Status of electroweak parameters measurements

Frédéric Derue Laboratoire de Physique Nucléaire et de Hautes Énergies (LPNHE), Paris

QCD@LHC 2024 8th October 2024, Freiburg im Brisgau, Germany

on behalf of the ATLAS, CMS and LHCb Collaborations

Université Paris Cité

o introduction
o m_w, Γ_w
o sin²(θ_w)
o Γ(Z → inv)
o m_{top}

Introduction

- Rich variety of electroweak interaction derived from symmetry principles
- Mass of electroweak gauge bosons and interaction strength predicted precisely from g, g', v, λ
- $\begin{array}{l} {\sf SU(2)}_{\!\scriptscriptstyle L} \times \ {\sf U(1)}_{\!\scriptscriptstyle Y} \\ \Rightarrow {\sf W}^{\scriptscriptstyle +}, \, {\sf W}^{\scriptscriptstyle -}, \, {\sf Z}, \, \gamma \end{array}$

• Parameters of the Standard Model

 \circ four input parameters, e.g. $\alpha_{_{QED}},\,G_{_{F}},\,m_{_{Z}}$ and $m_{_{H}}$ \circ interconnected with each other

• at Tree level

$$m_W = \frac{gv}{2}, m_Z = \frac{\sqrt{g^2 + g'^2}v}{2}, \sin^2\theta_W = \frac{g^2}{g^2 + g'^2} = 1 - m_W^2/m_Z^2, G_F = \frac{\sqrt{2}g^2}{8m_W^2}$$

- at leading order $\sin^2 \theta_{eff}^{\ell} \propto (1 g_v / g_a)$ related to the real effective (leptonic) vector and axial-vector couplings of the Z boson
- at higher orders

$$m_{W} = \left(\frac{\pi \alpha_{QED}}{\sqrt{2} G_{F}}\right)^{1/2} \frac{\sqrt{1 + \Delta r}}{\sin \theta_{W}} , \sin^{2} \theta_{eff}^{\ell} = \kappa \sin^{2} \theta_{W}, \kappa \sim 1.037$$

- radiative corrections ∆r modify propagator and decay vertices
 - sensitivity to a wide range of physics through quantum loops
 - largest contributions from m_t^2 , log(m_{μ})

Precision measurements

test self-consistency of SM theory in global EW fits
 tensions could be signs of BSM effects

Status of electroweak parameter measurements, QCD@LHC, Freiburg, 8th October 2024

2

Measurement of the W boson mass and width

ATLAS

- revisit 2011 (7 TeV) data, favourable experimental environment for measurement of m.
- \circ measured from p_T^{ℓ} and m_T^W distributions in W $\rightarrow \ell \nu$ decays
- \circ checks of p_T^W modelling in dedicated measurements
- more modern PDF sets : CT18 (was CT10nnlo)
- small update to uncertainties for higher-order electroweak corrections
- \circ key change : use profile likelihood fit (was χ^2 fit)
 - constrain systematic uncertainties in situ
 - directly determine their correlations
 - challenge: m_w now also correlated with some syst. variations
 - \rightarrow extensive validation of method to avoid biases

Measurement of the W boson mass and width

Unc. [MeV]	Total	Stat.	Syst.	PDF	A_i	Backg.	EW	е	μ	u_{T}	Lumi	m_W	PS
p_{T}^{ℓ}	72	27	66	21	14	10	5	13	12	12	10	6	55
m _T	48	36	32	5	7	10	3	13	9	18	9	6	12
Combined	47	32	34	7	8	9	3	13	9	17	9	6	18

o separate measurement of mass and width :

4.1

2.0

4.7

11.7

5.7 3.7

24.4

15.9

11.4

9.8

 $m_{\rm T}$

Combined

21.6

12.5

$$m_w = 80366.5 \pm 15.9$$
 MeV
 $\Gamma_w = 2202 \pm 47$ MeV

4.9 6.7

5.4 6.0 5.4

6.0

11.4

2.3

2.5

1.3

0.2 7.0

0.1 2.3

 \circ ... as well as simultaneous extraction \circ most precise single-experiment measurement of $\Gamma_{\!w}$

Measurement of the W boson mass m_w

• Combination « ATLAS, LHCb, D0, CDF » EPJ C (2024) 84:451

 measurements performed at different times, using different baseline PDFs and QCD tools : existing result extrapolated to a common baseline
 two-step procedure :

- correct to common theory and modelling
- combine including correlations (proton structure)

PDF uncertainty correlation matrices for the CT18 PDF set

LHCb : $\rm m_w$ determination in the forward acceptance strongly suppresses the PDF uncertainty in an LHC $\rm m_w$ average due to complementary geometry.

It is only a 2016 dataset analysis, with a full Run 2 analysis still possibly coming ! JHEP 01 (2022) 036

m_w = 80364 ± 32 MeV

Tension between « ATLAS, LHCb, D0 » combination and CDF W mass is of 3.6 σ

« ATLAS, LHCb, D0 » : $m_w = 80369.2 \pm 13.3 \text{ MeV}$

Measurement of the W boson mass

• CMS

- \circ use well-understood subset of 13 TeV data: 16.8 fb⁻¹ from later part of 2016 run (~30 mean interactions per crossing) • focus on muon channel and kinematics

 - larger experimental syst. for electrons and hadronic recoil
- strategy : exploit large dataset, accurate modeling of uncertainties for maximal in-situ contraints on theoretical modeling
 - reserve Z data as independent cross-check as much as possible
 - muon calibration from J/ψ , validated with Z
 - in-situ constraints on theory modeling from W data itself, independent validation with Z
- \circ m_w extracted from profile likelihood fit to μ (η , p_{τ} , charge)
- thousands of bins and systematic variations ;optimized Tensorflow-based fitting framework $p_{T}^{\mu_{T}^{\mu}(GeV)}$ \circ building on experimental techniques, tools, and experience from W-like m₂ measu-
- rement (2016) and W rapidity-helicity measurement (2020) which established strong in-situ constraints on PDFs from charged lepton kinematics
- 4B fully simulated MC events, >100M selected W candidates

CMS-PAS-SMP-23-002

Measurement of the W boson mass

m_w = 80360.2 ± 9.9 MeV

- \circ first $m_{_{\!W}}$ measurement from CMS
- \circ in agreement with the SM prediction
- measurement is performed with ~10% of Run 2 data
- major advances in experimental and theoretical techniques from the basis for further improved precision and additional measurements in the future

CMS-PAS-SMP-23-002 J. Bendavid, CMS CERN seminar

	Impact (MeV)							
Source of uncertainty	Nor	ninal	Global					
	in m_Z	in $m_{\rm W}$	in m_Z	in $m_{\rm W}$				
Muon momentum scale	5.6	4.8	5.3	4.4				
Muon reco. efficiency	3.8	3.0	3.0	2.3				
W and Z angular coeffs.	4.9	3.3	4.5	3.0				
Higher-order EW	2.2	2.0	2.2	1.9				
$p_{\rm T}^{\rm V}$ modeling	1.7	2.0	1.0	0.8				
PDF	2.4	4.4	1.9	2.8				
Nonprompt background	_	3.2	_	1.7				
Integrated luminosity	0.3	0.1	0.2	0.1				
MC sample size	2.5	1.5	3.6	3.8				
Data sample size	6.9	2.4	10.1	6.0				
Total uncertainty	13.5	9.9	13.5	9.9				

Towards the electroweak fit precision

• Measurement of $pp \rightarrow Z/\gamma^* \rightarrow \ell^+ \ell^-$ Forward-Backward asymmetry

- use Collins-Soper frame (Z boson at rest)
 - z axis defined by quark direction
 - using final state leptons angular distribution

 $\frac{d\sigma}{d\cos\theta} \sim 1 + \cos^2\theta + \frac{1}{2}A_0(1 - 2\cos^2\theta) + A_4\cos\theta \quad , A_{FB} = \frac{3}{8}A_4$

 \circ the Forward-Backward asymmetry ${\rm A}_{_{\rm FB}}$ increases with

the Z boson rapidity

- only valence quarks contribute to the $A_{_{FB}}$
- ambiguity in quark direction resolved through rapidity-dependent measurement
- \circ experimentally defined as

$$A_{FB} = \frac{N(\cos\theta > 0) - N(\cos\theta < 0)}{N(\cos\theta > 0) + N(\cos\theta < 0)} \quad A_{FB} = \frac{N(\eta^{-} > \eta^{+}) - N(\eta^{-} < \eta^{+})}{N(\eta^{-} > \eta^{+}) + N(\eta^{-} < \eta^{+})}$$

• reconstruction of muons in CMS up to $|\eta| < 2.4$ 3 categories for electrons : « e » tracker only ($|\eta| < 2.5$), «g» in FCAL (2.5< $|\eta| < 2.87$), «h» in forward HCAL (2.5< $|\eta| < 2.87$),

• high quality muon reconstruction in LHCb in 2.0<| η |<4.5

• CMS

- \circ total uncertainty dominated by PDFs
- PDF reweighted/profiled in fit of
 - $A_{_{FB}}$ and $A_{_4}$ to determine $\sin^2 \theta_{_{eff}}^{\ell}$
 - reduces PDF uncertainties by a factor of 2
 - results in better agreement between different PDF sets
- CT18Z chosen as 'default' pdf set before unblinding
 - its uncertainty covers best other central values

• LHCb

- the uncertainty from the PDF is estimated following the prescription provided by the groups responsible for each of the PDF sets used
- considering variations in the PDF "replicas"
- the PDF uncertainty ≪ statistical uncertainty (~4.4×10⁻⁴) because of the use of the LHCb acceptance
- o don't need to use profiling to reduce the PDF uncertainty

CMS : $\sin^2 \theta_{eff}^{\ell} = 0.23157 \pm 0.00010 \text{ (stat)} \pm 0.00015 \text{ (syst)} \pm 0.00009 \text{ (theo)} \pm 0.00027 \text{ (PDF)}$ LHCb : $\sin^2 \theta_{eff}^{\ell} = 0.23152 \pm 0.00044 \text{ (stat)} \pm 0.00005 \text{ (syst)} \pm 0.00022 \text{ (theo/PDF)}$

0.228

0.232

 $\sin^2 \theta_{of}^l$

0.23

Z boson invisible width

• Width of Z boson for decays into invisible states $\Gamma(Z \rightarrow inv)$ sensitive to

Z boson invisible width

Convert fitted constant to Z boson invisible width by combining with $Z \rightarrow \ell \ell$ width measurement from LEP

 $\Gamma(Z \to \text{inv}) = \hat{R}^{\text{miss}} \cdot \Gamma(Z \to \ell \ell)$

Most precise recoil-based result

Precision limited by lepton systematic uncertainties in $Z \to \ell \ell$ events

CMS : $\Gamma(Z \rightarrow inv) = 523 \pm 16 \text{ MeV}$

ATLAS : $\Gamma(Z \rightarrow inv) = 506 \pm 13 \text{ MeV}$

Phys. Lett. B 842 (2023) 137563

Measuring the top-quark mass m

Significant improvements over the past years

better calibrations, alternative techniques, improved theoretical modelling
 more than 40 publications by ATLAS and CMS collaborations

Status of electroweak parameter measurements, QCD@LHC, Freiburg, 8th October 2024

Measuring top-quark mass m_r : Run 1 combination

A combination of fifteen top-quark mass measurements performed by the ATLAS and CMS experiments at the LHC

 m_{f} =172.52±0.14 (stat)±0.30 (syst) GeV, with a total uncertainty of 0.33 GeV

Measuring m: boosted channels

Top-jet

Direct measurements from top-quark decays

 \circ extract well defined m, from boosted top-jet using large-radius jet : m²(jet)=($\sum p_i$)²

- compare measurement to well defined field theory parameter
 no additional uncertainty for m^{MC}_{top} → m^{MSR}_{top}
 phase-space of theory and experiment different
- - calculations only at $p_{\downarrow}{\geq}750~\text{GeV}$ and experiment at $p_{\downarrow}{\geq}400~\text{GeV}$

CMS

- \circ improved jet reconstruction in Run 2 \Rightarrow improvement in jet resolution
- unfolding, differential cross-section measurement
- reduced dominant uncertainties : calibration of Jet Mass Scale, modeling of FSR

Measuring m₁ : alternative channels

Direct measurements from top-quark decays

 \circ alternative measurements \Rightarrow sensitive to different systematics **ATLAS**

 \circ construct templates of leptonic-only m_{in},

lepton from W and soft $\boldsymbol{\mu}$ from a b-hadron

- smaller sensitivity to jet energy scale & resolution
- less sensitivity to top-quark production modeling than previously showed measurement
- \circ binned-template profile likelihood fit used to find best value for $\rm m_{t}^{},$ systematics included

as Gaussian-constrained nuisance parameters

"Alternative": limited by modeling of b-quark fragmentation

Status of electroweak parameter measurements, QCD@LHC, Freiburg, 8th October 2024

 $m_1 = 174.41 \pm 0.39$ (stat.) ± 0.66 (syst.) ± 0.25 (recoil) GeV

Summary

- Numerous results of precision electroweak physics released in the last 12 months!
- The LHC is competing with previous machines in electroweak precision
- Facilitated by large datasets, detailed understanding of the detectors, dedicated reconstruction techniques and state-of-the-art theory predictions
- New measurements of key electroweak parameters m_w (precision at 0.2 per mil), Γ_w and $\sin^2 \theta_{eff}^{\ell}$
- They join precision probes in improving our understanding of electroweak symmetry breaking
- top-quark mass measurements in different channels, with increasing precision ATLAS+CMS Run-1 combination lead to a precision already around 0.3 GeV (precision below 2 per mil)
- \circ precise measurements of $\Gamma(Z \rightarrow inv)$

Backup slides

Status of electroweak parameter measurements, QCD@LHC, Freiburg, 8th October 2024

Introduction

Parameters of the Standard Model

• at Tree level, simple relations after BEH mechanism with $\phi = \begin{pmatrix} 0 \\ v/2 \end{pmatrix}$

$$m_W = \frac{gv}{2} \quad m_Z = \frac{\sqrt{g^2 + g'^2 v}}{2}$$

 \circ radiative corrections Δr modify propagator and decay vertices

- sensitivity to a wide range of physics through quantum loops
- largest contributions from $m_{_{\rm H}}$, log($m_{_{\rm H}}$)

$$G_{F} \propto \frac{g^{2}}{m_{W}^{2}} \qquad m_{W} = \left(\frac{\pi \alpha_{QED}}{\sqrt{2} G_{F}}\right)^{1/2} \frac{\sqrt{1 + \Delta r}}{\sin \theta_{W}}$$

$$\sin^{2} \theta_{W} = 1 - m_{W}^{2} / m_{Z}^{2}$$

$$\sin^{2} \theta_{eff}^{\ell} = \kappa \sin^{2} \theta_{W}, \kappa \sim 1.037$$

2

• Precision measurements

- \circ test self-consistency of SM theory in global EW fits
- tensions could be signs of BSM effects
- \circ probe BSM beyond reach of searches

Measurement of the W boson mass m_w

• The W boson mass in proton collisions

• incomplete kinematics (due to missing neutrino)

- no invariant mass; rely on measured quantities, and exploit momentum conservation in the transverse plane
- \circ event representation
 - main signature : electron or muon p_T^ℓ
 - recoil : sum of « everything else » reconstructed in the calorimeters $\vec{u_T} = \sum \vec{E_T}^i \Rightarrow$ a measure of $p_T^{W,Z}$
 - derived quantitiesⁱ

$$\vec{p_T^{\text{miss}}} = -(\vec{p_T^{\ell}} + \vec{u_T}) \quad m_T = \sqrt{2 p_T^{\ell} p_T^{\text{miss}} (1 - \cos \Delta \phi)}$$

- physics correction :
 - Γ_w , QCD and QED ISR and FSR, PDFs, ...
 - all carry uncertainties to be quantified !

- detector effects, with uncertainties
 - lepton calibration and resolution; Missing ET resolution $\sim 5-15~\text{GeV}$
 - efficiencies and acceptance ~15% (with non-trivial kinematic dependence !)

Measurement of the W boson mass m

• ATLAS

- revisit 2011 (7 TeV) data, favourable experimental environment for measurement of m_w
- unchanged from previous analysis
 - 15 M W \rightarrow ev and W \rightarrow $\mu\nu$ candidates
 - \bullet lepton $\textbf{p}_{_{T}}$: Jacobian edge at $m_{_{W}}/2$
 - transverse mass $m_{_{\rm T}}$: Jacobian edge at $m_{_{\rm W}}$, more sensitive to $\Gamma_{_{\rm W}}$ in tails
 - template fits using kinematic observables sensitive to $m_{_W}$ and $\Gamma_{_W}$

Improvement since first measurement

- \circ checks of p_T^W modelling in dedicated measurements
- update to QCD background estimation
- more modern PDF sets : CT18 (was CT10nnlo)
- small update to uncertainties for higher-order electroweak corrections
- \circ key change : profile likelihood fit
 - constrain systematic uncertainties in situ
 - directly determine their correlations
 - challenge: m_w now also correlated with some syst. variations \rightarrow extensive validation of method to avoid biases

arXiv:2404.06204

• Measurement of $pp \rightarrow Z/\gamma^* \rightarrow \ell^+ \ell^-$ Forward-Backward asymmetry

 \circ the Forward-Backward asymmetry $\mathsf{A}_{_{\!\mathsf{F}\!\mathsf{B}}}$ increases with the Z boson rapidity

- only valence quarks contribute to the $A_{_{FR}}$
- the forward region direction is given by the valence quark i.e. the system boost direction
- use Collins-Soper frame
 - z axis defined by quark direction
 - using final state leptons angular distribution in this frame

$$\frac{d\sigma}{d\cos\theta} \sim 1 + \cos^2\theta + \frac{1}{2}A_0(1 - 2\cos^2\theta) + A_4\cos\theta$$

$$\circ$$
 at the Z peak, $A_{_{FR}}$ yields a measurement of

strong PDF dependence

 \circ experimentally defined as

$$\begin{split} A_{FB} &= \frac{N\left(\cos\theta > 0\right) - N\left(\cos\theta < 0\right)}{N\left(\cos\theta > 0\right) + N\left(\cos\theta < 0\right)} \\ A_{FB} &= \frac{N(\eta^{-} > \eta^{+}) - N(\eta^{-} < \eta^{+})}{N(\eta^{-} > \eta^{+}) + N(\eta^{-} < \eta^{+})} \end{split}$$

 $A_{FB} = \frac{3}{8} A_4$

background events

- QCD multijets,
- W+jets, ...
- others (MC samples)
- systematic uncertainties
 - experimental : MC stat., efficiency, momentum calibration. backgrounds
 - theory : QCD scales, pT(II), QED FSR virtual EW, PDFs

- LHCb analysis strategy
- 2016-2018 dataset (5.3 fb⁻¹)
- measure A_{FB} in tens interval of $|\Delta \eta|$ up to $|\Delta \eta|$ <2.5 using Z → μμ decays
- identified μ candidate matched to a single muon trigger path in a fiducial region 2.0< $|\eta_{\mu}|$ <4.5, p_{(μ})>20 GeV 66<m($\mu\mu$)<116 GeV

- background events
 - HF backgrounds are suppressed to the % level by a muon impact parameter requirement
 - hadronic background suppressed to the % level by an isolation requirement and muon track fit requirement
- \circ yields
 - roughly 860k events are selected

Measuring m₁ : direct measurements

• « Direct » measurements from top-quark decays

 \circ better precision ; extract $m_{\!_{\star}}$ from decay products

• CMS

- most precise individual measurement performed in *l*+jets channel
- \circ construct $m_{_{t}}$ from three jets
- $\circ m_{top}^{MC}$ from minimizing a negative log-likelihood

• ATLAS

- o most precise individual measurement performed in ℓℓ+jets channel
- \circ construct templates of $\rm m_{_{\rm lb}}$
- $\circ m_{top}^{MC}$ from template fits on data

LHCTopWGSummaryPlots Phys. Rev. Lett. 132, 261902

ATLAS-CONF-2022-058

 $m_{t} = 172.21 \pm 0.20(stat) \pm 0.67(syst) \pm 0.39(recoil) GeV$

• Combination 7-8 TeV

 $m_{t} = 172.52 \pm 0.33 \text{ GeV}$

"Conventional" biggest challenges are JES uncertainties and b-JES calibration