

Flavour anomalies

Konstantinos A. Petridis on behalf of LHCb

University of Bristol

October 9, 2024

Questions

Experimental approaches

SM could be a low-energy effective theory of a more fundamental theory at higher energy scale with new particles, dynamics/symmetries.

$$E = mc^2$$

 $m \gg E/c^2$

- Limited by collision energy
- Unambiguous evidence of new particle

- Not limited by collision energy
- Requires precise predictions (and measurements)

Indirect probe of high NP scales

Look at observables that:

- 1 The SM contribution is either small or accidental
- 2 Can be measured to high precision
- 3 Can be predicted to high precision
- \rightarrow Flavour Changing Neutral Currents in SM
 - ► Loop level, GIM suppressed
 - Left-handed chirality
 - Lepton universal couplings
- \rightarrow NP could violate any of these

Indirect probe of high NP scales

Look at observables that:

- 1 The SM contribution is either small or accidental
- 2 Can be measured to high precision
- 3 Can be predicted to high precision
- ightarrow Tree level $b
 ightarrow c\ell
 u$ in SM
 - Left-handed chirality
 - Lepton universal couplings
- \rightarrow NP could violate any of these

B production at the LHC

- ► Huge production cross-section: $\sigma_{b\bar{b}} = \mathcal{O}(100)\mu b$ at the LHC
- B-hadron decays well separated owing to boost
- "Easy" to identify due to secondary vertex
- LHCb: Excellent IP and momentum resolution, and PID capabilities
 - \rightarrow World leading precision in many final states

LHCb: Recorded $\mathcal{L} > 18 \text{fb}^{-1}$, doubling our

Run1,2 dataset in 2024

Flavour Anomalies

Over the past decade we have observed a coherent set of tensions with SM predictions

In $b \rightarrow s \ell^+ \ell^-$ transitions (4-5 σ)

- 1. Branching Fractions $B \to K^{(*)}\mu^+\mu^-, B_s \to \phi\mu^+\mu^-, \Lambda_b \to \Lambda\mu^+\mu^-$
- 2. Angular analyses $B \to K^{(*)}\mu^+\mu^-$, $\Lambda_b \to \Lambda\mu^+\mu^-$
- Lepton Flavour Universality involving μ/e ratios
 B⁰→ K^{*0}ℓ⁺ℓ⁻, B[±]→ K[±]ℓ[±]ℓ⁻

In $b \rightarrow c \ell \nu$ transitions (3 σ)

4. Lepton Flavour Universality involving μ/τ ratios $B \rightarrow D^{(*)}\ell\nu$ Types of $b
ightarrow s \ell^+ \ell^-$ decays

▶ Decays of form: $B^+ \to K^+ \ell^+ \ell^-$, $B^0 \to K^{*0} \ell^+ \ell^-$, $B_s \to \phi \mu^+ \mu^-$, $\Lambda_b \to \Lambda^* \ell^+ \ell^-$...

Offer multitude of observables.

Interpreting results

- ► Rely on an Effective Field Theory to interpret our measurements
- Integrate out heavy ($\mu \ge m_W$) field(s) and introduce set of:
 - \triangleright Wilson coefficients C_i describing the short distance part
 - \triangleright Operators \mathcal{O}_i containing the (non-perturbative) long distance part

Operator \mathcal{O}_i	$B_{s(d)} \rightarrow X_{s(d)} \mu^+ \mu^-$
$\mathcal{O}_7 \sim (ar{s_L} \sigma^{\mu u} b_{R}) F_{\mu u}$ EM	\checkmark
${\cal O}_9 \sim (ar s_L \gamma^\mu b_L) (ar \ell \gamma_\mu \ell)$ Vector $\ell ar \ell$	\checkmark
${\cal O}_{10} \sim (ar s_L \gamma^\mu b_L) (ar \ell \gamma_5 \gamma_\mu \ell)$ Axial vector $\ell ar \ell$	\checkmark
$\mathcal{O}_{S,P} \sim (ar{s}b)_{S,P} (ar{\ell}\ell)_{S,P}$ (Pseudo-)Scalar $\ellar{\ell}$	(√)

Can also get quark chirality flipped counterparts

1. Decay Rates

• Measurements consistently below theory predictions at low $q^2 \equiv p_{\ell\ell}^2$ for many $b \rightarrow s \mu^+ \mu^-$ decays

 $B^{0} \rightarrow K^{*0} \mu^{+} \mu^{-}$ [JHEP11(2016)047], $\Lambda_{b} \rightarrow \Lambda \mu^{+} \mu^{-}$ [JHEP06(2015)115] $B_{s} \rightarrow \phi \mu^{+} \mu^{-}$ [PRL127.151801]

Theory: Bobeth et al [JHEP07(2011)067], Bharucha et al [JHEP08(2016)098], Detmold et al [PRD93,074501(2016)], Horgan et al [PRD89(2014)]

▶ SM predictions limited by $B \rightarrow K^{(*)}$ form-factor uncertainties

2. Angular analysis of $B \to K^* \mu^+ \mu^-$

• Differential decay rate of $B^0 \to K^{*0} \mu^+ \mu^-$ and $\bar{B}^0 \to \bar{K}^{*0} \mu^+ \mu^-$:

$$\begin{split} \frac{1}{\Gamma_{full}^{\prime}} \frac{d^{4}\Gamma}{dq^{2} d\cos\theta_{\kappa} d\cos\theta_{\ell} d\phi} &= \underset{\substack{\text{JHEPUG}(2013)137}}{\underset{\substack{\text{JHEPUG}(2013)137}}{32\pi}} \\ \frac{3}{32\pi} \left[\frac{3}{4} \frac{F_{P}}{F_{P}} \sin^{2}\theta_{K} + \frac{F_{L}}{2} \cos^{2}\theta_{K} + \left(\frac{1}{4} F_{T} \sin^{2}\theta_{K} - F_{L} \cos^{2}\theta_{K} \right) \cos 2\theta_{l} \\ &+ \frac{1}{2} F_{L} f_{T} \sin^{2}\theta_{K} \sin^{2}\theta_{l} \cos 2\phi + \sqrt{F_{T}} F_{L} \left(\frac{1}{2} \frac{F_{L}^{\prime}}{f_{T}} \sin 2\theta_{K} \sin 2\theta_{l} \cos \phi + \frac{F_{L}}{f_{T}} \sin 2\theta_{K} \sin \theta_{l} \cos \phi \right) \\ &+ \left\{ P_{L} P_{T}^{\prime} \sin^{2}\theta_{K} \cos \theta_{l} - \sqrt{F_{T}} F_{L} \left(\frac{F_{0}}{g} \sin 2\theta_{K} \sin \theta_{l} \sin \phi - \frac{1}{2} \frac{Q}{g} \right) \sin 2\theta_{K} \sin 2\theta_{l} \sin \phi \right) \\ &- \left\{ P_{L} F_{T}^{\prime} \sin^{2}\theta_{K} \sin^{2}\theta_{l} \sin 2\phi_{l} \right\} \left(1 - \frac{F_{S}}{F_{L}} + \frac{1}{\Gamma_{full}^{\prime}} W_{S} \right) \end{split}$$

The coefficients of the polluting term can be parametrized as

$$\begin{split} \frac{W_{\rm c}}{\Gamma_{full}'} &= \frac{3}{16\pi} \left[F_S \sin^2 \theta_\ell + \frac{A_S}{A_S} \sin^2 \theta_\ell \cos \theta_K + \frac{A_S'}{A_S'} \sin \theta_K \sin 2\theta_\ell \cos \phi \right. \\ & \left. + \frac{A_S'}{A_S'} \sin \theta_\ell \sin \phi_\ell \cos \phi + \frac{A_S'}{A_S'} \sin \theta_K \sin \theta_\ell \sin \phi + \frac{A_S'}{A_S'} \sin \theta_K \sin 2\theta_\ell \sin \phi \right] \end{split}$$

- Measure 16 observables (CP symmetric and asymmetric) through a quasi 4D angular and m_{Kπ} fit in bins of q²
- Each observable sensitive to different types of new physics couplings

Latest $B \to K^* \mu^+ \mu^-$ results

The large number of observables cover full spectrum of new physics models
 Orthogonal expt. systematics and more precise theory predictions

 \blacktriangleright Combination of angular observables: $\sim 2-3\sigma$ tension per mode and experiment

 $B^{0} \to K^{*0} \mu^{+} \mu^{-}$ [PRL125(2020)011802] $B^{+} \to K^{*+} \mu^{+} \mu^{-}$ [PRL126(2021)161802]

CMS, ATLAS $B^{0} \rightarrow K^{*0} \mu^{+} \mu^{-}$ [CMS-PAS-BPH-21-002], [JHEP10(2018)047]

3. Lepton Flavour Universality tests

 \rightarrow Branching fractions differ only by phase space and helicity-suppressed contributions

Ratios of the form:

$$R_{K^{(*)}} := \frac{\mathcal{B}(B \to K^{(*)}\mu^+\mu^-)}{\mathcal{B}(B \to K^{(*)}e^+e^-)} \stackrel{\text{SM}}{\cong} 1$$

- ▶ In SM free from QCD uncertainties affecting other observables → $\mathcal{O}(10^{-4})$ uncertainty [JHEP07(2007)040]
- ▶ Up to *O*(1%) QED corrections [EPJC76(2016)8,440]

 \rightarrow Any significant deviation is a smoking gun for New Physics.

Latest R_X results

- ▶ New measurements in $B_s \rightarrow \phi \ell^+ \ell^-!$
- Good compatibility with SM
 - \rightarrow Electron and muon BFs consistently below SM prediction

4. Tree level LFUV

• Global fit to LHCb Belle and BaBar measurements at $\sim 3.1\sigma$ from SM

$$R_{D^{(*)}} := \frac{\mathcal{B}(B \to D^{(*)}\tau\nu_{\tau})}{\mathcal{B}(B \to D^{(*)}\mu\nu_{\mu})}$$

Persistent hint of LFUV involving 3rd generation in $b \rightarrow c \ell \nu$ tree-level transitions

NEW: $R_{D^{(*)+}}$ in $D^+\mu$ - using 2fb⁻¹ of Run2 data [LHCb-PAPER-2024-007]

 $R_{D^{(*)}}$ in $D^0\mu$ - using Run1 data[PRL131,111802(2023)]

 $R_{D^{(*+)}}$ in $D^0 3\pi$ [PRL131,111802(2023)]

 LHCb measurement uncertainty equal split between stat. and syst.

 $\rightarrow B \rightarrow D^{*}$ form-factors and background modelling largest systematic of Run2 analysis

 \rightarrow Simulation sample size largest systematic for Run1 analysis

Putting it all together

- Combination of $b \rightarrow s \ell^+ \ell^$ measurements $\sim 5\sigma$ from SM
- Measurements point to new physics with vector dilepton coupling (C₉)

Putting it all together: Optimistic

[Fuentes-Martin et al '22], [Bordone et al 17',18'], [Cornella et al 19'], [Greljo et al 18'], [Matias et al '18]

Putting it all together: Pessimistic

гнср

► Theory input required to compute contribution of $b \rightarrow c\bar{c}s$ hadronic amplitude (non-local) e.g [Khodjamirian et al 2010], [Gubernari et al 2018,2021,2022] $C_{\rm g}^{\rm eff} = C_{\rm g}^{\rm SM} + C_{\rm g}^{\rm NP} + Y_{c\bar{c}}(q^2)$

• Unexpectedly large $b \rightarrow c\bar{c}s$, can mimic new physics in C_9

 \rightarrow Use data to determine both $C_9^{\rm NP}$ and $Y_{c\bar{c}}(q^2)$ components [Cornella et al EPJC80(2020)12:1095], [Bobeth et al EPJC(2018)78:451], [Pomery et al EPJC(2018)78:453]

ightarrow Requires model for $Y_{car{c}}(q^2)$

Determing non-local contributions from data

$$\frac{d^5\Gamma}{dq^2d\vec{\Omega}dm_{K\pi}^2} = \sum_i S_i(q^2, m_{K\pi}^2)f(\vec{\Omega})$$

 S_i bilinear combinations of K^* helicity amplitudes $\mathcal{A}_{L,R}^{\lambda}(C_{7,9,10}^{NP(')}, Y^{\lambda}(q^2), F_i(q^2))$ Wilson Coefficients, $B \to K^*$ non local amp., $B \to K^*$ form factors

• Maximise sensitivity by fitting q^2 spectrum continuously

 Narrow dimuon resonances φ, ψ, ψ' etc require excellent control of resolution

 \rightarrow Kinematic constraint using known B^0 mass to improve q^2 resolution

 \rightarrow Obtain resolution parameters from fit to data

Latest measurement

- Unbinned amplitude analysis of entire $B^0 o K^{*0} \mu^+ \mu^- \; q^2$ spectrum
- First measurement using entire Run1+Run2 result

Latest results

LHCb [JHEP09(2024)026]

• First determination of $C_9^{\tau} = -116 \pm 264 \pm 98$

Latest results contd.

- Good agreement with previous unbinned LHCb measurement [PRL132(2024)13180]
 - \triangleright Using "polynomial" model for non-local amplitudes (z-expansion) [Bobeth et al EPJC(2018)78:451] in limited q^2 range
 - \rightarrow Less model dependent and more formal theoretically

LHCb [JHEP09(2024)026]

*LHC*P

Conclusions

- ▶ Intriguing set of coherent anomalies in $b \to s \ell \ell$ and $b \to c \tau \ell \nu$ persist a decade on
 - ightarrow Evaporation of LFUV in $b
 ightarrow s\ell\ell$ ($\ell \equiv \mu, e$) means no irrefutible NP evidence
- Understanding hadronic contributions is critical
- ▶ First results promising but are we missing other effects? eg large hadronic rescattering $B \to D^*D_s \to K^{(*)}\ell\ell$ [Ciuchini et al 22] [Isidori et al 24] suggests maybe not?.
 - ▷ Both theory and experiment work ongoing
- ▶ Improved experimental precision in R_{D,D^*} and $B \to K^{(*)}\tau\tau$ is critical

▷ Run3 LHCb and Belle2 data are key to this endeavour

▶ Potential *R*_{*D*,*D*^{*}} links with *V*_{*cb*} puzzle means further theory and experiment work ongoing here as well

- ▶ Keep close eye on Belle2 $B \rightarrow K \nu \bar{\nu}$ excess [PRD109,112006(2024)]
 - ho
 ight. Leptoquark can also enhance $b
 ightarrow s
 u_{ au}ar{
 u}_{ au}$
 - ▷ No charm-loop arguments
- ▶ Potential tensions also in non-leptonic $b \rightarrow s(d) \ b \rightarrow c$ measurements eg [Biswas et al JHEP06(2023)108], [Bordone et al EPJC80 10 951(2020)]
 - $\,\triangleright\,$ Significant theory and experimental work needed here

Thanks for listening

Backup