichelt, Schönherr]

[Preuss]
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Improving Shower Accuracy — Tools

Melissa van Beekveld23

ln kt /Q

η ∼ 1/θ

Shower Resummation

Next-to-leading-logarithmic (NLL) accuracy

1. Weight for soft-collinear emissions 
receives NLO correction

2. Weight for soft or collinear emissions must 
be correct

3. Correlations between soft-collinear emissions 
that are separated in only one direction must 
be correct (i.e. reduce to independent emission)

dP = αCMW
s (kt)

π
Pĩ→ij(z) dη d ln kt

The recoil induced by the kinematic maps of showers 
may spoil this third correction

[Dasgupta, Dreyer, Hamilton, Monni, Salam, 1805.09327] 

@NLL

αs(kt) → αCMW
s = αs(kt)(1 + αs(kt)

2π
K1)

for event shapes

αCMW
s → αeff

s = αs(kt)(1 + αs(kt)
2π

(K1 + ΔK1))

Melissa van Beekveld28

ln kt /Q

η ∼ 1/θ

Shower Resummation

Next-to-next-to leading-logarithmic (NNLL) accuracy

@NNLL

1. Shower needs to be matched to NLO
First emission  is fully correct 𝒪(αs)

3. Soft large-angle emissions @ NLO

2. Commensurate pairs of soft emissions

Corrects for difference in 
shower kinematics and those of 

theory calculation for K1

for e+e- event shapes

Ferrario Ravasio, Hamilton, Karlberg, 
Salam, Scyboz, Soyez [2307.11142]

driftsdrifts

[van Bleekveld @ MBI ’24]

4

FIG. 2. Left: ratio of the cumulative y23 distribution from several showers divided by the NLL answer, as a function of
↵s ln y23/2, for ↵s ! 0. Right: summary of deviations from NLL for many shower/observable combinations (either ⌃shower(↵s !
0,↵sL = �0.5)/⌃NLL � 1 or (N subjet

shower(↵s ! 0,↵sL
2 = 5)/N subjet

NLL � 1)/
p
↵s). Red squares indicate clear NLL failure; amber

triangles indicate NLL fixed-order failure that is masked at all orders; green circles indicate that all NLL tests passed.

Fig. 1.
The left-hand plot of Fig. 1 shows the Pythia8 dipole

algorithm (not designed as NLL accurate), while the
middle plot shows our PanGlobal shower with � = 0.
The dipole result is clearly not independent of � 12

for ↵s ! 0, with over 60% discrepancies, extending the
fixed-order conclusions of Ref. [37]. The discrepancy is
only ' 30% for gg events (not shown in Fig. 1), and
the di↵erence would, e.g., skew machine learning [67] for
quark/gluon discrimination. PanGlobal is independent
of � 12. The right-hand plot shows the ↵s ! 0 limit
for multiple showers. The overall pattern is as expected:
PanLocal works for � = 0.5, but not � = 0, demon-
strating that with kt ordering it is not su�cient just to
change the dipole partition to get NLL accuracy. Pan-
Global works for � = 0 and � = 0.5. (Showers that
coincide for ↵s ! 0, e.g. Dire v1 and Pythia8, typically
di↵er at finite ↵s, reflecting NNLL di↵erences.)

Next, we consider a range of more standard observ-
ables at NLL accuracy. They include the Cambridgep
y23 resolution scale [68]; two jet broadenings, BT and

BW [69]; fractional moments, FC1��obs , of the energy-
energy correlations [47]; the thrust [70, 71], and the max-
imum ui = kti/Qe��obs|⌘i| among primary Lund declus-
terings i. Each of these is sensitive to soft-collinear ra-
diation as kt/Qe��obs|⌘|, with the �obs values shown in
Fig. 2 (right). Additionally, the scalar sum of the trans-
verse momenta in a rapidity slice [72], of full-width 2, is
useful to test non-global logarithms (NGLs). These ob-
servables all have the property that their distribution at
NLL can be written as [47, 53, 72–74]

⌃(↵s,↵sL) = exp
⇥
↵�1
s g1(↵sL) + g2(↵sL) +O

�
↵n
sL

n�1
�⇤
,

(6)
where ⌃ is the fraction of events where the observable
is smaller than eL (g1 = 0 for the rapidity slice kt).
We also consider the kt-algorithm [75] subjet multiplic-

ity [76], [51]§ 5.
Fig. 2 (left) illustrates our all-order tests of the shower

for one observable,
p
y23. It shows the ratio of the ⌃

as calculated with the shower to the NLL result, as a
function of ↵s ln

p
y23 in the limit of ↵s ! 0. The stan-

dard dipole algorithms disagree with the NLL result, by
up to 20%. This is non-negligible, though smaller than
the disagreement in Fig. 1, because of the azimuthally
averaged nature of the

p
y23 observable. In contrast the

PanGlobal and PanLocal(� = 0.5) showers agree with
the NLL result to within statistical uncertainties.
Fig. 2 (right) shows an overall summary of our

tests. The position of each point shows the result of
⌃shower(↵s ! 0,↵sL = �0.5)/⌃NLL�1 or (N subjet

shower(↵s !
0,↵sL2 = 5)/N subjet

NLL � 1)/
p
↵s. If it di↵ers from 0, the

point is shown as a red square. In some cases (amber tri-
angles) it agrees with 0, though an additional fixed-order
analysis in a fixed-coupling toy shower [37] [51]§ 2 re-
veals issues a↵ecting NLL accuracy, all involving hitherto
undiscovered spurious super-leading logarithmic terms.1

Green circles in Fig. 2 (right) indicate that the
shower/observable combination passes all of our NLL
tests, both at all orders and in fixed-order expansions.
The four shower algorithms designed to be NLL accurate
pass all the tests. These are the PanLocal shower (dipole
and antenna variants) with � = 1

2 and the PanGlobal
shower with � = 0 and � = 1

2 .

1 Such terms, (↵sL)n(↵sL2)p in ln⌃, starting typically for n = 3
(sometimes 2), p � 1, appear for traditional kt ordered dipole
showers for global (�obs > 0) and non-global observables [51]§ 3.
Terms of this kind can generically exist [77–79], but not at
leading-colour or for pure final-state processes with rIRC [47]
safe observables. In many cases, the spurious super-leading log-
arithms appear to resum to mask any disagreement with NLL.

[PanScales][Bewick, Ferrario, Richardson, Seymour — ’19, ’20]

Coherence: more generally

The same steps can be followed to find the 3-
jet coherence limit of the matrix element
above.
The derivation is a little more subtle, more
regions must be identified, but the outcome is
elegant (I think).

• At this point in our theoretical development, the dipole shower does not completely

conserve energy and momentum. Rather it only conserves momentum longitudinal

to the emitting parton. Accounting for total energy-momentum conservation is not

needed to compute some observables to NLL accuracy, e.g. thrust. Regardless, it

is an important e↵ect that if handled incorrectly can spoil the NLL accuracy of the

shower [10]. Addressing this is the focus of the next section.

3 Improving recoil in dipole showers

In this section we will address the problem of energy-momentum conservation in a dipole

shower, though our approach is simple to map onto an angular ordered shower. The

mechanism for energy-momentum conservation (or recoil scheme) we present lacks a formal

derivation. Rather it is inspired by the study of recoil by Bewick et al. [17]. Bewick et

al. analysed several approaches to recoil in angular ordered showers, reproducing some

of the fixed-order checks of [10] and performing further numerical checks. They observed

that among the better performing recoil schemes are globally defined schemes; schemes

that redistribute momentum across an entire jet or event. From our perspective, a global

picn picn zpicn + k? +O(k2)

(1� z)picn

O(k?) unbalanced momentum
pīcn

PJ P̂J

Boost to ZMF to conserve energy
rescalemomentum

P̃J

Figure 3. A summary of the dipole shower global recoil scheme (a scheme for energy-momentum
conservation). In words: A new particle is emitted which leaves some momentum unbalanced (in
the direction of the colour connected parton and in the plane transverse to the dipole); perform a
Lorentz boost to the new ZMF, and re-scale the jet momenta in such a way that the rescaling does
not change the k? of the emission. This leaves an n-parton ensemble with the same total energy
and total momentum as the n� 1-parton ensemble.
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using the recoil delta functions to perform some of the integrals. These fix the final state

momenta:

{p}2 = { ˜̃pa, ˜̃pb, q̃1, q2}, where ˜̃pa = κa2κa1 Λ(a2, 12)Λ(a1, b1)pa,

˜̃pb = κa2κa1 Λ(a2, 12)Λ(a1, b1)pb,

q̃1 = κa2 Λ(a2, 12)q1, q2 unmodified,

˜̃Q = κa2κa1Q, Q̃ = κa1Q, Q = O(2pa · pb). (3.11)

q1 and q2 are defined with respect to the rescaled momenta ˜̃pa, ˜̃pb and so have appropriately

modified limits on their phase space. We employ the ‘equally soft’ limit (Q ≫ q1⊥, q2⊥;

q1⊥ ! q2⊥) which reduces the complexity of the phase space limits and removes dependence

on longitudinal recoil. In total, we find that

δΣ(L) ≈
4α2

s C2
F σnH

π2

∫ Q

0

dq(a2,12)2⊥

q(a2,12)2⊥

∫ Q

0

dq(a1,b1)1⊥

q(a1,b1)1⊥

∫ ln Q̃/q
(a1,b1)
1⊥

− ln Q̃/q
(a1,b1)
1⊥

dy1

∫ ln ˜̃Q/q̃
(a2,12)
2⊥

− ln ˜̃Q/q̃
(a2,12)
2⊥

dy2

×
∫ 2π

0

dφ2

2π
Θ
(

e−L − V ({p}2)
)

Θ(Q− q(a1,b1)1⊥ )Θ(κ−1
a2 q

(a1,b1)
1⊥ − q(a2,12)2⊥ )

−
4α2

s C2
F σnH

π2

∫ Q

0

dq(a1,b1)1⊥

q(a1,b1)1⊥

∫ q
(a1,b1)
1⊥

0

dq(a2,12)2⊥

q(a2,12)2⊥

∫ lnQ/q
(a1,b1)
1⊥

− lnQ/q
(a1,b1)
1⊥

dy1

∫ lnQ/q
(a2,12)
2⊥

− lnQ/q
(a2,12)
2⊥

dy2

×
∫ 2π

0

dφ2

2π
Θ
(

e−L − V ({p}correct)
)

. (3.12)

In the ‘equally soft’ limit we are considering

κin ≈ 1−O(q2⊥/2Q
2). (3.13)

The κ dependence in the shower integrals (lines 1 and 2 of Eq. (3.12)) causes potentially

incorrect O(q2⊥/2Q
2) terms in the phase space limits.9 These integrate to give dilogarithms

in q2⊥/2Q
2 which do not contribute α2

sL
2 terms but rather α2

sL
0 terms that go to zero in

both soft and collinear limits.10 Thus, with NLL accuracy, Eq. (3.12) reduces to

δΣ(L) ≈
4α2

s C2
F σnH

π2

∫ Q

0

dq(a1,b1)1⊥

q(a1,b1)1⊥

∫ lnQ/q
(a1,b1)
1⊥

− lnQ/q
(a1,b1)
1⊥

dy1

∫ q
(a1,b1)
1⊥

0

dq(a2,12)2⊥

q(a2,12)2⊥

∫ lnQ/q
(a2,12)
2⊥

− lnQ/q
(a2,12)
2⊥

dy2

×
∫ 2π

0

dφ2

2π

[

Θ
(

e−L − V ({p}2)
)

− Θ
(

e−L − V ({p}correct)
)]

. (3.14)

9The algebra to show this is awkward but as κin is simply a ratio of energies, we can argue that it must

be an even polynomial when expanded in small q⊥.
10The recoil terms in these integrals are reducible to a few general forms. One such form is

∫ 1

a

dx
x

ln2 x ln

(

x

(

1−
x2ϵ
2

))

=
1
4

(

Li4

(

a2ϵ
2

)

+ 2 ln2(a)Li2

(

a2ϵ
2

)

− 2 ln(a)Li3

(

a2ϵ
2

)

− ln4(a)− Li4
( ϵ
2

)

)

where a parametrises the observable, x ∼ q⊥/Q and ϵ parametrises the coefficients to the O(q2⊥/2Q
2) effects

from our recoil scheme; ϵ = 0 gives the leading log result. Note that all terms other than the LL result are

not enhanced in the a → 0 limit. See Appendix D.1 for more details.
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Lund plane as a tool
Analytic insight and amplitude evolution 
as a theoretical tool, extending 
probabilistic algorithms.

[Forshaw, Holguin, Plätzer —’21, ’22]
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Figure 2. Dalitz plot for e
+
e
�

! qq̄ showing the region of phase space filled after

multiple emission from the quark and anti-quark in the angular-ordered parton shower

for several choices of the preserved quantity: pT (upper-left pane), q2 (upper-right pane),

dot-product (lower-left pane) and dot-product plus q2 veto (lower-right pane). The red line

illustrates the limits for the first parton-shower emission and the yellow region corresponds

to the dead zone. The variable xi is defined to be 2Ei/Q, where Ei is the energy of parton

i and Q is the total energy, all defined in the centre-of-mass of the collision.

The choice of the preserved quantity in the presence of multiple emissions can

significantly a↵ect the phase-space region that is filled by the shower. Fig. 2 il-

lustrates the Dalitz plot for e+e� ! qq̄. We have clustered the partons using the

FastJet [33] implementation of the kT jet algorithm [34] and we have switched o↵

g ! qq̄ splittings in order to unambiguously define the q and q̄ jets. We can ap-

preciate how little the q2-preserving scheme populates the dead zone, coloured in

yellow, in opposition to the pT -preserving scheme. This feature is essential when

matching to higher order computations, like matrix element corrections, since they

Detailed numerical checks against well-known benchmarks.Detailed analysis of 
coherent branching.



[Webster, Richardson - ’20]

T A M I N G T H E A C C U R A C Y O F E V E N T G E N E R A T O R S

MicroJets validation
Triple energy correlator recently resummed [Chen, Moult, Zhu
(2011.02492)]
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We have perfect agreement between the MicroJets code and the
analytical resummation.

Slide 11/30 — Alexander Karlberg — Spin correlations in dipole showers

[Karlberg, Salam, Scyboz, Verheyen — ’21]

T A M I N G T H E A C C U R A C Y O F E V E N T G E N E R A T O R S

Caveats in dipole showers

• Need to generate the azimuthal angle at
each branching as phase space of subse-
quent branchings depends on it

! Need to update tree.

• Non-trivial mapping between shower
kinematics and azimuthal angle in dipole
branching

! Boost invariant branching amplitudes

M
�a�b�c
a!bc =

1p
2

gs
pb·pc

F
�a�b�c
a!bc (z)S⌧(pb,pc) .

�a �b �c q ! qg g ! qq̄ g ! gg

� � � 1p
1-z

0 1p
z(1-z)

� � -� zp
1-z

-z z3/2p
1-z

� -� � 0 1- z (1-z)3/2
p

z
� -� -� 0 0 0

• Can’t uniquely assign an
emission to a node (a new
emission, 9, from 7 could
be emitted from 3 as well)

! Only relevant when emis-
sion is soft (wide-angle)
in which case it is imma-
terial as branching ampli-
tude independent of par-
ent flavour.

Slide 16/30 — Alexander Karlberg — Spin correlations in dipole showers

[Forshaw, Holguin, Plätzer — ’21]

[Hamilton, Medves, Salam, Scyboz, Soyez — ’21]

11

J

q i

Fig. 8 An illustration of a branch containing hard parton J .
The sub-branch for parton q contains the partons with solid
lines, these form parton q’s ‘parental chain’. Partons with
dashed lines are in J ’s branch but are not in q’s sub-branch.
The sub-branch length is the number of partons in a sub-
branch: parton q’s sub-branch has a length 4 whilst parton
i’s sub-branch has a length 3.

In [1] we presented a momentum map with the idea
of being as simple as possible whilst preserving the ma-
trix elements computed by the shower. In the map,
longitudinal recoil is trivially handled correctly (it is
conserved between the emission and the parent parton
as dictated by the dipole partitioning) and does not
spoil anything. The other components are handled by a
Lorentz boost and a global re-scaling of every momen-
tum in the event after the emission. The emission ker-
nels are invariant under both of these (as both zab and
dkab? /kab? are invariant under boosts and re-scalings).
Thus only the phase-space is modified by the momen-
tum map, not matrix elements. In Section 3.1 of [20]
we showed that the changes to the phase-space due to
recoil will generally not produce a log-enhanced term at
O(↵2

s ) and that, for global two-jet observables such as
thrust, artifacts in the phase-space from the recoil after
iterated emissions produce terms beyond NLL. Alterna-
tive global momentum maps with similar constructions
have also been studied in [15] where the NLL accu-
racy of the maps was demonstrated for a wide range
of observables. The momentum maps in [15] were de-
signed so that their action preserved key features of the
Lund plane [38,39] (for instance preserving the separa-
tion between emissions on the plane). They have the
added benefit of conserving ‘backwards’ components of
momentum locally in a dipole, minimising the a↵ect of
the map on the phase-space available to partons in the
shower. Any of these global prescriptions could be im-
plemented into our shower without e↵ecting the results
in this paper.

5 Errors in other dipole showers

In this section we want to emphasize the role of the
dipole partitioning to our findings. To eliminate sub-
leading colour errors, the partitioning function gab must
satisfy

(d cos ✓aq) d�
(a)
q

4⇡

Z 2⇡

0

d�(a)
q

2⇡
gab wab = P [a]

ab + negligible.

(37)

In Appendix B we discuss the term labelled ‘negligible’;
the remainder after azimuthal averaging when com-
pared to the strict angular ordering result. Our dipole
algorithm was carefully constructed to not produce such
a contribution at all. Note that the demand of P [a]

ab be-
ing proportional to a theta function cannot be satisfied
with a zero remainder if gab is positive definite and only
zero at a finite number of points in the phase-space. On
top of this, since P [a]

ab has no dependence on the energies
of the partons in the dipole, any partitioning that re-
tains such a dependence after azimuthal averaging will
result in a non-zero contribution remainder.

An interesting example to illustrate how wrong re-
sults can be obtained is that of Catani-Seymour (CS)
dipole factorisation. The errors due to using a CS fac-
torisation to construct the dipole partitioning have been
previously noted in [21]. Here we give a complemen-
tary discussion. The CS partitioning contains both the
issues described in the previous paragraph; the parti-
tioning function is positive definite and has strong de-
pendence on parton energies after azimuthal averaging.
The partitioning that generates Catani-Seymour dipole
factorisation is

gab =
(kab? )2 pa · pb

2pa · pq (pa + pb) · pq
⌘

e2⌘

1 + e2⌘
, (38)

where ⌘ is the dipole-frame rapidity of parton q (⌘ ! 1

as pq/Eq ! pa/Ea and ⌘ ! �1 as pq/Eq ! pb/Eb).
We must compute

Z 2⇡

0

d�(a)
q

2⇡
gab wab =

Z 2⇡

0

d�(a)
q

2⇡

E2
q pa · pb

pa · pq (pa + pb) · pq
.

(39)

Using the basis

pa = Ea(1, 0, 0, 1),

pb = Eb(1, sin ✓ab, 0, cos ✓ab),

pq = Eq(1, sin ✓aq cos�
(a)
q , sin ✓aq sin�

(a)
q , cos ✓aq)

8

i
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i

j
q

✓iq ✓ij

⇥⇥(✓iq > ✓ij)⇥(✓jq > ✓ij)
CA/2
CF

(b)

Fig. 4 Diagram (a) is generated using our dipole shower, after partitioning. This topology is where the N�2
c error emerges.

Diagram (b) represents the re-arrangements of (a) that can be made in the limit ✓ij ⌧ 1. These diagrams correspond to those
of an angular-ordered shower. The red factor is the N�2

c suppressed error produced by our original dipole shower.

ordered in angle (with one emission collinear in the di-
rection of one of the hemispheres), the matrix elements
calculated from our dipole shower were correct except
when a gluon is emitted with an angle larger than the
opening angle of its parent dipole. In such a configura-
tion, the coherent branching calculation would correctly
assign a colour factor CF , whilst the dipole shower gives
CA/2 (see Eq. (31)). At this order, we can correct the
colour factor by replacing Ci in Eq. (14) with a dynamic
colour factor of

Cij(✓iq, ✓ij) =

✓
CF �

(q)
i +

CA

2
�(g)i

◆
✓(✓iq < ✓ij)

+

✓
CA

2
(�(q)i �(q)j + �(g)i �(g)j ) + CF (�

(q)
i �(g)j + �(g)i �(q)j )

◆

⇥ ✓(✓iq > ✓ij), (34)

where �(q)i (�(g)i ) is one when the parton i is a quark
(gluon), and zero otherwise. We stress that this correc-
tion leads to the correct result only because our way of
partitioning is able to encode angular ordering via

(d cos ✓aq) d�
(a)
q

4⇡

Z 2⇡

0

d�(a)
q

2⇡
gab wab = P [a]

ab , (35)

which ensures that the error is localized in the colour
factor of Eq. (31). Our partitioning satisfies this require-
ment exactly.8

It is not too di�cult to generalize to higher orders,
and the solution is particularly straightforward in the

8In Appendix B we discuss tests for checking whether other
partitionings are consistent with the requirement at NLL ac-
curacy.

absence of g ! qq̄ branchings, which will be discussed
at the end of this section (see also [35]). Figures 5 and
6 illustrate errors that occur in the case of three emis-
sions. They highlight a key feature: the colour factor of
the last emission is incompatible with coherence only
when it is emitted at an angle larger than the angular
extent of the colour charge distribution of the chain of
partons leading to the emission.

Figure 7 shows the generalisation to an arbitrary
fixed order9. As a consequence of using a partitioning
which defines a unique branching history of 1 ! 2 tran-
sitions, the collection of partons in an event can be di-
vided into m branches for an m parton hard process.
Each branch contains one of the hard-process partons
and the radiation emitted from it. Each parton in the
branch can also be assigned a unique sub-branch con-
sisting of the parton and its “parental chain”, see Fig-
ure 8. We only need to modify colour factors for glu-
ons which cannot probe the largest angle in their sub-
branch. We do this by extending the definition of Cij
to

CiJ(✓iq, ✓LJ) =

✓
CF �

(q)
i +

CA

2
�(g)i

◆
✓(✓iq < ✓LJ)

+

✓
CA

2
�(g)J + CF �

(q)
J

◆
✓(✓iq > ✓LJ),

(36)

where J is the hard parton in the sub-branch and L
is the parton in the sub-branch emitted at the largest

9In Appendix A we show that the planar diagrams arising
after azimuthal averaging do generalise to higher orders

Spin correlations building on Collins-Knowles algorithm

Dynamic colour factors in dipole showers

Track angular extent of evolution 
to reproduce colour factors as 
dictated by coherence.

Improving Shower Accuracy — Spin & Colour Correlations



Where it (also) matters

Coherent branching jet mass including mass effects:

NLL accurate for global observables with massive quarks.

[Hoang, Plätzer, Samitz — ’18] 

Top mass definition from 
coherent branching.

It may be shown that the contributions that angular ordering misses are purely soft and
suppressed by at least one power of N2

C , where NC = 3, the number of colours in QCD. Formally
then, omitting such contributions amounts to neglecting terms of next-to-leading-log accuracy
that are also strongly colour suppressed. We stress however, that whereas angular ordering leads
to an omission of these suppressed higher order terms, other forms of ordering must prove that
they do not overestimate leading-log contributions.

For the forward evolution of partons with time-like virtualities, the variable used to achieve
such ordering, q̃2, is defined according to

z (1 − z) q̃2 = −m2
eij

+
m2

i

z
+

m2
j

1 − z
−

p2
⊥

z (1 − z)
, (6.6)

where mi is the on-shell mass of particle i etc. This definition is arrived at by generalizing
the FORTRAN HERWIG angular evolution variable, q̃2 = q2

eij
/ (z (1 − z)), to include the effects

of the mass of the emitting parton. This may be seen by writing qeij = qi + qj , and calculating

q2
eij

(
z, p2

⊥, q2
i , q

2
j

)
, which shows

q̃2 =
q2

eij
− m2

eij

z (1 − z)

∣∣∣∣∣
q2
i =m2

i , q2
j =m2

j

. (6.7)

For showers involving the evolution of partons with space-like virtualities, the evolution variable
is instead defined by

(1 − z) q̃2 = −zm2
ĩj + m2

i +
zm2

j

1 − z
−

p2
⊥

1 − z
. (6.8)

Once again this definition of the evolution variable is a generalization of the analogous FORTRAN
HERWIG angular evolution variable used for initial-state radiation: q̃2 = q2

i / (1 − z). Using

momentum conservation, qeij = qi + qj , we may calculate q2
i

(
z, p2

⊥, q2
eij
, q2

j

)
, whence one finds

q̃2 =
m2

i − q2
i

1 − z

∣∣∣∣
q2

eij
=m2

eij
, q2

j =m2
j

. (6.9)

To see how these variables relate to the angle between the branching products, consider that
the parton shower is generated in the frame where the light-like basis vector n is anticollinear to
the progenitor. For forward evolving partons with small time-like virtualities, expanding z and
q2

eij
in component form, one finds

q̃2 =
2E2

eij
(1 − cos θij)

(
1 + cos θeij

)2

(1 + cos θi) (1 + cos θj)
, (6.10)

where θi and θj are the angles between the daughter particles i, j and the progenitor, θĩj is
the angle between the parent and the progenitor, and θij is the angle between the two daugh-
ters. Eĩj denotes the energy of the parent. This expression for the time-like evolution vari-
able in terms of angles is more complicated than the analogous FORTRAN HERWIG formula:
q̃2 = 2E2

eij
(1 − cos θij). This is due to the fact that in FORTRAN HERWIG z was defined to be

35

using [Gieseke, Stephens, Webber – ’03]
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Figure 12: Peak position M⌧,peak at the parton level obtained from Herwig 7 for the top
quark generator mass mt = 173 GeV as a function of the shower cut Q0 for Q = 700 GeV
(upper panels) and Q = 1 TeV (lower panels) for smearing ⇤ = 1 GeV (left panels) and
⇤ = 3 GeV (right panels). Displayed are the results from the full simulation (red squares),
with gluon splitting turned off, but angular ordering turned on (blue squares) and with
gluon splitting and angular ordering both turned off (green squares). The blue solid line is
the analytic prediction of Eq. (7.2) taking the Herwig 7 result for Q

0
0 = 1.25 GeV as the

reference. The dashed blue line is the analytic prediction of Eq. (7.2), but only accounting
for the large angle soft radiation contributions which are multiplied with the Q/mt factor.

massless case we used a bin size that corresponds to �⌧ = 8 ⇥ 10
�6 and used the same

method to determine the peak position as for the massless quark case.
In Fig. 12 the peak position M⌧, peak obtained from Herwig 7 with the top quark

generator mass mt = 173 GeV is shown as a function of the shower cut Q0 for Q = 700 GeV
(upper panel) and Q = 1 TeV (lower panel) for the smearing parameter ⇤ = 1 GeV (left
column) and ⇤ = 3 GeV (right column). The (center of the) colored squares show the
corresponding results from the full simulation, i.e. with gluon splitting and angular ordering
both turned on (red squares), with gluon splitting turned off, but angular ordering turned on
(blue squares) and with gluon splitting and angular ordering both turned off (green squares).
The solid blue line represents the analytic prediction of Eq. (7.2) with Q

0
0 = 1.25 GeV as the
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Take home message: hadronization and mass scheme compensate for shower cutoff dependence.



Beyond NLLglobal — more differential, NLLnonglobal, NNLLglobal, …

11/16

Towards second-order showers: unordered contributions
sector showers allow to include direct 2 æ 4 branchings in
a simple way
divide phase space into strongly-ordered and unordered
region

I s.o. region: only single-unresolved limits
I u.o. region: only double-unresolved limits

2 æ 4 branchings important ingredient to NNLO+PS
(+ virtual corrections to 2 æ 3)
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[Campbell, Höche, Li, CTP, Skands in preparation]

[C. Preuss for Vincia — PSR 21] 
[PanScales double soft algorithms]

[Dulat, Höche, Prestel — ‘18]
[Gellersen, Höche, Prestel  — ’22] 

3

(a) (b) (c) (d)

(e) (f) (g) (h)

FIG. 2. Next-to-leading order real-emission contributions to dipole-shower evolution in the soft limit. The double solid lines
represent hard (identified) partons i.e. Wilson lines.

The diagrams contributing to the gluonic real-emission corrections are schematically displayed in Fig. 2(a)-(e), while
the quark contribution is shown in Fig. 2(f). The vacuum polarization diagrams with gluons have corresponding ghost
diagrams, and all terms also occur in the mirror symmetric configuration. Their sum is given by the soft insertion
operators computed in [31]

S(qq̄)
ij (1, 2) = TR

si1sj2 + si2sj1 � s12sij
s212(si1 + si2)(sj1 + sj2)

S(gg)
ij (1, 2) = CA

(1� ")[si1sj2 + si2sj1]� 2s12sij
s212(si1 + si2)(sj1 + sj2)

+ S(s.o.)
ij (1, 2)

CA

2

✓
1 +

si1sj1 + si2sj2
(si1 + si2)(sj1 + sj2)

◆
.

(4)

In the limit of strongly ordered soft emissions, S(gg)
ij (1, 2) reduces to CA S(s.o.)

ij (1, 2), where

S(s.o.)
ij (1, 2) =

sij
si1s12sj2

+
sij

sj1s12si2
�

s2ij
si1sj1si2sj2

. (5)

The full real-emission corrections are obtained by adding the cut vacuum polarization diagrams displayed in Fig. 2(g)
and (h), as well as the corresponding terms with the gluons attached to the other Wilson line. They are given by [25]

C(qq̄)
ij (1, 2) = � TR

s212

✓
si1si2

(si1 + si2)2
+

sj1sj2
(sj1 + sj2)2

◆

C(gg)
ij (1, 2) = � (1� ")

CA

s212

✓
si1si2

(si1 + si2)2
+

sj1sj2
(sj1 + sj2)2

◆ (6)

To simplify the integration, we define the soft remainder as well as two collinear coe�cients

S(rem)
ij (1, 2) = S(s.o.)

ij (1, 2)
si1sj2 + si2sj1

(si1 + si2)(sj1 + sj2)

S(coll)
ij,B (1, 2) =

sij
(si1 + si2)(sj1 + sj2)

1

s12

S(coll)
ij,A (1, 2) = S(coll)

ij,B (1, 2) 4 z1z2 cos
2 � ij

12 where 4 z1z2 cos
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Figure 2. The Feynman diagram representing the gluon decay CFCA channel. The mapping of the mo-
mentum fractions to a set of independent variables is explained in the text. The angle ✓g is that between
the parent gluon and the final-state quark.

z1 = 1� z

✓1,2+3

z2 = z(1� zp)

✓23 z3 = zzp

Figure 3. The Feynman diagram representing the gluon emission C2
F channel. The mapping of the momen-

tum fractions to a set of independent variables is explained in the text.

functions reduce (after azimuthal integration for the gluon decay channels) to a product of leading-

order splitting functions in z and zp respectively.

Finally we discuss the quantities we study here. These include the double di↵erential distri-

bution in ⇢ = s123/E2 and z, where ⇢ is the normalised invariant mass of the three parton system

that arises from the triple-collinear splitting of a quark jet with energy E, and the splitting variable

z may be associated to an initial splitting as illustrated in Figures 1 – 3.3 For the gluon decay

contributions, as should be evident from Figures 1 and 2, the variable z also corresponds to the

energy fraction of the final-state quark so that 1�z represents the energy fraction associated to the

“parent” gluon. In addition to the ⇢ distribution we shall also study the distribution di↵erential in

z and angle ✓g of the parent gluon. A comparison of the two distributions shall give further insight

into the general structure of the result. For the abelian gluon emission process in Figure 3, we shall

fix ✓13 = ✓ ⌧ 1, the angle of emission 1 wrt the final quark, which shall set the collinearity, and

then study the NLO structure induced by a smaller angle emission labelled 2, with angle ✓23 < ✓.

We integrate the splitting functions over phase-space in d = 4 � 2✏ dimensions to obtain

real emission contributions that contain poles in ✏ which reflect singularities that cancel when we

combine with virtual corrections. The integrals we carry out are generically of the form

v

�0

d�

dv
=

Z
d�3(zi, ✓ij)

�
8⇡↵µ2✏

�2

s2
123

hP̂ i v � (v � v (zi, ✓ij)) (2.7)

where v denotes the quantity we hold fixed, hP̂ i denotes the di↵erent 1 ! 3 splitting functions

mentioned above, ↵ denotes the bare QCD coupling, and �0 is the Born cross section. Our results

3
This initial splitting will also set the small angular scale which defines the collinearity of the problem.
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Inclusive emission probability - C2
F channel

⌅ More care is needed in defining the inclusive emission probability as
subsequent real emissions are resolved.

⌅ K(z) encodes the probability of producing an emission, inclusive over the
virtual corrections and subsequent branchings that are correlated with the
presence of that emission.

Start by considering the case of e+e� ! qq̄g

↵s
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K(zg) =

Vqq̄g

Bqq̄g
�
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Bqq̄
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Z ṽg
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Bqq̄ij

Bqq̄g
�

Z vg

0

d�qq̄g0

d�qq̄

Bqq̄g0

Bqq̄

*A similar equation appears in the context of embedding NLO 3-jet with NLO 2-jet in a shower 1303.4974,
1611.00013, 2108.07133; Li, Skands et.al .
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symmetric around, and not vanishing at x = 0 (in fact, an angular cutoff is not needed),
provided that the energy is less than another ‘Glauber’ scale µG:

Γ(1)
G,n,rad = −Γ̃(1)

G,n,rad =
∑

i<j

Ti ·Tj
iπ

2

(
µR

µG

)2ϵ

δi,j FF/II

∫
dΩ(d−3) . (5.9)

The real emission subtraction would be given by the square of the single soft gluon current,

E(1,0)
n ◦ E(1,0)†

n = F(1,0)
n ◦ F(1,0)†

n = −
∑

i<j

Ti ◦ T†
j

pi · pj
pi · pn+1 pn+1 · pj

Ξ(ij)
n,1,rad (5.10)

and accordingly be supplemented by a resolution criterion which we take to be

Ξn,1,rad = 1 − θ(p0n+1 − µS)Θλ(ni · pn+1/p
0
n+1, nj · pn+1/p

0
n+1) (5.11)

and the derivatives analogously give the contributions to the evolution from the real emis-
sions. The evolution in the energy scale then provides us with the soft gluon algorithm
studied in [4]; the evolution direction with the cutoff has not yet been considered com-
pletely but will likely cancel for observables in which collinear divergences cancel. We will
leave this to future work.4

6 Accuracy considerations

6.1 Evolution at the second order and comparison to shower approaches

In this section we compare the structure of the evolution at the second order to approaches
of parton shower algorithms which aim to describe evolution at the same accuracy. The
results here can also be used to assemble a full evolution using our results [9] and the double
emission current [15]. Putting βS,i = 0 for the evolution of the hard density operator we
obtain

Γ(2)
S,n = −V̂(2)

n [∂SΞn,2] + V̂(1)
n [∂SΞn,1] V̂(1)

n [1 − Ξn,1] , (6.1)

R(1,1)
n ◦ R(1,0)†

n =
(
D̂(1,1)

n [1 − Ξn,1] − D̂(1,0)
n V̂(1)

n−1 [1 − Ξn−1,1]
)

◦ D̂(1,0)†
n ∂SΘn,1 (6.2)

+
(
D̂(1,1)

n [∂SΞn,1] − V̂(1)
n [∂SΞn,1] D̂(1,0)

n

)
◦ D̂(1,0)†

n (1 − Θn,1) ,

and

R(2,0)
n ◦ R(2,0)†

n = D̂(2,0)
n ◦ D̂(2,0)†

n ∂SΘn,2 (6.3)
−D̂(1,0)

n D̂(1,0)
n−1 ◦ D̂(1,0)†

n−1 D̂(1,0)†
n (1 − Θn−1,1)∂SΘn,1 .

Notice that both the double real, as well as the double virtual terms have a form which
resemble a subtraction calculation in the sense that the “earlier” exchange or emission
n − 1 constrained to be resolved by 1 − Ξn,1 or 1 − Θn−1,1 and the later one is pinned

4It should also be noted that [28, 29] have been reporting on similar multi-scale evolution algorithms
while this work has been finalized. They only consider leading order evolution though and do not include
the possible effects of hadronization as discussed later in this work.
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depicted with the basis permutation � separated from the rest of the diagram by the dashed

line and the (anti-)colour labels are explicitly written for the hard lines. The translation

of the diagram to the Kronecker deltas which compare the permutations � and ⌧ , i.e. a

translation to the corresponding parts of the matrix elements of the colour correlators, is

given.

An example of a contribution to the matrix element [⌧ |(Ti · Tj)(Ti · Tj)|�i (cf. Eq.

(A.5)) is given by the colour-flow diagram

ci

cj

c��i
�

c��j
! N2��⌧�ci��1(cj) , (3.4)

due to the colour connection in � this is enhanced by a factor of N2. The diagonal structure

⇢� contains a three-parton correlation from the Feynman diagram involving three hard lines

and a triple gluon vertex, it gives a colour flow of

c��i
c��k

c��j

ci

cj

clc��l

�
! �i�̄j�l��⌧�ci��1(cj) , (3.5)

and it is part of the matrix element [⌧ |TgTiTjTl|�i (cf. Eq. (A.7)). For the gluon vertex

we have defined that Tabc
g ⌘ ifabc. For an example of the coe�cient ⌃̂(2)

�⌧ , which has a

colour connection in � and where a single swap of colour labels has to be performed in

order for the permutations � and ⌧ to match, consider

�

cjc��j

clc��l

c��k
cic��i
! N�cj��1(ci)��⌧(a,b)�(a,b)(cj ,cl) , (3.6)

where this colour flow pertains to the matrix element [⌧ |TgTiTjTl|�i as well. The double

swap coe�cients ⌃00(2)
�⌧ can be exemplified by

� c��i ci

cjc��j

c��k
c��m

c��l
c��r

cl

! ��⌧(a,b)(b,c)�(a,b)(ci,��1(cj))�(b,c)(��1(cj),��1(cl)) , (3.7)

in this case a colour label has to be swapped twice such that the permutations � and ⌧

match. This colour flow is part of the matrix element [⌧ |(Ti · Tl)(Ti · Tj)|�i (cf. Eq.

(A.8)).

3.2 One-loop, one-emission contributions

Similarly to the two-loop contribution we can analyze the one-loop one emission contri-

butions at the level of the amplitude. Notice that at the level of the cross section the
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Structure of second order ingredients and dedicated resummations: uncover algorithms and benchmarks.
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Effective couplings and collinear fragmentation

Kinematic and colour structure of emission kernels beyond LO

Building amplitude evolution at the second order.
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FIG. 2. Next-to-leading order real-emission contributions to dipole-shower evolution in the soft limit. The double solid lines
represent hard (identified) partons i.e. Wilson lines.

The diagrams contributing to the gluonic real-emission corrections are schematically displayed in Fig. 2(a)-(e), while
the quark contribution is shown in Fig. 2(f). The vacuum polarization diagrams with gluons have corresponding ghost
diagrams, and all terms also occur in the mirror symmetric configuration. Their sum is given by the soft insertion
operators computed in [31]

S(qq̄)
ij (1, 2) = TR

si1sj2 + si2sj1 � s12sij
s212(si1 + si2)(sj1 + sj2)

S(gg)
ij (1, 2) = CA

(1� ")[si1sj2 + si2sj1]� 2s12sij
s212(si1 + si2)(sj1 + sj2)

+ S(s.o.)
ij (1, 2)

CA

2

✓
1 +

si1sj1 + si2sj2
(si1 + si2)(sj1 + sj2)

◆
.

(4)

In the limit of strongly ordered soft emissions, S(gg)
ij (1, 2) reduces to CA S(s.o.)

ij (1, 2), where

S(s.o.)
ij (1, 2) =

sij
si1s12sj2

+
sij

sj1s12si2
�

s2ij
si1sj1si2sj2

. (5)

The full real-emission corrections are obtained by adding the cut vacuum polarization diagrams displayed in Fig. 2(g)
and (h), as well as the corresponding terms with the gluons attached to the other Wilson line. They are given by [25]

C(qq̄)
ij (1, 2) = � TR

s212

✓
si1si2

(si1 + si2)2
+

sj1sj2
(sj1 + sj2)2

◆

C(gg)
ij (1, 2) = � (1� ")

CA

s212

✓
si1si2

(si1 + si2)2
+

sj1sj2
(sj1 + sj2)2

◆ (6)

To simplify the integration, we define the soft remainder as well as two collinear coe�cients

S(rem)
ij (1, 2) = S(s.o.)

ij (1, 2)
si1sj2 + si2sj1

(si1 + si2)(sj1 + sj2)

S(coll)
ij,B (1, 2) =

sij
(si1 + si2)(sj1 + sj2)

1

s12

S(coll)
ij,A (1, 2) = S(coll)

ij,B (1, 2) 4 z1z2 cos
2 � ij

12 where 4 z1z2 cos
2 �12,ij =

(si1sj2 � si2sj1)2

s12sij(si1 + si2)(sj1 + sj2)
.

(7)
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Figure 2. The Feynman diagram representing the gluon decay CFCA channel. The mapping of the mo-
mentum fractions to a set of independent variables is explained in the text. The angle ✓g is that between
the parent gluon and the final-state quark.
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Figure 3. The Feynman diagram representing the gluon emission C2
F channel. The mapping of the momen-

tum fractions to a set of independent variables is explained in the text.

functions reduce (after azimuthal integration for the gluon decay channels) to a product of leading-

order splitting functions in z and zp respectively.

Finally we discuss the quantities we study here. These include the double di↵erential distri-

bution in ⇢ = s123/E2 and z, where ⇢ is the normalised invariant mass of the three parton system

that arises from the triple-collinear splitting of a quark jet with energy E, and the splitting variable

z may be associated to an initial splitting as illustrated in Figures 1 – 3.3 For the gluon decay

contributions, as should be evident from Figures 1 and 2, the variable z also corresponds to the

energy fraction of the final-state quark so that 1�z represents the energy fraction associated to the

“parent” gluon. In addition to the ⇢ distribution we shall also study the distribution di↵erential in

z and angle ✓g of the parent gluon. A comparison of the two distributions shall give further insight

into the general structure of the result. For the abelian gluon emission process in Figure 3, we shall

fix ✓13 = ✓ ⌧ 1, the angle of emission 1 wrt the final quark, which shall set the collinearity, and

then study the NLO structure induced by a smaller angle emission labelled 2, with angle ✓23 < ✓.

We integrate the splitting functions over phase-space in d = 4 � 2✏ dimensions to obtain

real emission contributions that contain poles in ✏ which reflect singularities that cancel when we
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where v denotes the quantity we hold fixed, hP̂ i denotes the di↵erent 1 ! 3 splitting functions

mentioned above, ↵ denotes the bare QCD coupling, and �0 is the Born cross section. Our results
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This initial splitting will also set the small angular scale which defines the collinearity of the problem.
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Inclusive emission probability - C2
F channel

⌅ More care is needed in defining the inclusive emission probability as
subsequent real emissions are resolved.
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Z ṽg

0

d�qq̄ij

d�qq̄g

Bqq̄ij

Bqq̄g
�

Z vg

0

d�qq̄g0

d�qq̄

Bqq̄g0

Bqq̄

*A similar equation appears in the context of embedding NLO 3-jet with NLO 2-jet in a shower 1303.4974,
1611.00013, 2108.07133; Li, Skands et.al .

J.Helliwell (U.O.O) NSL collinear fragmentation and parton showers 2 July 2024 19 / 32

[Van Beekveld, Dasgupta, El-Menoufi, 
Halliwell, Karlberg, Monni — ’24] 

[Plätzer — ’22]
[Nagy, Soper — PSR ’24]

DESY.

Multi-Emission Kernels
Results

[S. Dore, ML, S. Plätzer; arXiv:2112.14454]

• Partitioning algorithms 

➡ two options: fractional and subtractive  

➡ spread soft contributions over kernels

• Momentum mapping 

➡ Parameterization of how collinear limit is 
approached and transverse recoil is 
spread for multiple emissions
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symmetric around, and not vanishing at x = 0 (in fact, an angular cutoff is not needed),
provided that the energy is less than another ‘Glauber’ scale µG:

Γ(1)
G,n,rad = −Γ̃(1)

G,n,rad =
∑

i<j

Ti ·Tj
iπ

2

(
µR

µG

)2ϵ

δi,j FF/II

∫
dΩ(d−3) . (5.9)

The real emission subtraction would be given by the square of the single soft gluon current,

E(1,0)
n ◦ E(1,0)†

n = F(1,0)
n ◦ F(1,0)†

n = −
∑

i<j

Ti ◦ T†
j

pi · pj
pi · pn+1 pn+1 · pj

Ξ(ij)
n,1,rad (5.10)

and accordingly be supplemented by a resolution criterion which we take to be

Ξn,1,rad = 1 − θ(p0n+1 − µS)Θλ(ni · pn+1/p
0
n+1, nj · pn+1/p

0
n+1) (5.11)

and the derivatives analogously give the contributions to the evolution from the real emis-
sions. The evolution in the energy scale then provides us with the soft gluon algorithm
studied in [4]; the evolution direction with the cutoff has not yet been considered com-
pletely but will likely cancel for observables in which collinear divergences cancel. We will
leave this to future work.4

6 Accuracy considerations

6.1 Evolution at the second order and comparison to shower approaches

In this section we compare the structure of the evolution at the second order to approaches
of parton shower algorithms which aim to describe evolution at the same accuracy. The
results here can also be used to assemble a full evolution using our results [9] and the double
emission current [15]. Putting βS,i = 0 for the evolution of the hard density operator we
obtain

Γ(2)
S,n = −V̂(2)

n [∂SΞn,2] + V̂(1)
n [∂SΞn,1] V̂(1)

n [1 − Ξn,1] , (6.1)

R(1,1)
n ◦ R(1,0)†

n =
(
D̂(1,1)

n [1 − Ξn,1] − D̂(1,0)
n V̂(1)

n−1 [1 − Ξn−1,1]
)

◦ D̂(1,0)†
n ∂SΘn,1 (6.2)

+
(
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n
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n (1 − Θn,1) ,

and
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n−1 ◦ D̂(1,0)†

n−1 D̂(1,0)†
n (1 − Θn−1,1)∂SΘn,1 .

Notice that both the double real, as well as the double virtual terms have a form which
resemble a subtraction calculation in the sense that the “earlier” exchange or emission
n − 1 constrained to be resolved by 1 − Ξn,1 or 1 − Θn−1,1 and the later one is pinned

4It should also be noted that [28, 29] have been reporting on similar multi-scale evolution algorithms
while this work has been finalized. They only consider leading order evolution though and do not include
the possible effects of hadronization as discussed later in this work.
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depicted with the basis permutation � separated from the rest of the diagram by the dashed

line and the (anti-)colour labels are explicitly written for the hard lines. The translation

of the diagram to the Kronecker deltas which compare the permutations � and ⌧ , i.e. a

translation to the corresponding parts of the matrix elements of the colour correlators, is

given.

An example of a contribution to the matrix element [⌧ |(Ti · Tj)(Ti · Tj)|�i (cf. Eq.

(A.5)) is given by the colour-flow diagram

ci

cj

c��i
�

c��j
! N2��⌧�ci��1(cj) , (3.4)

due to the colour connection in � this is enhanced by a factor of N2. The diagonal structure

⇢� contains a three-parton correlation from the Feynman diagram involving three hard lines

and a triple gluon vertex, it gives a colour flow of

c��i
c��k

c��j

ci

cj

clc��l

�
! �i�̄j�l��⌧�ci��1(cj) , (3.5)

and it is part of the matrix element [⌧ |TgTiTjTl|�i (cf. Eq. (A.7)). For the gluon vertex

we have defined that Tabc
g ⌘ ifabc. For an example of the coe�cient ⌃̂(2)

�⌧ , which has a

colour connection in � and where a single swap of colour labels has to be performed in

order for the permutations � and ⌧ to match, consider

�

cjc��j

clc��l

c��k
cic��i
! N�cj��1(ci)��⌧(a,b)�(a,b)(cj ,cl) , (3.6)

where this colour flow pertains to the matrix element [⌧ |TgTiTjTl|�i as well. The double

swap coe�cients ⌃00(2)
�⌧ can be exemplified by

� c��i ci

cjc��j

c��k
c��m

c��l
c��r

cl

! ��⌧(a,b)(b,c)�(a,b)(ci,��1(cj))�(b,c)(��1(cj),��1(cl)) , (3.7)

in this case a colour label has to be swapped twice such that the permutations � and ⌧

match. This colour flow is part of the matrix element [⌧ |(Ti · Tl)(Ti · Tj)|�i (cf. Eq.

(A.8)).

3.2 One-loop, one-emission contributions

Similarly to the two-loop contribution we can analyze the one-loop one emission contri-

butions at the level of the amplitude. Notice that at the level of the cross section the
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Structure of second order ingredients and dedicated resummations: uncover algorithms and benchmarks.

Double emission matrix element corrections

Effective couplings and collinear fragmentation

Kinematic and colour structure of emission kernels beyond LO

Building amplitude evolution at the second order.

Algorithms are more than the sum of 
their ingredients.

Way forward is hard, but possible — 
we need to find systematic 
formulations.

Demonstrate accuracy for certain 
observables, but strive for most 
differential/flexible algorithms.

Role of data comparisons not always 
clear but encouraging.

PSR2024Silvia Ferrario Ravasio

NNLL showers vs NLL showers: pheno outlook

Agreement to 
data 

substantially 
better when 
using NNLL 

showers

The PanScales 
collaboration, 
2406.02661

74
See Karlberg’s talk

[Ferrario Ravasio @ PSR ’24]



Main lines of current parton shower research

Shower development is a broad field, fortunately back on the agenda.
Hadronziation is not exactly shower development, but enters at a similar level,

Matching/Merging (N)NLL accuracy

Amplitude evolution Hadronization

Interactions beyond QCD

See Schumann’s talk. Always needs to 
accompany shower development.

Comprehensive, factorized picture 
and construction of algorithms.

Control and demonstration of 
perturbative accuracy.

Remaining focus of this talk:

• Perturbative accuracy
• Beyond probabilistic algorithms.
• Factorisation and hadronization.

Description of electroweak effects 
and BSM scenarios.

Genuine quantum effects: 
not limited to subleading colour.



Full colour and interferences are central to go beyond

Colour reconnection and hadronization is about subleading-N.
So are shower accuracy and interference terms.

Colour factor algorithms Colour ME corrections Full amplitude evolution
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dipole showers
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emissions as far as possible

Colour-exact real and 
virtual corrections
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[Nagy, Soper ’07 …]
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The amplitude evolution equation
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the amplitudes An(µ; {p}n); µ is an infra-red cut-o↵ and {p}n = {P1, ..., PnH
, q1, ..., qn}

where q1, ..., qn are the momenta of the n partons that dress the hard process. Steps in the

Markov chain are constructed from the action of two operators, Dn and �n. The Dn op-

erators are emission operators; they act as maps from a state An�1(q?; {p}n�1) to a state

An(q?; {p}n), and they describe the emission of the nth parton. Operators �n provide a

map from a state An(q?; {p}n) onto some other Ãn(q?; {p}n). Physically, they dress the

density operator with (iterated) virtual corrections. The path-ordered exponent of �n is

an amplitude level Sudakov factor/operator which we call Va,b:

Va,b = Pexp

✓
�

Z b

a

dq?
q?

�n(q?)

◆
. (2.1)

Va,b evolves a state An(b; {p}n) to a state at a lower scale Ãn(a; {p}n); for a complete

discussion of Va,b see [12]. In [12] we presented the PB algorithm in the following form:

An(q?; {p}n) =

Z
dRnVq?,qn?DnAn�1(qn?; {p}n�1)D

†
nV

†
q?,qn?⇥(q?  qn?). (2.2)

The algorithm maps the set of partonic momenta prior to the nth emission ({pn�1}) onto

a new set ({pn}), by adding a parton (qn). In order to conserve energy-momentum, the set

of momenta prior to the emission are adjusted after each emission, i.e. {pn�1} ! {p̃n�1}

and {pn} = {p̃n�1 [ qn}. We achieve this by integrating over delta functions relating the

two sets of momenta. This is all hidden inside
R
dRn, which we describe in Appendix A.1

and give examples of in Section 3. We also provide definitions of each operator involved in

the evolution in Appendix A.1.
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Figure 1. A general term in the Markov chain of amplitude density matrices, An, constructed by
the PB algorithm. H ⌘ |Mi hM| is the initial hard process; in this case it has two hard coloured
legs, a and b. Dn dresses an amplitude with the nth emission that is either soft or collinear.
Collinear emissions are emitted symmetrically from the amplitude and conjugate amplitude, such
as gluon 1. Soft emissions appear as interference terms, such as gluon 2. �n dresses the amplitude
after n soft or collinear emissions with a loop.
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Markovian algorithm at the amplitude level:
Iterate gluon exchanges and emission.

Different histories in amplitude and conjugate 
amplitude needed to include interference.

amplitude conjugate amplitude
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the evolution in Appendix A.1.

�1 �
†

0D1D2 D
†

2D
†

1H

|Mi hM|

A0

b

2

1

aa

2

1

b

A1

A2

Figure 1. A general term in the Markov chain of amplitude density matrices, An, constructed by
the PB algorithm. H ⌘ |Mi hM| is the initial hard process; in this case it has two hard coloured
legs, a and b. Dn dresses an amplitude with the nth emission that is either soft or collinear.
Collinear emissions are emitted symmetrically from the amplitude and conjugate amplitude, such
as gluon 1. Soft emissions appear as interference terms, such as gluon 2. �n dresses the amplitude
after n soft or collinear emissions with a loop.

– 3 –

Markovian algorithm at the amplitude level:
Iterate gluon exchanges and emission.

Different histories in amplitude and conjugate 
amplitude needed to include interference.

amplitude conjugate amplitude

5.2. Variant B 263

�0.5

0

0.5

1

1.5

2

2.5

3

0.001 0.01 0.1 1

⌃
n
(⇢
)

⇢

singlet ! qq̄ spectrum

n  20, d0 = 0
n  20, d0 = 2

LCV+R
n = 0
n = 1
n = 2
n = 3

(A) Breakdown of the jet veto cross section
by multiplicity and colour order, for the pro-

cess singlet ! qq̄.

�1

0

1

2

3

4

5

6

7

8

0.001 0.01 0.1 1

⌃
n
(⇢
)

⇢

singlet ! gg spectrum

n  20, d = 0
n  20, d = 2
LCV+R ⇥ 8/9

n = 0
n = 1
n = 2
n = 3

arXiv:2011.04154v2
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FIGURE 5.15: The jet veto cross section in (a) for the V ! qq̄
process and (b) for the H ! gg process, for different gluon mul-
tiplicities (n = 0, 1, 2, 3, 20). Results are shown for d0 = 0, 2
and d = 0, 2 respectively using a weightCut value of wc = 12800
and wc = 51200. The contributions from n = 0 up to 3 emis-
sions are also presented, however the total cross section result is
a summation over all emissions. The total cross section here has
been produced by CVolver, limited to n  20 emissions. Figures
modified from [155]. (c) and (d) compare the total cross section

(with n  20) for different values of the wc.

fluctuations. The apparent success of our d0 = 0 approximation in Figure 5.15a
is also interesting to note, although we do not expect this to continue once we

⇢
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CVolver solves evolution equations in 
colour flow space. Flexible for dedicated 
resummation and new parton showers.

Jet vetoes studied first — 
benchmarks available.

[Forshaw, Plätzer, DeAngelis, Torre …]



Amplitude evolution at hadron colliders
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[Forshaw, Plätzer, De Angelis, Torre, … — in progress]
Baseline jet veto cross sections in agreement with Hatta ’20
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Amplitude evolution and electroweak physics

[Plätzer, Sjödahl — ’22]
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Qi+

Qi�
Ei ⌧ Mi

Ei � Mi

threshold

soft
hard collinear

FIG. 1. Illustration of the various regions of validity of our parametrization. As seen from, eq. (21) the condition pi·Qi,s ⌧ pi·ni,s

is fulfilled if either both Qi+ and Qi� are small (the genuinely soft region) or if Ei � Mi and Qi� ! 0 (the hard collinear
region) or if Ei ⌧ Mi and Qi� ! �Qi+ (the threshold region).

Kinematic regions

The kinematic regions covered by our parametrization are best illustrated for one hard line and a specific frame,
where

pi =

✓q
E2

i +M2
i ,~0?, Ei

◆
ni,s =

ni,s · pi

Ei +
p

E2
i +M2

i

⇣
1,~0?,�1

⌘
Qi,s =

⇣
Q(+)

i,s +Q(�)
i,s , ~Q(?)

i,s , Q(+)
i,s �Q(�)

i,s

⌘
.

(20)
Our expansion is valid if

pi ·Qi,s =
q

E2
i +M2

i (Q
(+)
i,s +Q(�)

i,s ) + Ei(Q
(�)
i,s �Q(+)

i,s ) ⌧ pi,s · ni,s = Si,s . (21)

The regions of validity contain a Glauber-type region in which Qi,s becomes purely transverse, along with the regions
depicted in figure 1.

Propagators and external wave functions

An important ingredient to our factorization formula is to demonstrate, subject to the kinematic parametrization
above, that

1X

n=0

 
P(qi +Ki,s,Mi)

(qi +Ki,s)2 � M̃2
R,i

⌃(qi +Ki,s)

!n
P(qi +Ki,s,Mi)

(qi +Ki,s)2 � M̃2
R,i

=
1

2pi ·Qi,s

 (⇤pi,Mi) ̄(⇤pi,Mi)

1� ⌃0(M2
i )

+O(�) , (22)

where the derivative of the (physical part of the) self-energy ⌃(p2) (or, accordingly the transverse self-energy at
vanishing k2 for a massless boson) provides the proper wave function renormalization for the amplitude we factor
to. To illustrate this let us first consider Goldstone bosons in an R⇠ gauge, with a free propagator i/(k2 � ⇠M̃2

R,i),

where M̃2
R,i = M2

R,i + iMR,i�R,i in a complex mass scheme [28, 29], and the introduction of �R,i needs to be added
back as additional insertions of two-point functions. This does not provide any change to our main argument. The
propagators of the physical scalar can be obtained by putting ⇠ = 1. If the scalar has a one-particle irreducible
two-point function �i⌃S(k2), the resummed propagator is

1

(qi +Ki,s)2 � ⇠M̃2
R,i � ⌃S((qi +Ki,s)2)

=

⇢ 1
2pi·Qi,s

1
1�⌃0(M2

i )
+O(�) ⇠ = 1 and ⌃S(k2) = ⌃(k2)

O(�) otherwise
(23)

where the physical and renormalized (complex) mass relate as M2
i = M̃2

R,i + ⌃(M
2
i ) for the boson in question. Thus

depending on how the unphysical scalar’s self energy and the gauge parameter relate to each other, the scalars will
contribute at leading power along with their related vector bosons, or not. We will investigate this in more detail in
the future. The simplest non-scalar case to consider is that of a massive gauge boson. In an R⇠ gauge their numerator
reads

V µ⌫(qi +Ki,s,Mi) = �⌘µ⌫ + (1� ⇠)
(qi +Ki,s)µ(qi +Ki,s)⌫

(qi +Ki,s)2 � ⇠M2
i

. (24)

2

amplitude as a vector in the space of quantum numbers (color, isospin, hypercharge and spin), we can write it as

|M{fi}n,{gi}m
({qi}n; {ki}m)i =

X

{f 0
i}n

X

s

R
{f 0

i}n

s;{fi}n,{gi}m
({qi}n; {ki}m)

Y

i2hs

Pi(qi +Ki,s,Mi)

(qi +Ki,s)2 �M2
i

|M{f 0
i}n

({Pi}n)i (1)

in which Pi represents the propagator numerator of the
most o↵-shell line i as an operator in the space of the
involved quantum numbers, and Rs encodes the remain-
ing structure we intend to factor from the hard process
amplitude.

The factorization eq. (1), which is an exact identity, is
depicted diagrammatically below for the case of a single
exchange (Ki,s = +k, Kj,s = �k)

Pi = qi +Ki,s qi

qjPj = qj +Kj,s

k
Mi

Mj

mi

mj

. (2)

Our aim is to identify when, in a very general set-
ting, this amplitude factors in a systematically expand-
able way onto an on-shell hard amplitude after isolating
external sub-diagrams as above, and how we can con-
struct bases for the space of quantum numbers such that
we can express the abstract operators in a concrete fash-
ion to iterate virtual exchanges and emissions in the so-
lution to an evolution equation of the amplitude. The
parametrization of the kinematics is complicated by the
mass-shell conditions. We consider q2i = m2

i , while the
mass of the flavor of the most o↵-shell lines usually is
referred to as Mi, and these masses refer to physical, on-

shell masses, a choice which will provide us with a fac-
torization of physical, renormalized S-matrix elements.
On top of this, we will need to allow for the possibility
to implement recoil such as to respect overall energy-
momentum conservation among the momenta involved.
This motivates to re-parametrize the momenta in terms
of an auxiliary, light-like vector ni,s as

Kµ
i,s = ⇤

µ
⌫

�
Q⌫

i,s + �i,s n⌫
i,s

�
(3)

qµi = ⇤µ
⌫

✓
↵p⌫i +

(1� ↵2)M2
i + pi ·Qi,s

2↵ ni,s · pi
n⌫
i,s

◆
�Kµ

i,s

where pi (with p2i = M2
i ) is the transformed on-shell

momentum we would like to assign to line i after factor-
ization (i.e., directly right of the gray blob in eq. (2)).
The momentum Qi,s is used to determine our unresolved
limits for i 2 hs, and Qi,s = 0, Mi = mi if i /2 hs is not

participating in the unresolved dynamics. The parameter
�i,s is determined such that q2i = m2

i , and ⇤ is a proper
orthochronous Lorentz transformation and — as the pa-
rameter ↵ — relates to maintaining energy-momentum
conservation and phase space factorization as outlined
in the supplemental material. Our mapping is designed
such that the o↵-shell propagators are directly given in
terms of

(qi +Ki,s)
2
�M2

i = 2pi ·Qi,s , (4)

and we consider the expansion

pi ·Qi,s ⌧ pi · ni,s ⌘ Si,s (5)

around the on-shell limit of the o↵-shell line i. It is im-
portant to stress that we do not consider di↵erent pi
for di↵erent classes of diagrams s, while we might want
to exploit di↵erent parametrizations of unresolved mo-
menta if needed. In the on-shell limit above we find
(see supplemental material) that ↵ = 1 + O(�), where
� ⇠ pi ·Qi,s/Si,s is our counting parameter which simul-
taneously enforces the above hierarchy for all hard lines
i. The o↵-shell momentum in the propagator then also
obeys qi+Ki,s = ⇤pi+O(�), and a similar mapping can
be analyzed for those lines which are not participating in
any exchange or emission. Introducing an operator cor-
responding to the on-shell wave functions of the particles
we consider,

hs| ̄(q,m)|s0i =  ̄s(q,m)�ss0 , (6)

i (q,m) ̄(q,m) = P(q,m)|q2=m2 , (7)

we find that we can factor the amplitude at leading power
in � as

|M̃({qi}n; {ki}m)i '
X

s

Ss({q}i2hs , {ki}m)|M̃({pi}n)i , (8)

in terms of the on-shell amplitude with n external hard
lines, |M̃i =

Q
i  ̄i|Mi, carrying momenta {pi}n (we

have suppressed the flavor labels for the sake of read-
ability), where the factored contribution is given by the
operator

Momentum mappings to systematically 
factor renormalised matrix elements.

Find a basis of spin structures, 
together with isospin and colour.

Factorizing momentum mappings

4

resummation algorithms thus appears in a diferent form,
though this poses no conceptual problem if one distin-
guishes subtraction terms for real and virtual corrections
separately, along with a careful analysis of measurements
[].

A complete flow picture – Colour flow can be treated
as extensively studied in [], which we will not discuss any
further. The flow of weak isospin is more interesting and
we propose to keep this separate from the hypercharge,
for which no flow picture is needed due to the Abelian na-
ture. Technically, W exchanges (as well as the accompa-
nying charged Goldstone bosons) will operate much like
the U(N) contribution in the colour flow picture, whereas
Z or � exchanges will not alter the flows, similarly to the
trace condition (or “singlet”) gluon. It is important to
note that at this level Z/� exchanges appear at the same

footing in terms of (flow) operator matrix elements, and
as such we already treat the broken and unbroken phase
not separate from each other but unified in one evolu-
tion operator. We remark that unlike in the QCD case
we can not demonstrate that ghost contributinos will not
be present in the strict soft limit [1]. Our flow picture
should hence also account for them, though they can be
represented in a similar way to the gauge bosons they
correspond to. More details are summarized in the sup-
plemental material in Sec. .

The chiral nature of the electroweak interaction, and
the relevance of spin correlations, require a much more
important flow concep which we will introduce now: In
analogy with performing resummation in color space us-
ing a spanning set of color flows, we will prove that the
resummation evolution in Lorentz space can be described
using “chirality flows”. We thus build on the chirality-
flow formalism [2, 3], which allows the immediate trans-
lation of Feynman diagrams to spinor products.

We therefore describe particles in terms of their chi-
rality, and expect a decomposition from the full ampli-
tude (with both left- and right helicity) to chirality to
have been performed before the start of the evolution.
To be precise we want to choose a basis for the ampli-
tude vector written as a vector in our abstract formalism
above,

Q
i  ̄i|M̃i, where |M̃i is the amplitude without

the external wave functions (cf. a color flow without as-
signed external colors) and we will work out the action
of the factored diagrams using Eq. 7. In this way, we
will gain full analytic control of the Lorentz structure.
Denoting a left-chiral fermion with momentum pi with
|i] = i (or [i| = i ) and a right-chiral

fermion with |ji = j (or hj| = j ) we

want to consider the e↵ect of (say) a photon exchange
between two — for now massless — fermions.

Denoting the Lorentz structure pµ�µ with a “mo-

mentum dot” pµ�µ
p

, and similarly pµ�̄µ =

p
, we have (ignoring details and partons not in-

volved) the chiral structure (drawn in black on top of a
gray Feynman diagram) to the left below for two left-
chiral fermions and the structure to the right if i is left-
chiral, and j is right-chiral

i

j

i

j
. (13)

Here, to the left, the dashed line connecting the outgoing
particles i and j is the graphical representation of the
spinor inner product [j i]. After the exchange, the parti-
cles i and j are thus connected by a “chirality flow”. The
momentum dots connect somewhere within the blob and
(naively) complicates the chirality structure of the rest
of the diagram. However, as we will show in the supple-
mental material a complete set of chirality-flow structures
connecting the external spinors can be given by consid-
ering the contractions

p

p

A

A (14)

for some four-vector p contracted with �/�̄, and some
antisymmetric rank two tensor Aµ⌫ contracted with
1
2 (�

µ�̄⌫
� �⌫ �̄µ), and for connections between all pairs

of external particles. Before the exchange, the particles
i and j in eq. (13) were thus contracted to some (other)
external particles via these structures.
After the exchange, the chirality-flows (of the type in

eq. (14)) to which i and j were contracted, will be con-
nected to each other via the double momentum-dot struc-
ture in the left diagram. This gives rise to structures with
up to 2+2+2 Lorentz index contractions (in case i and
j connected to two di↵erent chirality-flow structures of
type ). As seen in the supplemental material
all these structures can be simplified back to a linear
combinations of the flows in eq. (14).
In case the external particles have opposite chirality,

we will have a chirality flow of the type to the right in
eq. (13), giving rise to two momentum dot structures
of up to 2+1 Lorentz indices (if i and j were originally
chirality-flow connected to say i0 and j0 respectively via
i0 i , j j0 or connected to each other

via j i ), which again can be simplified back to
the cases in eq. (14).
We will now discuss the complications to this picture

brought about by fermion mass, non-abelian vertices, ex-
ternal photons, external massive vector bosons and ex-
change of fermions or scalars.
For fermion masses, we note that external massive

fermions have to be decomposed into left and right-chiral

11

For example, using eq. (31) along with eq. (42) the decompositions of as well as
are straightforwardly obtained,

j
A12 p3

k
p4

= p3 · p4 k j
A12

+
A12A12[p3, p4]

k j (44)

k j
p1 p2 p3 p4

= p1 · p2 p3 · p4 k j + p3 · p4 k j
[p1, p2]

+ p1 · p2 k j
[p3, p4]

+
[p1, p2][p3, p4]

k j

where the double box structures may be expanded out using eqs. (42) and (43).
Similarly structures with in total five index contractions ( , , as well as

versions with dotted and undotted lines interchanged, and versions with arrows swapped) and 6 contractions (only
and a versions with dotted and undotted lines interchanged) can be obtained.

In this way, the chirality-flow state obtained after several exchanges can iteratively be built up, and we obtain a
chirality-flow decomposition analogous to the color-flow decomposition, but with the di↵erence that there are three
types of “flows” connecting partons, and that particles and anti-particles enter on equal footing.

To illustrate this we consider consider an example of intermediate complexity

i

j

i0

j0

A12 p3
p4 , (45)

which, at the level of the basis vectors has the e↵ect,

i0

j0

i
j ! (�2(A12)µ1µ2(A34)

µ1µ2 + i✏µ1µ2µ3µ4(A12)µ1µ2(A34)µ3µ4)

i0

i

j

j0

+A0

i0

i

j

j0

(46)

with A34µ⌫ =
1

2
(p3µp4⌫ � p3⌫p4µ) and A0

µ⌫ = p3 · p4A12µ⌫ + 2
⇣
(A12)µ⌘(A34)

⌘
⌫ � (A12)⌫⌘(A34)

⌘
µ

⌘

as seen by expanding out eqs. (42) and (43) in eq. (45).
In the light of the above description, combined with the chirality-flow Standard Model Feynman rules [33], it is

clear that scalar exchange, involving no chirality-flow line, does not change the chirality flow (but alters the involved
momenta). Fermion exchange adds one (from the slashed momentum in the propagator) or zero (from a potential
mass term) momentum dots to existing chirality-flow structures [33]. For the mass term, the line type of the fermion
line is left unchanged, but the chirality-flow structure will change since (for example) chirality-flow lines which are
not originally connected may become connected. External massive fermions have to be decomposed into left- and
right-chiral states, as for example in [33].

For the non-abelian vertices, we recall that they may be decomposed into momentum-dot structures [32, 33],
and therefore do not add to the number of possible chirality-flow structures. (If a W±, instead of a photon, is
exchanged, the chiral structure is rather simplified.) For external gauge bosons, we note that positive and negative
helicity spin-1 particles appear as one dotted and one undotted line with opposite directions, whereas the longitudinal
polarization of a massive vector boson can be expressed in terms of a momentum dot [33]. External gauge bosons do,
however, somewhat complicate the description, since they may add a dependence on a reference gauge vector (which
is unphysical in the massless case, and related to the direction in which spin is measured in the massive).

In view of the above, we conclude that the flow basis in eq. (14) is applicable to resummation of all chiral structures
following after exchange of any known particle. This is the analogue for the color-flow basis.
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For example, using eq. (31) along with eq. (42) the decompositions of as well as
are straightforwardly obtained,

j
A12 p3

k
p4

= p3 · p4 k j
A12

+
A12A12[p3, p4]

k j (44)

k j
p1 p2 p3 p4

= p1 · p2 p3 · p4 k j + p3 · p4 k j
[p1, p2]

+ p1 · p2 k j
[p3, p4]

+
[p1, p2][p3, p4]

k j

where the double box structures may be expanded out using eqs. (42) and (43).
Similarly structures with in total five index contractions ( , , as well as

versions with dotted and undotted lines interchanged, and versions with arrows swapped) and 6 contractions (only
and a versions with dotted and undotted lines interchanged) can be obtained.

In this way, the chirality-flow state obtained after several exchanges can iteratively be built up, and we obtain a
chirality-flow decomposition analogous to the color-flow decomposition, but with the di↵erence that there are three
types of “flows” connecting partons, and that particles and anti-particles enter on equal footing.

To illustrate this we consider consider an example of intermediate complexity

i

j

i0

j0

A12 p3
p4 , (45)

which, at the level of the basis vectors has the e↵ect,

i0

j0

i
j ! (�2(A12)µ1µ2(A34)

µ1µ2 + i✏µ1µ2µ3µ4(A12)µ1µ2(A34)µ3µ4)

i0

i

j

j0

+A0

i0

i

j

j0

(46)

with A34µ⌫ =
1

2
(p3µp4⌫ � p3⌫p4µ) and A0

µ⌫ = p3 · p4A12µ⌫ + 2
⇣
(A12)µ⌘(A34)

⌘
⌫ � (A12)⌫⌘(A34)

⌘
µ

⌘

as seen by expanding out eqs. (42) and (43) in eq. (45).
In the light of the above description, combined with the chirality-flow Standard Model Feynman rules [33], it is

clear that scalar exchange, involving no chirality-flow line, does not change the chirality flow (but alters the involved
momenta). Fermion exchange adds one (from the slashed momentum in the propagator) or zero (from a potential
mass term) momentum dots to existing chirality-flow structures [33]. For the mass term, the line type of the fermion
line is left unchanged, but the chirality-flow structure will change since (for example) chirality-flow lines which are
not originally connected may become connected. External massive fermions have to be decomposed into left- and
right-chiral states, as for example in [33].

For the non-abelian vertices, we recall that they may be decomposed into momentum-dot structures [32, 33],
and therefore do not add to the number of possible chirality-flow structures. (If a W±, instead of a photon, is
exchanged, the chiral structure is rather simplified.) For external gauge bosons, we note that positive and negative
helicity spin-1 particles appear as one dotted and one undotted line with opposite directions, whereas the longitudinal
polarization of a massive vector boson can be expressed in terms of a momentum dot [33]. External gauge bosons do,
however, somewhat complicate the description, since they may add a dependence on a reference gauge vector (which
is unphysical in the massless case, and related to the direction in which spin is measured in the massive).

In view of the above, we conclude that the flow basis in eq. (14) is applicable to resummation of all chiral structures
following after exchange of any known particle. This is the analogue for the color-flow basis.
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resummation algorithms thus appears in a diferent form,
though this poses no conceptual problem if one distin-
guishes subtraction terms for real and virtual corrections
separately, along with a careful analysis of measurements
[].

A complete flow picture – Colour flow can be treated
as extensively studied in [], which we will not discuss any
further. The flow of weak isospin is more interesting and
we propose to keep this separate from the hypercharge,
for which no flow picture is needed due to the Abelian na-
ture. Technically, W exchanges (as well as the accompa-
nying charged Goldstone bosons) will operate much like
the U(N) contribution in the colour flow picture, whereas
Z or � exchanges will not alter the flows, similarly to the
trace condition (or “singlet”) gluon. It is important to
note that at this level Z/� exchanges appear at the same

footing in terms of (flow) operator matrix elements, and
as such we already treat the broken and unbroken phase
not separate from each other but unified in one evolu-
tion operator. We remark that unlike in the QCD case
we can not demonstrate that ghost contributinos will not
be present in the strict soft limit [1]. Our flow picture
should hence also account for them, though they can be
represented in a similar way to the gauge bosons they
correspond to. More details are summarized in the sup-
plemental material in Sec. .

The chiral nature of the electroweak interaction, and
the relevance of spin correlations, require a much more
important flow concep which we will introduce now: In
analogy with performing resummation in color space us-
ing a spanning set of color flows, we will prove that the
resummation evolution in Lorentz space can be described
using “chirality flows”. We thus build on the chirality-
flow formalism [2, 3], which allows the immediate trans-
lation of Feynman diagrams to spinor products.

We therefore describe particles in terms of their chi-
rality, and expect a decomposition from the full ampli-
tude (with both left- and right helicity) to chirality to
have been performed before the start of the evolution.
To be precise we want to choose a basis for the ampli-
tude vector written as a vector in our abstract formalism
above,

Q
i  ̄i|M̃i, where |M̃i is the amplitude without

the external wave functions (cf. a color flow without as-
signed external colors) and we will work out the action
of the factored diagrams using Eq. 7. In this way, we
will gain full analytic control of the Lorentz structure.
Denoting a left-chiral fermion with momentum pi with
|i] = i (or [i| = i ) and a right-chiral

fermion with |ji = j (or hj| = j ) we

want to consider the e↵ect of (say) a photon exchange
between two — for now massless — fermions.

Denoting the Lorentz structure pµ�µ with a “mo-

mentum dot” pµ�µ
p

, and similarly pµ�̄µ =

p
, we have (ignoring details and partons not in-

volved) the chiral structure (drawn in black on top of a
gray Feynman diagram) to the left below for two left-
chiral fermions and the structure to the right if i is left-
chiral, and j is right-chiral

i

j

i

j
. (13)

Here, to the left, the dashed line connecting the outgoing
particles i and j is the graphical representation of the
spinor inner product [j i]. After the exchange, the parti-
cles i and j are thus connected by a “chirality flow”. The
momentum dots connect somewhere within the blob and
(naively) complicates the chirality structure of the rest
of the diagram. However, as we will show in the supple-
mental material a complete set of chirality-flow structures
connecting the external spinors can be given by consid-
ering the contractions

p

p

A

A (14)

for some four-vector p contracted with �/�̄, and some
antisymmetric rank two tensor Aµ⌫ contracted with
1
2 (�

µ�̄⌫
� �⌫ �̄µ), and for connections between all pairs

of external particles. Before the exchange, the particles
i and j in eq. (13) were thus contracted to some (other)
external particles via these structures.
After the exchange, the chirality-flows (of the type in

eq. (14)) to which i and j were contracted, will be con-
nected to each other via the double momentum-dot struc-
ture in the left diagram. This gives rise to structures with
up to 2+2+2 Lorentz index contractions (in case i and
j connected to two di↵erent chirality-flow structures of
type ). As seen in the supplemental material
all these structures can be simplified back to a linear
combinations of the flows in eq. (14).
In case the external particles have opposite chirality,

we will have a chirality flow of the type to the right in
eq. (13), giving rise to two momentum dot structures
of up to 2+1 Lorentz indices (if i and j were originally
chirality-flow connected to say i0 and j0 respectively via
i0 i , j j0 or connected to each other

via j i ), which again can be simplified back to
the cases in eq. (14).
We will now discuss the complications to this picture

brought about by fermion mass, non-abelian vertices, ex-
ternal photons, external massive vector bosons and ex-
change of fermions or scalars.
For fermion masses, we note that external massive

fermions have to be decomposed into left and right-chiral

Electroweak bosons now mix 
different chiral basis states.
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Main lines of current parton shower research

Shower development is a broad field, fortunately back on the agenda.
Hadronziation is not exactly shower development, but enters at a similar level,

Matching/Merging (N)NLL accuracy

Amplitude evolution Hadronization

Interactions beyond QCD

See Schumann’s talk. Always needs to 
accompany shower development.

Comprehensive, factorized picture 
and construction of algorithms.

Control and demonstration of 
perturbative accuracy.

Remaining focus of this talk:

• Perturbative accuracy
• Beyond probabilistic algorithms.
• Factorisation and hadronization.

Description of electroweak effects 
and BSM scenarios.

Genuine quantum effects: 
not limited to subleading colour.



Hadronization in general purpose event generators
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Figure 18. The ⇤/K0
S ratio with respect to p? (left panel) and |y| (right panel), with data

from CMS [54]. The models shown here are using Pythia 8.311 with and without the gluon
approximation allowed for pearl-on-a-string cases. All events are 7 TeV NSD events, where Pythia
simulations have a lifetime cut of ⌧max = 10 mm/c and no p? cuts on final state particles.

of the junction diquark in the updated modelling is more stable and results in fewer errors3.
Gluon Approximation for Light Pearls: Next we consider the effect of using the

gluon-approximation approach for fragmenting light-flavoured pearl-on-a-string cases. Note
here we neglect the bottom-quark case as the gluon approximation only makes sense in light
quark cases, cf. the arguments given in sec. 3.2.2. The aim of the gluon approximation is to
capture the effects of the motion of the light pearl quark, which as seen in fig. 7 traverses
a similar distance over time pNormJunction as a massless gluon kink with the same 3-
momentum. This should ideally mimic the p? from the pearl being propagated out along
the two non-pearl junction legs, which in turn should mimic the curve in the strings better
than approximating each junction leg as half of a dipole string.

As the p? in this case would be explicitly propagated along the string by the gluon kink,
one would expect a harder p? spectrum overall in comparison to the standard fragmentation
approach, which is evident in the top left panel of fig. 15. The p? spectrum given the gluon
approximation still remains below that of the old modelling. Interestingly the hadron
multiplicity is higher than the standard fragmentation approach and even becomes higher
than the old modelling as seen in the bottom left panel of fig. 15. Given a higher p? and
nhad, this means reduced momenta longitudinally. This is somewhat surprising and appears
to be a consequence of the modelling of gluon kinks. Whether this achieves the desired result
is somewhat difficult to determine as there is ambiguity in how well one can approximate
a massive pearl as a massless gluon. We retain this case mostly out of theoretical interest
and to allow to explore modelling ambiguities.

3
Typically of the kind “StringFragmentation::fragment: stuck in joining”, which in Pythia

8.311 is now encountered approximately a factor 15 less (for dijet events at LHC energies).

– 35 –

[Altmann, Skands — ’24] [Kerbizi, Lönnblad, Martin — ’24]

3

correlation between the transverse spin states of q and q̄

originated by the tensor polarization of the �
⇤.

The spin density matrices of q and q̄ are obtained from
the joint spin density matrix as

⇢(q) = Trq̄ ⇢(q, q̄), ⇢(q̄) = Trq ⇢(q, q̄). (2)

Inserting Eq. (1) in Eq. (2), it is ⇢(q) = 1q/2 and ⇢(q̄) =
1q̄/2, meaning that q and q̄ are not separately polarized.
Rather, their spin states are correlated.

q

hρ(VM)D(VM)

T!→#$!%

q)

H

T!&→'$!&%

ρ(q, q%)

q′q)′

FIG. 2. Representation of the polarized string fragmentation
process in StringSpinner.

C. The string fragmentation of the qq̄ pair

The string fragmentation of the qq̄ pair is simulated
by Pythia as a recursive process of elementary quark
splittings q ! h+ q

0 and elementary antiquark splittings
q̄ ! H + q̄

0, as shown in Fig. 2. The splittings are taken
from the q or the q̄ side randomly with equal probability.

In the quark splitting q ! h + q
0 the emitted hadron

h has four-momentum p, while the leftover quark q
0

has four-momentum k
0. Momentum conservation yields

p = k � k
0, where k is the four-momentum of the frag-

menting quark q. The transverse momenta of q, h and q
0

with respect to the string axis (i.e. the qq̄ relative mo-
mentum in the CMS) are indicated by kT, pT

and k0
T
,

respectively. They are related by p
T
= kT � k0

T
.

In the antiquark splitting q̄ ! H + q̄
0, the emit-

ted hadron H has four-momentum P while the leftover
antiquark q̄

0 has four-momentum k̄
0. Four-momentum

conservation implies P = k̄ � k̄
0, where k̄ is the four-

momentum of the fragmenting antiquark q̄. The trans-
verse momenta of q̄, H and q̄

0 with respect to the string
axis are defined as k̄T, PT and k̄

0
T
, respectively. They

are related by k̄
0
T
= k̄T �PT.

The h and H mesons are restricted to be PSMs and
VMs, since only these are present in the string+3

P0

model of Ref. [26].
To implement the spin e↵ects for an e

+
e
� annihila-

tion event, we start from the previous implementation
of StringSpinner [24] and use the string+3

P0 model for
e
+
e
� annihilation in Ref. [26]. The description of the

involved steps in the simulation of e+e� annihilation in
Pythia is as follows.

1. Splitting from the q side

Let us suppose the first splitting is taken from the q

side. In the string+3
P0 model the splitting q ! h+ q

0 is
described by the 2⇥ 2 splitting matrix [26]

Tq0,h,q = (. . . )
⇥
µ+ �

q

z
�q · k0

T

⇤
⇥ �(h). (3)

The dots indicate the scalar term of the splitting ampli-
tude describing the energy-momentum sharing between
h and q

0, already implemented in Pythia. The quan-
tity µ = Re(µ) + i Im(µ) is the complex free parameter
called “complex mass”, accounting for the 3

P0 state of
quark-antiquark pairs produced at the string breakups.
The vector �q = (�q

x
,�

q

y
,�

q

z
) is the vector of Pauli matri-

ces in the QHF. The matrix �(h) describes the coupling
of q and q

0 with h. It is �(h) = �
q

z
for h = PSM, and

�(h) = GT �q
�
q

z
·V⇤

T
+1q GL V

⇤
L
for h = VM. The vector

V = (VT, VL) is the linear polarization of the VM in the
QHF. The free parameters GT and GL describe the cou-
pling of q and q

0 with a transversely and a longitudinally
polarized VM, respectively.

To introduce the spin e↵ects in the splitting q ! h+q
0

according to the string+3
P0 model, the hadron h emitted

by Pythia is rejected if it is not a PSM or a VM. A new
one is thus generated by Pythia, which is accepted with
the probability

wh(k
0
T
;SqT) =

Trqq̄
h
Ta

q0,h q
⇢(q, q̄)Ta †

q0,h q

i

Trqq̄
h
Tb

q0,h q
Tb †

q0,h q

i (4)

=
1

2


1 + c

2 Im(µ)

|µ|2 + k02
T

SqT ·
�
ẑq ⇥ k0

T

��
,

where Ta

q0,h,q = T
a

q0,h,q⌦1q̄. Here the splitting amplitude
for VM emission is written as Tq0,h,q = Ta

q0,h,q V
⇤
a
, with

a = x̂q, ŷq
, ẑq labelling the linear polarization state of

the VM in the QHF. A summation over the repeated
indices is understood. If h = PSM, the indices a, b are
omitted. wh can be interpreted as the ratio between the
probabilities for a polarized and an unpolarized splitting
q ! h+ q

0 in the string+3
P0 model.

The second line in Eq. (4) is obtained by using the ex-
pression for the splitting matrix in Eq. (3). The e↵ect
of wh is to introduce correlations between the transverse
momentum p

T
of h and the transverse polarization SqT

of q, namely the transverse part of Sq = Tr�q
⇢(q) [see

Eq. (2)]. It thus changes the azimuthal distribution of h
produced by Pythia to emulate the spin e↵ects of the
string+3

P0 model and, for a non-zero SqT, it is responsi-
ble for the Collins e↵ect in the emission of h. The factor
c is �1 for a PSM and fL = |GL|2/(2|GT|2 + |GL|2) for
a VM, and governs the relative sign of the Collins e↵ect
for PSM and VM emissions. The parameter fL describes
the fraction of longitudinally polarized VMs.

[Gieseke, Kiebacher, Plätzer, Priedigkeit — in progress] 

BELLE data for di-hadron
mass spectrum improve for
large z with Preliminary
results

However still very inefficient
rejection sampling for large
mass clusters (LEP
manageable; LHC way too
slow)
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Figure: Thrust T > 0.8, ~p1 · ~p2 > 0 and z = 2(E1+E2)p
s [Seidl et al. 2017b]
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Figure 2. Efficiency-corrected decay rates of the D+
s1 meson: (left panel) displays the Ds1 → D⋆+K0

decay mode rates as a function of lab-frame angle θ. (right panel) shows the same but in the D+
s1

center-of-mass frame, denoted by θ′. Data sourced from ref. [29]. Red histograms represent Herwig7.3.0
predictions with only the SpinHadronizer active, while blue histograms indicate the combined effect of
SpinHadronizer and HQETDecayer classes. Green histograms correspond to Herwig 7.2.3 predictions,
which lack HQET enhancements.

In figures 2 and 3, we investigate the efficacy of using HQET and spin-flavor symmetry
to predict e−e+ data concerning polarisation-sensitive measurements of the Ds1 meson
decays. The figures display normalised, efficiency-corrected rates for the Ds1 → D⋆+K0

decay mode as functions of different decay angles. We evaluate the contributions of the
SpinHadronizer and HQETDecayer classes in Herwig-7.3.0, activating them individually to
study their distinct effects on the predictions. For comparison, we also include predictions
from the previous version, Herwig-7.2.3, which lacks both spin-flavor symmetry and HQET
enhancements. As anticipated, Herwig-7.2.3 fails to accurately predict either the existence
or the behaviour of angle-dependent decay rates. On the other hand, Herwig-7.3.0 correctly
predicts the mean values of the s-wave contributions when only the SpinHadronizer class is
activated, but does not capture the full angle-dependent behaviour. Importantly, with both
the SpinHadronizer and HQETDecayer classes enabled, Herwig-7.3.0 achieves an excellent
agreement with the observed data.

For heavy baryons, we validate our implementation of HQET and spin-flavor symmetry
by comparing with measurements of the average polarisation of Λb baryons in hadronic Z0

decays at LEP, as reported by the ALEPH [43] and OPAL [32] collaborations, shown in
figure 4. Notably, although the predictions from Herwig-7.2.3 are small yet distinct from zero,
the combined use of SpinHadronizer and HQETDecayer in Herwig-7.3.0 leads to predictions
nearly an order of magnitude larger, while consistent with the experimental uncertainty.

After incorporating modifications to the hadronization and decays of heavy excited
mesons and heavy baryons in Herwig 7.3.0, it is advisable to revisit the production rates
of these hadrons in the simulation. This ensures that the framework remains consistent,
particularly if the new modifications could significantly influence kinematic distributions or
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[Masouminia, Richardson — ’23]

[Chahal, Krauss — ’22]

SciPost Phys. 13, 019 (2022)

usually this implies that (p1 + p2)2 < (mf1 +mf̄2)
2. In this case, SHERPA reshuffles mo-

menta from another singlet system or one of the already produced clusters such that the
light system can directly transfer to the lightest allowed hadron.

2.1.8 Distributions characterising cluster formation

In Fig. 1 we exhibit two distributions that characterise this initial step of the cluster fragmen-
tation model, namely, firstly, the distribution of primary cluster masses in the left panel, and
secondly their multiplicity in the right panel. They have been obtained after the CSShower,
with no multijet merging and using the tuned parameters of the cluster fragmentation1. The
tuned values of the parameters are given in Appendix B.

Figure 1: Mass (left panel) and multiplicity distributions (right panel) of primary
clusters and hadrons in e+e� ! hadrons events at varying centre-of-mass energies.

The cluster mass distribution follows what is expected from the distribution of partons
produced in the parton shower, with a peak at about 1 GeV, anticipated from the parton shower
cut-off p?,0 = 1 GeV. As there are more and potentially more massive clusters produced at
higher energies, this peak is less pronounced at higher energies, compensated by a higher
tail of the distribution. In fact, it is entirely possible that, due to its probabilistic nature, the
parton shower does not emit a single parton, and, consequently, there would be only a single
primary cluster with the full centre-of-mass energy of the qq̄ pair as mass. We also observe
that mass thresholds of heavy quarks and, more faintly, of diquarks, are visible in the overall
mass distribution. While in particular the bottom and less so the charm thresholds are fairly
pronounced at the Z-pole, Ec.m. = 91.2 GeV, they are not as prominent at Ec.m. = 1000 GeV. This
is due to two effects. First of all, due to their coupling, down-type quarks, including b quarks,
are more copiously produced at the Z pole compared to the up-type quarks, thereby explaining
the somewhat larger size of the bottom peak compared to the charm-bump at the Z pole.
Secondly, the parton shower produces mainly gluons, while the production of heavy quark
pairs in gluon splitting is suppressed by their mass. As a consequence, there are proportionally
more light flavours and more light clusters produced which suppresses the significance of the
heavy quark thresholds.

1We have also set all heavy mesons and baryons stable in the simulation to suppress the fragmentation in their
possible parton-level decays in the simulation.

7
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Idea: Again describe cluster decay by an "effective" matrix element
Which matrix element? ) t-channel like to preserve local parton-hadron duality
Avoid hard transition from CF ! CD

|MCD(p1, p2 ! ph1 , ph2)|2 / 1
[(p1 � p3)2 � M2

S]
2 / 1

[A � cos(✓)]2
,

with A > 1 if MS = max{(m1 � mh1), (m2 � mh2)}
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New Cluster Decay Kinematics

Back to an active field

• Colour reconnection
• Spin physics
• Kinematics and low 

energy hadronization



[Bellm, Lönnblad, Plätzer, Prestel, Samitz, Siodmok, Hoang — Les Houches 2017]

shower 
variation

re-fitted 
model

Why we should worry about PS x Hadronization



A factorised approachground, we can adopt the following analysis of the cross section, which we here present in

a more sketchy way with details to be addressed later:

� =
X

n,m

Z Z
Trn [MnUnm] d�mu(�m) (8.1)

is the general cross section we would strive to calculate, in terms of m experimentally

observed particles from which we can calculate an observable u(�m), and the trace refers

to a sum over degrees of freedom within the n constituent particles from which we could

build up the m observed particles. Up until now we have collectively addressed Un =P
mUnmu(�m) as the measurement function. The above clearly must be a consequence of

a factorization theorem which would start from an S matrix element of the form

|hf |S|ii|2 =
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m-(truncated, on-shell)

(8.2)

where the sum over the field indices ↵,� does consitute Trn, and the relevant Green’s

function is a tensor in all of these indices, subject to choosing a basis |↵} of colour and spin

(which we here have deliberatly denoted with a curly bracket notation to distinguish them

from the true quantum mechanical states): |mi = |ii|fi is the product of initial and final

states involved in the definition of the S matrix element, and h0|�↵(pn)|mi are collectively

denoting the external wave functions, i.e. in general Bethe-Salpeter amplitudes, for the

states of interest as dictated by the interpolating fields �↵ we have chosen for the elementary

or possibly composite external states. Rm is the product of the corresponding wave function

renormalizations for the final state m, and the integrations over the o↵-shell constituent

momenta are constrained such that their sum equal the observed final state momenta Pi.

The truncation of the Green’s functions is to be understood such that iterations of Nm-

PI-irreducible legs which combine into a composite state of Nm constituents have been

truncated. Momentum conservation of the observed particles then leads to momentum

conservation among the constitutent particles. Our current formalism has then assumed

that the result will be dominated by those contributions which have all partonic lines put

on-shell,

{↵|Mn|�} = (Rn,↵Rn̄,�)
1/2 G↵(pn)Ḡ
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���
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, (8.3)

and

{�|Unm|↵} =
Rm

(Rn,↵Rn̄,�)1/2
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where each of the Pi is given by the sum of constituents
P

j pij and the two factors are

then convoluted by momentum integrations
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calculate building 
blocks

derive evolution

construct model 
response

constrain by data

[Plätzer —  ‘22]

Shower cutoff has central 
role as factorisation scale:

• Shower/hadronization 
constrained by 
renormalisation group

• Formulated in amplitude 
level evolution, contains 
event generators in 
large-N limit.



A factorised approach

[Plätzer —  ‘22]

Q

𝝠

𝝁S
Systematic construction of amplitude evolution algorithms.

Subtract IR divergencies 
in unresolved regions

implications of the shear presence of a non-trivial Un are: we analyse to what extent we can

use the anticipated factorization to consistently construct evolution equations – and this

mainly means finite, iterative algorithms – to build up the hard scattering operator and the

measurement operator (which we can think of as anything in between a jet measurement,

fragmentation function, or a completely exclusive hadronization model), subject to a given

class of observables. Any finite algorithm, if it shall be based on events of fixed multiplicity,

necessarily involves an infrared resolution. The presence of this resolution, e.g. through

an infrared cuto↵ scale µS , shall be our starting point. We will devise re-definitions (or

renormalization transformations) from Mn and Un,

MnZ
n
g = Zn [A(µS), µS ] Un = Xn [S(µS), µS ]

onto finite density operators A(µS) = (A0(µS),A1(µS), ...) and e↵ective measurement

operators S(µS) = (S0(µS),S1(µS), ...) such that the cross section is invariant in the sense

that

X

n

↵n
0

Z
Tr [MnUn] d�n =

X

n

↵n
S

Z
Tr [Zn [A(µS), µS ]Xn [S(µS), µS ]] d�n =

X

n

↵n
S

Z
Tr [An(µS)Sn(µS)] d�n ,

where ↵0 = ↵SZg relates the bare and renormalized couplings, and µS is a resolution scale

(in fact, as we demonstrate below, a collection of resolutions scales), of which the final

cross sections needs to be independent in the same way as it is of the renormalization scale

(which we have supressed for simplicity in these introductory notes). Jet cross sections

would be recovered if Sn are the unit operators in colour space times a scalar measurement

function, and would then be represented by a scalar product matrix of overlaps of colour

states, see [4] for more details. The independence of the “bare” objects Mn and Un of the

scale µS will result in evolution equations for the An(µS) and Sn(µS), and also implies the

fact that the cross section is independent of the chosen resolution scale. Had we chosen

to work with vectors of density operators A rather their components An for each partonic

multiplicity, then the action of Z and X would in fact be matrices of colour charge operators

which are inverse to each other. While the former notation might look more transparent

on conceptual grounds, we here aim at a practical analysis, which is better based on the

density operators for individual partonic multiplicities and the cross feed between them,

mediated by the emission of additional partons. We should thus warn the reader that the

implementations of the re-definitions Z and X in the main text will appear in a more

complicated fashion than by representing them as simple linear operators acting on all the

density operators. However we exactly exploit the fact that X is inverse to Z, and we spell

out and prove this relation in very detail in the main text: We will actually determine

Z from X to be its inverse, possibly order-by-order in the strong coupling ↵S . X itself

needs to be determined to provide infrared subtractions to the hard density operator, after

ultraviolet renormalization, and its factorization properties. This step very much resembles

what happens in a fixed-order calculation in which infrared divergences are subtracted
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Re-arrange to resum 
IR enhancements
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ground, we can adopt the following analysis of the cross section, which we here present in

a more sketchy way with details to be addressed later:

� =
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n,m
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Trn [MnUnm] d�mu(�m) (8.1)

is the general cross section we would strive to calculate, in terms of m experimentally

observed particles from which we can calculate an observable u(�m), and the trace refers

to a sum over degrees of freedom within the n constituent particles from which we could

build up the m observed particles. Up until now we have collectively addressed Un =P
mUnmu(�m) as the measurement function. The above clearly must be a consequence of

a factorization theorem which would start from an S matrix element of the form

|hf |S|ii|2 =
X

↵,�

Rm

Z
[dp]n[dp̄]n̄

Y

i

�

0

@
niX

j=1

pij � Pi

1

A �

0

@
n̄iX

j=1

p̄ij � Pi

1

A

h0|�↵({p}n|{P}m)|mihm|�̄�({p̄}n̄|{P}m)|0i G↵(pn)Ḡ
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where the sum over the field indices ↵,� does consitute Trn, and the relevant Green’s

function is a tensor in all of these indices, subject to choosing a basis |↵} of colour and spin

(which we here have deliberatly denoted with a curly bracket notation to distinguish them

from the true quantum mechanical states): |mi = |ii|fi is the product of initial and final

states involved in the definition of the S matrix element, and h0|�↵(pn)|mi are collectively

denoting the external wave functions, i.e. in general Bethe-Salpeter amplitudes, for the

states of interest as dictated by the interpolating fields �↵ we have chosen for the elementary

or possibly composite external states. Rm is the product of the corresponding wave function

renormalizations for the final state m, and the integrations over the o↵-shell constituent

momenta are constrained such that their sum equal the observed final state momenta Pi.

The truncation of the Green’s functions is to be understood such that iterations of Nm-

PI-irreducible legs which combine into a composite state of Nm constituents have been

truncated. Momentum conservation of the observed particles then leads to momentum

conservation among the constitutent particles. Our current formalism has then assumed
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Hadronization (Cluster Fission) should be matched

Final non-perturbative scale (NP scale) interfaces
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Consequence: Cluster Fission is a perturbative
process similar to the parton shower. Only Cluster
Decay is non-perturbative (could be obtained from
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Fig. 7 The transverse momentum spectra for π+ + π− and p + p̄ as measured by ALICE at
√
s = 7 TeV [25] in the very central rapidity region

|y| < 0.5

splittings) and use the old colour reconnection model and a
run where we use both extensions and the parameters that we
obtained from the tuning (new model).

In Fig. 7 we show the p⊥ distributions of π and K in the
central rapidity region as measured by ALICE [25] and in
Fig. 8 the corresponding p+ p̄ distribution. While all options
improve the description of pions we see that the K distribu-
tion can only be described if we take the additional source
of strangeness into account. The proton p⊥ distribution is
mainly driven by baryonic reconnection. The rate increases
for all p⊥ regions but we overshoot the data by a large factor
for p⊥ > 3 GeV and for the very low p⊥ region. Since all
options show the same trend this might indicate some prob-
lems with the hard part of the MPI model which dominates
p⊥ > 3 GeV. In Fig. 9 we consider the hadron ratios K/π and
p/π . The new model does a significant better job in describ-
ing the data and only the combined effect of the enhanced
baryon production through the change in the colour recon-
nection model and gluon splitting into strange quarks is able
to give a satisfying description of both observables.

In Figs. 10, 11, 12, 13 we compare the model to
√
s =

7 TeV data from CMS [29] for the strange flavour observables
of K0

S, " and #−. The new model improves the descrip-
tion for all observables published in this analysis. Again
we show the effects of the different contributions and note
that the best description can only be achieved by a combina-
tion of baryonic colour reconnection and gluon splitting into
strange quarks (new-tune). The "/K0

S distribution shows a
good description in the turn on region but the high p⊥ tail
is not well described. A similar observation was made with
Pythia in [10]. Surprisingly the #−/" distribution is able

Fig. 8 The transverse momentum spectrum for p + p̄ as measured by
ALICE at

√
s = 7 TeV [25] in the very central rapidity region |y| < 0.5

to capture the general trend but due to large errors in the
high p⊥ region it is difficult to draw conclusions. We see
significant improvement in the description of hadron flavour
observables. Especially the rapidity distributions and the par-
ticle ratios "/K0

S and #−/" show a large enhancement com-
pared to the default model. Again we point out the interplay
between baryonic colour reconnection and the strangeness
production mechanism which is responsible for the improve-
ment in the description of the heavy baryons " and #−.
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Summary

Parton showers are central to event generators.

I emphasise that we study shower algorithms rather than 
shower models — predict QCD effects in a hierarchy of 
strongly ordered energy scales.

We can, and need, to assess their accuracy and strive for 
underlying, well-defined, construction principles.

d� ⇠ L⇥ d�H(Q)⇥ PS(Q ! µ)⇥MPI⇥Had(µ ! ⇤)⇥ ...
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Infrared sensitive observables are of course the prime test bed — matching will do remaining aspects for 
jet observables.  Hadronization can not be looked at in isolation but is intertwined with parton showering.

Amplitude evolution provides us with a new paradigm which we can use to construct parton showers, as a 
dedicated resummation tools and eventually to study the structure of amplitudes using simulation.
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Amplitude evolution provides us with a new paradigm which we can use to construct parton showers, as a 
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Many of the current developments 

happen at e+e- — that’s a matter of 

fact, and we need to start simple.

But several of the current projects 

start to port algorithms to hadron 

colliders — stay tuned.
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