

Flavour anomalies

Konstantinos A. Petridis on behalf of LHCb

University of Bristol

October 9, 2024

Questions

Experimental approaches

SM could be a low-energy effective theory of a more fundamental theory at higher energy scale with new particles, dynamics/symmetries.

$$
E = mc^2
$$

$$
m \gg E/c^2
$$

- Limited by collision energy
- **Demon Demon Departive Starfs** Unambiguous evidence of new particle
- Not limited by collision energy
- Requires precise predictions (and measurements)

Indirect probe of high NP scales

Look at observables that:

- 1 The SM contribution is either small or accidental
- 2 Can be measured to high precision
- 3 Can be predicted to high precision
- \rightarrow Flavour Changing Neutral Currents in SM
	- Loop level, GIM suppressed
	- ► Left-handed chirality
	- \blacktriangleright Lepton universal couplings
- \rightarrow NP could violate any of these

Indirect probe of high NP scales

Look at observables that:

- 1 The SM contribution is either small or accidental
- 2 Can be measured to high precision
- 3 Can be predicted to high precision
- \rightarrow Tree level $b \rightarrow c \ell \nu$ in SM
	- ► Left-handed chirality
	- **Lepton universal couplings**
- \rightarrow NP could violate any of these

B production at the LHC

- \blacktriangleright Huge production cross-section: $\sigma_{b\bar{b}} = \mathcal{O}(100)\mu b$ at the LHC
- \triangleright B-hadron decays well separated owing to boost
- \blacktriangleright "Easy" to identify due to secondary vertex
- ► LHCb: Excellent IP and momentum resolution, and PID capabilities
	- \rightarrow World leading precision in many final states

LHCb: Recorded $\mathcal{L} > 18 \text{fb}^{-1}$, doubling our

Flavour Anomalies

Over the past decade we have observed a coherent set of tensions with SM predictions

- In $b \to s\ell^+\ell^-$ transitions $(4\text{-}5\sigma)$
	- 1. Branching Fractions $B \to K^{(*)} \mu^+ \mu^-$, $B_s \to \phi \mu^+ \mu^-$, $\Lambda_b \to \Lambda \mu^+ \mu^-$
	- 2. Angular analyses $B \to K^{(*)} \mu^+ \mu^-$, $\Lambda_b \to \Lambda \mu^+ \mu^-$
	- 3. Lepton Flavour Universality involving μ/e ratios $\mathcal{B}^{\mathsf{0}}\to \mathcal{K}^{*\mathsf{0}}\ell^+\ell^-, \ \mathcal{B}^+\to \mathcal{K}^+\ell^+\ell^-$

In $b \to c \ell \nu$ transitions (3 σ)

4. Lepton Flavour Universality involving μ/τ ratios $B \to D^{(*)} \ell \nu$

Types of $b \to s\ell^+\ell^-$ decays ²⁴ interaction strength gives rise to the di↵ering lepton masses m⌧ > m^µ > m^e [3–9]. The

► Decays of form: $B^+ \to K^+ \ell^+ \ell^-$, $B^0 \to K^{*0} \ell^+ \ell^-$, $B_s \to \phi \mu^+ \mu^-$, $\Lambda_b \to \Lambda^* \ell^+ \ell^- ...$ \mathfrak{g}_1 fractions of \mathfrak{g}_2

 \blacktriangleright Offer multitude of observables.

Interpreting results

- Rely on an Effective Field Theory to interpret our measurements
- Integrate out heavy ($\mu > m_W$) field(s) and introduce set of:
	- \triangleright Wilson coefficients C_i describing the short distance part
	- \triangleright Operators \mathcal{O}_i containing the (non-perturbative) long distance part

Can also get quark chirality flipped counterparts

1. Decay Rates

Measurements consistently below theory predictions at low $q^2 \equiv p_{\ell\ell}^2$ for many $b \to s \mu^+ \mu^-$ decays

 $B^{\mathbf{0}} \to K^{* \mathbf{0}} \mu^+ \mu^-$ [JHEP11(2016)047], $\Lambda_b \to \Lambda \mu^+ \mu^-$ [JHEP06(2015)115] $B_s \to \phi \mu^+ \mu^-$ [PRL127.151801]

Theory: Bobeth et al [JHEP07(2011)067], Bharucha et al [JHEP08(2016)098], Detmold et al [PRD93,074501(2016)], Horgan et al [PRD89(2014)]

 \blacktriangleright SM predictions limited by $B \to K^{(*)}$ form-factor uncertainties

2. Angular analysis of $B \to K^* \mu^+ \mu^-$

 \blacktriangleright Differential decay rate of $B^0\to K^{*0}\mu^+\mu^-$ and $\bar B^0\to \bar K^{*0}\mu^+\mu^-$: \cdots μ μ .

> $\frac{1}{\Gamma'_{\text{tot}}} \frac{d^4 \Gamma}{d a^2 d \cos \theta_{\text{tot}} d \cos \theta_{\text{tot}} d \phi} =$ $\frac{9}{22\pi}\left[\frac{3}{4}F_T\sin^2\theta_K+\frac{F_L}{F_L}\cos^2\theta_K+\left(\frac{1}{4}F_T\sin^2\theta_K-F_L\cos^2\theta_K\right)\cos 2\theta_l\right]$ $+\frac{1}{2}P_1P_T\sin^2\theta_K\sin^2\theta_l\cos 2\phi+\sqrt{F_TF_L}\left(\frac{1}{2}P_4\sin 2\theta_K\sin 2\theta_l\cos\phi+\overline{P_5^2}\sin 2\theta_K\sin\theta_l\cos\phi\right)$ $+\widehat{\left\{P_{2}P_{T}^{*}\sin^{2}\theta_{K}\cos\theta_{l}}-\sqrt{F_{T}F_{L}}\left(\overline{P_{6}^{*}}\sin2\theta_{K}\sin\theta_{l}\sin\phi-\frac{1}{8}Q^{*}\sin2\theta_{K}\sin2\theta_{l}\sin\phi\right)\right.$ $\left[\widehat{P_3F_T}\sin^2\theta_K\sin^2\theta_l\sin 2\phi\right](1\left[\widehat{F_S}\right]+\frac{1}{\Gamma'}W_S)$

The coefficients of the polluting term can be parametrized as

 $\frac{W_S}{\Gamma'_{\epsilon,n}} = \frac{3}{16\pi} \left[F_S \sin^2 \theta_\ell + \sqrt{A_S} \sin^2 \theta_\ell \cos \theta_K + \sqrt{A_S^4} \sin \theta_K \sin 2\theta_\ell \cos \phi \right]$ $+ \boxed{A_S^5}\!\!\sin \theta_K \sin \theta_\ell \cos \phi +\!\boxed{A_S^7}\!\!\sin \theta_K \sin \theta_\ell \sin \phi +\!\boxed{A_S^8}\!\!\sin \theta_K \sin 2 \theta_\ell \sin \phi]$

- ► Measure 16 observables (CP symmetric and asymmetric) through a quasi 4D angular and $m_{K\pi}$ fit in bins of q^2
- Each observable sensitive to different types of new physics couplings

Latest $B \to K^* \mu^+ \mu^-$ results

 \triangleright The large number of observables cover full spectrum of new physics models \triangleright Orthogonal expt. systematics and more precise theory predictions Orthogonal expt. systematics and more precise theory predictions

► Combination of angular observables: $\sim 2-3\sigma$ tension per mode and
experiment experiment

 $B^0 \to K^{*0} \mu^+ \mu^-$ [PRL125(2020)011802] $B^+ \to K^{*+} \mu^+ \mu^-$ [PRL126(2021)161802]

CMS, ATLAS B^0 → $K^{*0} \mu^+ \mu^-$ [CMS-PAS-BPH-21-002], [JHEP10(2018)047]

3. Lepton Flavour Universality tests

- \blacktriangleright In the SM couplings of gauge bosons to leptons are independent of lepton flavour \rightarrow Branching fractions differ only by phase space and helicity-suppressed contributions
- Ratios of the form:

$$
R_{\mathcal{K}^{(*)}} \mathrel{\mathop:}= \frac{\mathcal{B}(B \to \mathcal{K}^{(*)} \mu^+ \mu^-)}{\mathcal{B}(B \to \mathcal{K}^{(*)} e^+ e^-)} \stackrel{\text{SM}}{=} 1
$$

- \blacktriangleright In SM free from QCD uncertainties affecting other observables $\rightarrow \mathcal{O}(10^{-4})$ uncertainty [JHEP07(2007)040]
- \blacktriangleright Up to $\mathcal{O}(1\%)$ QED corrections [EPJC76(2016)8,440]

 \rightarrow Any significant deviation is a smoking gun for New Physics.

Latest R_X results

- New measurements in $B_s \to \phi \ell^+ \ell^-$!
- Good compatibility with SM
	- \rightarrow Electron and muon BFs consistently below SM prediction

4 Tree level I FUV

 Global fit to LHCb Belle and BaBar measurements at \sim 3.1 σ from SM

$$
R_{D^{(*)}} := \frac{\mathcal{B}(B \to D^{(*)}\tau\nu_{\tau})}{\mathcal{B}(B \to D^{(*)}\mu\nu_{\mu})}
$$

 Persistent hint of LFUV involving 3rd generation in $b \to c \ell \nu$ tree-level transitions

NEW: $R_{D(*)+}$ in $D^+\mu-$ using 2fb⁻¹ of Run2 data [LHCb-PAPER-2024-007] $R_{D(*)}$ in $D^0\mu-$ using Run1 data[PRL131,111802(2023)] $R_{D(*)}$ in $D^03\pi$ [PRL131,111802(2023)]

EHCb measurement uncertainty equal split between stat. and syst.

 \rightarrow B \rightarrow D^{*} form-factors and background modelling largest systematic of Run2 analysis

 \rightarrow Simulation sample size largest systematic for Run1 analysis

Putting it all together

► Combination of $b \to s\ell^+\ell^$ measurements $∼ 5σ$ from SM

Measurements point to new physics with vector dilepton coupling (C_9)

Putting it all together: Optimistic

- **Leptoquark with 3rd generation** couplings \boldsymbol{h}
	- Expect large enhancement of $b \to s \tau^+ \tau^-$
	- Generates radiatively anomalies in $b\to s\ell^+\ell^ (\ell = e, \mu)$

[Cornella et al 19'], [Greljo et al 18'], [Matias et al '18]

Putting it all together: Pessimistic

▶ Theory input required to compute contribution of $b \rightarrow c\bar{c}s$ hadronic amplitude (non-local) e.g [Khodjamirian et al 2010], [Gubernari et al 2018,2021,2022] $C_9^{\text{eff}} = C_9^{\text{SM}} + C_9^{\text{NP}} + Y_{c\bar{c}}(q^2)$

Unexpectedly large $b \rightarrow c\bar{c}s$, can mimic new physics in $C₉$

 \rightarrow Use data to determine both C_9^{NP} and $Y_{c\bar{c}}(q^2)$ components [Cornella et al EPJC80(2020)12:1095], [Bobeth et al EPJC(2018)78:451], [Pomery et al EPJC(2018)78:453]

 \rightarrow Requires model for $Y_{c\bar{c}}(q^2)$

Determing non-local contributions from data

$$
\frac{d^5\Gamma}{dq^2d\vec{\Omega}dm_{K\pi}^2}=\sum_i S_i(q^2,m_{K\pi}^2)f(\vec{\Omega})
$$

 S_i bilinear combinations of K^* helicity amplitudes ${\cal A}^\lambda_{L,R}\big(C^{\rm NP\,'}_{7,9,10},Y^\lambda(q^2),F_i(q^2)\big)$ Wilson Coefficients, $B \to K^*$ non local amp., $B \to K^*$ form factors

- \blacktriangleright Maximise sensitivity by fitting q^2 spectrum continuously
- Narrow dimuon resonances ϕ , ψ , ψ'
ote require excellent control of etc require excellent control of resolution

 \rightarrow Kinematic constraint using known B^0 mass to improve q^2 resolution

 \rightarrow Obtain resolution parameters from fit to data

Latest measurement

- ► Unbinned amplitude analysis of entire $B^0 \to K^{*0} \mu^+ \mu^ q^2$ spectrum
- First measurement using entire Run1+Run2 result

Latest results

LHCb [JHEP09(2024)026]

First determination of $C_9^{\tau} = -116 \pm 264 \pm 98$

Latest results contd.

- Good agreement with previous unbinned LHCb measurement [PRL132(2024)13180]
	- \triangleright Using "polynomial" model for non-local amplitudes (z-expansion) [Bobeth et al EPJC(2018)78:451] $\,$ in $\,$ limited $\,q^2\,$ range
		- \rightarrow Less model dependent and more formal theoretically

LHCb [JHEP09(2024)026]

Conclusions

- Intriguing set of coherent anomalies in $b \to s\ell\ell$ and $b \to c\tau\ell\nu$ persist a decade on
	- \triangleright Evaporation of LFUV in $b \to s\ell\ell$ ($\ell \equiv \mu, e$) means no irrefutible NP evidence
- ▶ Understanding hadronic contributions is critical
- \blacktriangleright First results promising but are we missing other effects? eg large hadronic rescattering $B\to D^*D_\mathsf{s}\to \mathsf{K}^{(*)}\ell\ell$ [Ciuchini et al 22] [Isidori et al 24] suggests maybe not?.
	- \triangleright Both theory and experiment work ongoing
- ► Improved experimental precision in R_{D,D^*} and $B \to K^{(*)}\tau\tau$ is critical

 \triangleright Run3 LHCb and Belle2 data are key to this endeavour

► Potential R_{DA} ^{*} links with V_{cb} puzzle means further theory and experiment work ongoing here as well

One last thing...

- ► Keep close eye on Belle2 $B \to K \nu \bar{\nu}$ excess [PRD109,112006(2024)]
	- \triangleright Leptoquark can also enhance $b \to s \nu_\tau \bar{\nu}_\tau$
	- \triangleright No charm-loop arguments
- ► Potential tensions also in non-leptonic $b \rightarrow s(d)$ $b \rightarrow c$ measurements eg [Biswas et al JHEP06(2023)108], [Bordone et al EPJC80 10 951(2020)]
	- \triangleright Significant theory and experimental work needed here

Thanks for listening

Backup