Recent experimental results on top and heavyflavor production

QCD@LHC 2024

Thorsten Kuhl

October, 9th 2024

On behalf of the Atlas, CMS and LHCb collaboration

Heavy flavor production at LHC

- Heavy flavor production (tt, bb, cc) with/without associated particles (ttbb, ttZ, bbcc, Wbb...)
 is crucial to understand:
 - Background for new physics signatures
 - Signatures involving b-jets, multi-leptons, Missing energy ...
 - Measurement of fundamental SM parameters (top and W mass)
- Need very accurate QCD prediction and understanding:
 - Precise prediction for signal and backgrounds
 - Multi scale problem
 - Development and tuning for state of the art MC simulations (massive quark treatment, variable flavor scheme, matched/merged MC for high jet multiplicity, off shell top)

Experiments

• **13 Years of successful data** taking at the LHC covering many energies:

- Multipurpose detectors:
 - Atlas and CMS
- Dedicated experiment for heavy flavor physics:
 - LHCb

Datasets

- LHC is a top factory:
 - Atlas/CMS mostly using unprescaled single lepton triggers, fully efficient for lepton p_T >25 GeV
 - Millions of top candidates recorded by them
 - Jet- p_T > 25/30 GeV and b-jet tagging
- b/c physics mostly rely on (prescaled) di-lepton triggers:
 - Atlas/CMS: most data taken at very high pile up (up to 60 events/bx), limitations at low p_T
 - LHCb: dedicated for HF running at moderate inst. luminosity
- Complementary in angular acceptance of Atlas/CMS and LHCb:
 - Multipurpose detector are efficient for $|\eta| < 2.4-2.5$
 - LHCb is efficient in forward direction $2.0 < |\eta| < 4.5$

Content

• (di-)top production

- Inclusive Production
- tt+jets
- tt+b/c jets
- tt+V
- tt+MET
- HF (bottom and charm) production
 - J/psi and Y production
 - D* production
 - Y+J/psi and J/psi+J/psi

Top production

Top pair cross section

- Measurements cover a huge range in center of mass energy: top cross section rise by factor 100 vs Tevatron
- Comparison with NNLO+NNLL theory prediction:
 - Data agree with calculation inside theory error
 - Single best data result [5] has 2.5 times smaller error than theory
- CMS and Atlas have 13.6 TeV results \rightarrow

next page

- Most recent:
 - CMS@5 TeV (CMS-PAS-TOP-23-005)
 - Atlas Pb-p @8.16 TeV (TOPQ-2023-32)
- Complementary in η range:
 - LHCb (JHEP 08 (2018) 174)

Top pair cross section @13.6 TeV

- Cross section increases by 12% vs 13 TeV
- Atlas results @ 13.6 TeV using di-lepton events:
 - In-situ calibration of the b-jets
 - Results dominated by systematic and luminosity error (2.4%) (Atlas [9]):

 $\sigma_{tar{t}} = 850 \pm 3 ({
m stat.}\,) \pm 18 ({
m syst.}\,) \pm 20 ({
m lumi.}\,)$ pb. ⁻

• Use ratio vs Z cross section to eliminate luminosity error:

 $R_{tar{t}/Z} = 1.145 \pm 0.003 ({
m stat.}) \pm 0.021 ({
m syst.}) \pm 0.002 ({
m lumi.})$

Events

. 1.5 / 1.0

Data

• CMS @ 13.6 TeV [10] di-lepton and lepton+jets

 $\sigma_{t\bar{t}} = 881 \pm 23 \,(\text{stat+syst}) \pm 20 \,(\text{lumi}) \,\text{pb.}$

- Di-top measurement has already a decent understanding of experimental systematics
 - Still a factor 2 bigger then final 13 TeV
 - Luminosity is a limiting factor

DESY. | HF production QCD@LHC2024 | Thorsten Kuhl, 09.10.2024

Single Top cross section

• Different situation than di-top: results are mostly limited by experimental errors (jet reconstruction and understanding of b-tagging) and modeling uncertainties (acceptance)

tt + jets

JHEP 08 (2024) 182

- Lepton+jet final state analysis (Atlas) in bins of N_{jet} •
- jets are associated to tops or identified as radiation jet • using **pseudo-top algorithm**:
 - Two highest p_T b-jets are top b-jets
 - · The two additional jets most consistent with a Wboson are **W-jets** (jet-W1 and jet-W2)
 - Additional jets (jet-rad1, jet-rad2) for N_{jet} > 4 bins
 - · Neutrinos can be reconstructed up to a ambiguity
- **Jet based observables** (p_T , Y; m, ΔY and $\Delta \phi$ of two • jets)
 - Measured normalized and compared to NNLO+NNLL cross section

tt + 1jet

(f)

ATLAS

Data

Vs = 13 TeV.140 fb

 $pp \rightarrow t\bar{t} (\rightarrow \ell + jets) + 1 jet$

POWHEG+PYTHIA8

MM POWHEG+PYTHIA8

(1/σ) dσ/dp^{jet-W1} [1/GeV

10

10

n/Data

[1/GeV]

(1/6) d6/dm^{tt-}

10

10

10

01g

tt+1jet

tt + 2jet

p_fet-rad1 [GeV]

arXiv:2402.08486

tt+jets up to 3-dimensional

- Di-lepton selection (CMS):
 - Full di-top reconstruction; neutrinos are reconstructed using kinematic constrains, top and W mass and smearing technique
- Observables:
 - Direction and p_T of the tops and di-top systems are shown
 - New variables to describe the dynamics of the events: p_T(t)/m(tt
), p_T(tt
)/m(tt
)
 - Up to three dimensional distributions (differential in three variables)
- Comparison of data with
 - different generator setups
 - Powheg with Pythia8/Herwig
 - aMC@NLO + up to 2 add. partons using FxFx matching/merging
 - different theory predictions @NNLO:
 - Matrix, Stripper, MiNNLOPS

tt+bb

• Atlas $t\bar{t}$ + $b\bar{b}$ using full 13 TeV dataset:

- di-lepton channel
- corrected to particle level
- showing absolute cross sections and normalized differential distribution to disentangle normalization and shape
- To reduce generator related systematics from HF sample composition: fit of flavor components in MC to the data using the distribution of b-tags

- **5-f generators** general underestimate number of additional b-jets
- 4-f ttbb generators/calculation describe (mostly) ≥4-jet distributions better, but have similar problem for ≥3jets

tī+bb

- Measured distributions for ≥3jets dominated by systematics, p_T of additional b-jets is too hard in Powheg and 4-flavor-generators, better in 5-flavor aMC@NLO and sherpa
- **Distributions for** ≥4jets similar limited by statistics and systematics: generators/calculations show agreement inside errors with different trends
- Similar tendencies are seen in older CMS publication in lepton+jet channel (b-jets are corrected to similar phase space): arXiv:2309.14442
 - New generator setups/comparisons are available, sherpa in variable flavor schema:

arXiv:2402.15497

tt+cc

- Comparison to various 4 flavor and 5 flavor generator setups for the 4 measured fractions (b, c, cc, light) in the profile likelihood fit:
 - b-jet rate is underestimated in generators except Sherpa 5F consistent with the ttbb analysis
 - c and 2c rate is underestimated by ~ 25%
 - Herwig7 lower then Pythia8
 - Some dependency on the Pythia8 setup

CMS-PAS-TOP-23-004

138 fb⁻¹ (13 TeV)

tfX

WZ

Top+Weak Bosons

3 lepton final state, two consistent with a Z boson, ٠ selection are used to select tt/Wt+Z and tZ events

- Simultaneous likelihood fit on:
 - DNN with 26 inputs require 3 leptons and a b-jet

- Additional input:
 - N b-jet distribution for 4 selected leptons
- N_{jet} for no b-jet(WZ background) enrich DESY. | HF production QCD@LHC2024 | Thorsten Kuhl, 09.10.2024

 $\sigma(tZq) = 0.81 \pm 0.07 \text{ (stat)} \pm 0.06 \text{ (syst) pb.}$

CMS-PAS-TOP-24-001

 $d\sigma/dp_T^{VV}$ (pb GeV⁻¹)

Pred./Data

MET in di-top events

 Description of events with high MET in top is important for many searches:

- Very sensitive on the description of off-shell top events and Wt: diagram subtraction (default) vs diagram removal is a significant systematics at very high MET
- CMS analysis shows double differential distribution of the p_T of the di-neutrino system and its minimal angle to the leptons
 - Agreement of data with generators/calculation reasonable in most areas
 - Large MET at large angle not that well described

Charm and beauty production

Y-Production (LHCb)

- **Result from LHCb** using small dataset taken at 5 TeV to compare to HI results
 - Cross section extracted using mass distribution fitted with a crystal ball function and

 $\sigma(\Upsilon(1S)) \times \mathcal{B}(\Upsilon(1S) \to \mu^+ \mu^-) = 2101 \pm 33 \pm 83 \,\mathrm{pb}$ $\sigma(\Upsilon(2S)) \times \mathcal{B}(\Upsilon(2S) \to \mu^+ \mu^-) = 526 \pm 20 \pm 21 \,\mathrm{pb}$ $\sigma(\Upsilon(3S)) \times \mathcal{B}(\Upsilon(3S) \to \mu^+ \mu^-) = 242 \pm 16 \pm 10 \,\mathrm{pb}$

- **Differential distributions** in p_T and y are shown for $\Upsilon(1S)$, $\Upsilon(2S)$, $\Upsilon3(S)$ Y(1S) compared to NRQCD
- **Comparison of Y production cross section** at different LHC center of mass energies: now have results at all pp ECM

19

Eur. Phys. J. C 84 (2024) 169

Data

Theory /

J/ψ and ψ (2S) production (Atlas)

- Measurement of J/ψ + ψ(2S) in bins of p_T (8-320 GeV) and |y|<2
 - Different datasets/triggers for low p_T (di-muon trigger) and high p_T (single muon trigger)
 - Very high $p_{\scriptscriptstyle T}$ range is covered
 - Results for prompt (charm production) and non-prompt (bottom decay chains) are presented and compared with theory

$D^{*+} \rightarrow (K^{\pm}\pi^{\pm})\pi_{s}^{\pm} (CMS, 7TeV)$

- 7 TeV result using data sample taken at very low μ (~2)
 - 50% minimum bias trigger
 - 50% events where an other interaction triggered the event
 - Only small contribution of beauty decays (~5-10%)
- Nice consistency with LHCb/ALICE measurement inside overlapping region of mostly orthogonal phase space

JHEP 05 (2024) 259

$J/\psi+\psi(2S)$ (LHCb)

- Measurement of correlated production at 13 TeV
 - Two mesons can be produced directly from charm (prompt) or from B-decay (non-prompt), has to be subtracted
 - Prompt production for $p_T < 14.5$ GeV and 2 < y < 4.5

 $\sigma_{J/\psi-\psi(2S)} = 4.5 \pm 0.7 \text{ (stat)} \pm 0.3 \text{ (syst)} \text{ nb}_{\pm}$

Kinematic of the system is compared to theory

700E

500

400Ē

300

Candidates

Candidates / (0.24 ps

Υ (1S,2S)+J/ψ production (LHCb)

- Correlated production at 13 TeV:
 - Events are selected by cut in the two dimensional mass plane (→ projections shown)
 - Dataset 76 $\Upsilon(1S)+J/\psi$ and 30 $\Upsilon(2S)+J/\psi$ events
 - Cross sections estimated and correlation between the mesons are studied

$$\sigma(J/\psi - \Upsilon(1S)) = 133 \pm 22 \pm 7 \pm 3 \,\mathrm{pb},$$

$$\sigma(J/\psi - \Upsilon(2S)) = 76 \pm 21 \pm 4 \pm 7 \,\mathrm{pb},$$

arXiv:2305.15580

00000000000

p 10000000000

LHCb 13 TeV

 $L_{int} = 4.18 \text{ fb}^{-1}$

3

 $|\Delta \phi|$

2

SPS

correlated production of bb/cc and cc

- Two bb/cc mesons can be produced in single parton scattering SPS or double parton scattering DPS
- DPS process probes the distributions and correlation. between partons in proton: $\sigma(1/2/2) \times \sigma(\gamma)$

$$\sigma_{\mathrm{DPS}}(J/\psi - \Upsilon) = rac{\sigma(J/\psi) \times \sigma(I)}{\sigma_{\mathrm{eff}}}$$

 σ_{eff} universal assuming two partons are uncorrelated and transversal and longitudinal part of the PDF factorize

• To test if hypothesis is valid three pseudo samples are compared with data, but all 3 agree inside errors

Summary

- LHC has collected huge datasets at diverse center of mass energies
 - Inclusive cross sections:
 - Impressive agreement with Standard Model over a large range of center of mass energies
- Differential result of (associated) HF production shown:
 - tībb, tīcc, tī+jets, bbcc, cccc
 - Tendency to multidimensional differential distributions
 - Important to understand the dynamic in a QCD environment
 - tt+cc and tt+c determined separately in one measurement first time
 - Correlated bbcc and cccc production give a insign in the production mechanism (MPI)
- Could not cover all analysis, e.g. Pentaquarks in charm final states @ LHCb

arXiv.org:2404.07131

