QCD and Flavour physics at future lepton colliders

hodron thrust axis

Yasmine Amhis

09.10.2024 **QCD** Conference Freiburg

My personal summary of the upcoming European Strategy for Particle Physics

"QCD is what will keep us busy for the next hundred years."

Trigger warning

What follows is by no means

a complete review of the topic.

However, I will cover selected examples.

Circular or linear e⁺e⁻ colliders?

Circular e⁺e⁻ colliders

- FCC-ee, CEPC
- Circumference: 90 100 km
- High luminosity & power efficiency at low energies; \rightarrow huge rates at Z pole (table below)
- Less luminosity at higher E_{CM} • (synchrotron radiation)
- Multiple interaction regions
- Very clean: little beamstrahlung

per detector in e'e	# Z	# B	#τ	# charm	# WW
LEP	4 x 10 ⁶	1×10^{6}	3 x 10 ⁵	1 x 10 ⁶	2 x 104
SuperKEKB	-	1011	1011	1011	-
FCC-ee	2.5 x 1012	7.5 x 10 ¹¹	2 x 1011	6 x 1011	1.5 x 10 ⁸

K. Jakobs, CERN-Fermilab HCP Summer School, 31st Aug. 2023

Linear e⁺e⁻ colliders

- ILC, CLIC, C³ (new idea) C³ arXiv:2110.15800
- Length ILC: 250 GeV – 1 TeV: $20.5 \rightarrow 40$ km CLIC: 380 GeV - 3 TeV: $11.4 \rightarrow 50 \text{ km}$
- High luminosity & power efficiency at high energies;
- Longitudinally spin-polarised beams
- Long-term energy upgrades possible
 - longer tunnel, same technology and/or
 - replacing accelerating structure with advanced technologies
 - (RF cavities with higher gradients, plasma acceleration?)

4

Let's see how Flavour Physics and understanding QCD can help us go beyond the Standard Model?

Beyond The SM 15 * Need to add neutrino mass (Majorana or Dirac?) Motivation for BSM Challenge EFT Paradigm Plansable EFT Solutions · Darh matter · Hierarchy problem · Baryon asymmetry · Cosmo logical constant · Initial Conditions for · Strong CP · Fermion masses and mixings inflation / Eternal inflation · Grand Anification completion of gravity • UV

Tim Cohen CERN/Fermilab School 2023

Naturally one need o fold into this thought process the fact that we have recently started the third run of the LHC and there is still HL-LHC

Top physics

Linear Circular

The top quark mass is a key SM parameter for precision tests at linear colliders Huge potential from threshold scan: up to per-mille accuracy on cross section & asymmetries

Access to top mass and width, as well as strong coupling and top Yukawa coupling

Indirect constraints on BSM via high-precision

arXiv:1601.06640 and arXiv:1510.04561

Energy reaches of a subset of dimension-6 operators SMEFT

Linear Circular

b-physics @ Z pole

Various *b*-decays modes with τ could be accessible, inclusive and exclusive.

Large boost for b hadrons ($\langle P_B \rangle = 32 \text{ GeV/c}$), very well separated b produced in opposite hemispheres

FCCee aka LEP in one minute

About 20 times the nominal Belle II anticipated statistics for B⁰ and B⁺.

Attribute	$\Upsilon(4S)$	pp	Z^0
All hadron species		\checkmark	 Image: A start of the start of
High boost		\checkmark	1
Enormous production cross-section		\checkmark	
Negligible trigger losses	\checkmark		✓
Low backgrounds	\checkmark		1
Initial energy constraint	\checkmark		(\checkmark)

Advantageous properties of Belle II ($\Upsilon(4S)$), LHC (*pp*) and FCC-ee (Z^0) [arxiv:2106.01259]

All species of *b*-hadrons are produced.

$$\langle E_{X_b} \rangle = 75\% \times E_{\text{beam}}; \langle \beta \gamma \rangle \sim 6.$$

Particle species B^0 $B^ B^0_s$ Λ_b B^+_c $c\overline{c}$ 180 Yield (10^9) 740 160 3.6740200 720

Table 1: Particle abundances for $6 \cdot 10^{12} Z$ decays. Charge conjugation is implied.

3) Reviews of current / foreseen activities (Feas. Study)

- Rare semileptonic decays and leptonic decays:

 - $b \rightarrow svv$, e.g. $B_s \rightarrow \phi vv$
 - $Bc \rightarrow \tau v; b \rightarrow s(d) \ell \ell$
- CP violation studies:
 - The CKM y angle, e.g. $B_s \rightarrow D_s K$.

 - The CKM α angle, e.g. $B^0 \rightarrow (\pi^0 \pi^0)$.
 - The matrix elements V_{ub} and V_{cb}
- Tau Physics:
 - Lepton flavour violating τ decays
 - Lepton-universality tests in τ decays.
- Charm Physics:
 - The rare decays, e.g. $D \rightarrow \pi vv, D^0 \rightarrow \gamma \gamma$
 - The hadronic decays, $D^+ \rightarrow \pi^+ \pi^0 \dots$

FCC • $b \rightarrow s\tau^+\tau^-$, e.g. $B^0 \rightarrow K^{*0} \tau^+\tau^-$. (vertexing case for mid-term review) The semileptonic asymmetries (CP breaking in mixing). Flavours @ FCC 12

11

SM

- No B_c production at Belle II.

• Can be used to measure the CKM element $|V_{cb}|$ and highly sensitive to scalar contributions from NP.

No possible at LHCb due to missing energy-lack of constraints and reconstructed information.

[arxiv:2105.13330, arxiv:2305.02998] [arxiv:2007.08234]

Charged currents

https://hflav.web.cern.ch/content/semileptonic-b-decays

13

With an EFT at $\mu = m_b$

$$\begin{aligned}
\begin{aligned}
&\text{Meff} = \frac{4}{\sqrt{2}} V_{cb} \left[\left(1 + C_{V_{e}} \right) (\overline{c}_{L} X^{V} b_{L}) (\overline{a}_{L} X^{V} b_{R}) (\overline{a}_{L} + C_{V_{R}} (\overline{c}_{R} X^{V} b_{R}) (\overline{a}_{L} + C_{SL} (\overline{c}_{L} b_{R}) (\overline{a}_{R} + C_{SL} (\overline{c}_{L} b_{L}) (\overline{a}_{R} + C_{SR} (\overline{c}_{R} b_{L}) (\overline{c}_{R} + C_{SR} + C_{SR} (\overline{c}_{R} + C_{SR} + C_{SR} + C_{SR} (\overline{c}_{R} + C_{SR} + C_{SR$$

$C_{V(A)} = C_{V_R} \pm C_{V_L}$ and $C_{S(P)} = C_{S_R} \pm C_{S_L}$. If one uses :

$$B(B_{C} - 2v) = B(B_{C} - 2v) 1 - C_{A} - C$$

 $\mathcal{L}(\mathcal{X}_{\mathcal{Y}} \mathcal{N}_{\mathcal{L}})$ EL YH VL) VL) VL)]+h.c

C_i are the Wilson coefficients, null in the SM using this convention.

C_P lifts the SM helicity suppression sizeable enhancement !

B_c lifetime very short ~ 0.5 ps, *i.e* too many degrees of freedom to fully reconstruct the decay.

Explore the thrust axis properties and the hadronic τ decays.

Note : arXiv:2007.08234 explored leptonic τ decays.

Impact evaluated on NP models and Lepton Universality observables

correspond to 2% and 4% uncertainty on $\mathscr{B}(B^+ \to \tau^+ \nu_{\tau})$. Different central values are taken from the current Exclusive, Global and $B^+ \rightarrow \tau^+ \nu_{\tau}$ values.

$b \rightarrow s \nu \bar{\nu}$ motivation

- Most probably impossible at LHCb
- Belle II cannot do all *B* flavours
- Yet to be observed, besides evidence for $B^+ \to K^+ \nu \bar{\nu}$
 - 2.7*σ* tension with SM [<u>arxiv:2311.14647</u>]
- Theoretically cleaner than the corresponding $b \rightarrow sl^+l^-$
- Can be used to extract the CKM factor and hadronic form factors, and constrain Wilson coefficients
- Novel probes of CPV from new physics [arxiv:2208.10880]

Decay	B-factories	FCC-ee
$B^+ \to K^+ \nu \overline{\nu}$	~	✓
$B^+ \to K^{*+} \nu \overline{\nu}$	\checkmark	~
$B^0 \to K^0_{\rm S} \nu \overline{\nu}$	\checkmark	~
$B^0 \to K^{*0} \nu \overline{\nu}$	\checkmark	~
$B_s^0 o \phi \nu \overline{\nu}$	X	~
$\Lambda_b^0 \to \Lambda^{(*)0} \nu \overline{\nu}$	×	

Circular

Plot of the maximum likelihood fit for $B^+ \to K^+ \nu \bar{\nu}$ from inclusive tagging

arxiv:2309.11353

$b \rightarrow s \nu \bar{\nu}$ projections

Studies on sensitivity at FCC-ee [JHEP 01 (2024) 144] and at CEPC [PRD 105 (2022) 114036]

This kind of precision means that differential measurements will be possible

CKM metrology

At the horizon of the next electron collider, the knowledge of the CKM profile is expected to have been deeply revisited by LHCb and Belle II/III.

Let's not forget about X

Several null tests of the SM accessible at the highest precision, e.g. semileptonic asymmetries, ϕ_s in penguin-dominated diagrams ...

$B \rightarrow K^* \tau^+ \tau^- decays$

A fairly complex topology to study $b \rightarrow s\ell^+\ell^-$ transitions

We could see unambiguously the SM signal with this emulated detector

τ measurements

- ~ $10^{11} Z \rightarrow \tau^+ \tau^-$ at the FCC-ee
- m_{τ} is a SM parameter must push experimental sensitivity as far as possible
 - Required for many SM predictions
 - Charged weak currents
 - CKM elements
 - Enters LFU tests at the fifth power
 - LFV searches complement that of μ
- Can also directly measure lifetime and BFs (extract $\alpha_s(m_{\tau})$)

• τ coupling $\implies \nu_{\tau}$ coupling - link to oscillations and LFV, probe orders of magnitude better than current experiments [arXiv:1612.02728, arXiv:2203.05502v2, arXiv:2203.06520]

τ^{\pm} lifetime and BFs

- FCC-ee should provide the most precise measurements of τ lifetimes and BFs
- For lifetime
 - Impact parameter is $\sim 70 \ \mu$ m, much greater than the FCC IP resolution and beam spot size
 - Uncertainty on the average length scale of vertex detector elements ≤ 4.8 ppm
- For BFs
 - Good EM energy resolution, $< 20 \% / \sqrt{E(\text{GeV})}$ (LEP)
 - Granular EM calorimeter $> 15 \times 15$ mrad² (LEP)

Should temper expectations a little as these plots assume $8 \times 10^{12} Z^0 s$

Conclusions

- Precision flavour measurements set powerful constraints on New Physics
 - There are a number of interesting opportunities at lepton colliders
- A number of challenges both theoretical and experimental will have to be overcome
 - Hopefully exciting times and potentially discoveries ahead of us

One final note

"Mum, which question are you trying to answer? I mean in physics?"

Material heavily inspired by

- Karl Jakobs CERN/Fermilab school 2023
- Pier Monni Zurich Phenomenology Workshop 2024
- Stephane Monteil LHCb meeting 2024
- Philip Urquijo ECFA 2022
- Matthew Kenzie ECFA-UK Meeting 2024
- Aidan Wiederhold ICHEP 2024

SM

- No B_c production at Belle II.
- A Tera-Z machine is an ideal machine to study this decay.

• Can be used to measure the CKM element $|V_{cb}|$ and highly sensitive to scalar contributions from NP.

• No possible at LHCb due to missing energy-lack of constraints and reconstructed information.

With an EFT at $\mu = m_b$

$$\begin{aligned}
\begin{aligned}
&\text{Meff} = \frac{4}{\sqrt{2}} V_{cb} \left[\left(1 + C_{V} \right) (\overline{c}_{L} X^{V} b_{L}) (\overline{a}_{L} + C_{VR} (\overline{c}_{R} X^{V} b_{R}) (\overline{a}_{R} + C_{SL} (\overline{c}_{L} b_{R}) (\overline{a}_{R} + C_{SL} (\overline{c}_{L} b_{R}) (\overline{a}_{R} + C_{SR} (\overline{c}_{R} b_{L}) (\overline{c}_{R} + C_{SR} (\overline{c}_{R} b_{L}) (\overline{c}_{R} + C_{SR} (\overline{c}_{R} + C_{SR} (\overline{c}_{R} + C_{SR} (\overline{c}_{R} + C_{SR} + C_{SR} (\overline{c}_{R} + C_{SR} + C_$$

fone uses = $C_{V_R} \pm C_{V_L}$ and $C_{S(P)} = C_{S_R} \pm C_{S_L}$.

$$B(B_{C} - 2v) = B(B_{C} - 2v) 1 - C_{A} - C$$

 $c_{L} (\psi v_{L})$ ELYHVL) VL) VL)]+h.c

C_i are the Wilson coefficients, null in the SM using this convention.

C_P lifts the SM helicity suppression sizeable enhancement !

Tree-level Feynman diagram in the SM

$$B(B_{c} \rightarrow 2\nu)^{SM} = 2 B_{c} G_{f}^{2} \frac{|V_{cb}|^{2} f_{bc}}{8\pi} B_{c} \cdot m_{s}^{2}$$

Decay constant from HPQCD and V_{cb} exclusive HFLAV. Looking forward to improvements of the decay constant computation with LQCD techniques.