Impact of QCD and PDF uncertainties on SM precision measurements (at the LHC)

Markus Seidel on behalf of the ATLAS, CMS, and LHCb collaborations

Oct 10, 2024

Supported by CA22130 - Comprehensive Multiboson Experiment-Theory Action (COMETA)

Overview

Topics covered in this talk

- W boson mass and width
- Weak mixing angle
- Electroweak diboson
- Top quark mass
- Strong coupling α_s
- Higgs \rightarrow Miha (next talk)

Related plenary talks

- Valentina Guglielmi: Strong coupling measurements at the LHC (Monday)
- Johannes Erdmann: Status of Higgs boson precision measurements (Tuesday)
- Frederic Derue: Status of electroweak parameter measurements (Tuesday)
- Thorsten Kuhl: Recent experimental results on top and heavy-flavour production (Wednesday)
- Miha Muskinja: Impact of QCD and PDF uncertainties on BSM searches (today)
- …and even more parallel talks!

First measurement of the W mass at the LHC (± 19 MeV)

ATLAS STDM-2014-18

• Measurement of m_W from lepton p_T requires good control of W p_T

- Prediction by Pythia 8 Tune AZ (LO+ISR MEC), tuned to ATLAS Z p_T data
- Pythia μ_F variations, heavy quark initial states decorrelated between W/Z $ightarrow \pm 5.0$ MeV
 - Uncorrelated light-quark component would give $\pm 30 \text{ MeV}$ uncertainty (template fit)

First measurement of the W mass at the LHC (\pm 19 MeV)

■ PDFs uncertainties are the largest: CT10nnlo eigenvectors (\pm 7.4 MeV) \oplus comparison to MMHT14 and CT14 (\pm 3.8 MeV)

■ Uncertainty on angular coefficients A_i from measurement in Z data (5.8 MeV)

ATLAS STDM-2014-18

W mass by likelihood fit $(\pm 32 \text{ MeV})$

Simultaneous fit of W mass, ISR α_s , and intrinsic k_t arXiv 1907.09958

- *p*_T model: Powheg+Pythia vs Pythia vs Powheg+Herwig → ±11 MeV (after fit)
 Common intrinsic *k_t* but ISR α_s decorrelated between W and Z
- \blacksquare PDFs: average of NNPDF3.1, CT18, and MSHT20 $\rightarrow \pm 9\,\text{MeV}$
- A_i at NNLO but A_3 would be ± 30 MeV. Included in fit $\rightarrow \pm 10$ MeV
- Anti-correlation of LHCb and GPDs, $\rho \simeq -0.5$ arXiv 1508.06954 arXiv 2308.09417

Post-CDF W mass world combination

- All results shifted to set of common PDF sets
- Combined with BLUE method for each PDF
- With CDF: largest uncertainy from PDFs

	All experiments	(4 d.o.f.)		-
PDF set	m_W	$\sigma_{ m PDF}$	χ^2	$\mathrm{p}(\chi^2,n)$	
ABMP16	80392.7 ± 7.5	3.2	29	0.0008%	-
CT14	80393.0 ± 10.9	7.1	16	0.3%	
CT18	80394.6 ± 11.5	7.7	15	0.5%	nominal
MMHT2014	80398.0 ± 9.2	5.8	17	0.2%	
MSHT20	80395.1 ± 9.3	5.8	16	0.3%	
NNPDF3.1	80403.0 ± 8.7	5.3	23	0.1%	largest difference
NNPDF4.0	80403.1 ± 8.9	5.3	28	0.001%	argest difference

- ABMP: smallest uncertainty due to anti-correlation between ATLAS W+/-
- 10 MeV between lowest and highest
- W/o CDF: PDF down, total up, fit improved

CT18

- $80369.2 \pm 13.3 \quad 6.2 \quad 0.5$
- 12 MeV difference between lowest and highest

92%

LHC-TeV MWWG

nominal

ATLAS reanalysis with profile likelihood fit $(\pm 15.9 \text{ MeV})$

Fit to lepton p_{T} , treating all uncertainties as nuisance parameters

- Reduction of PDF uncertainty from 7.4 (CT10) to 4.9 MeV (profiled CT18)
- Difference between PDF sets: up to 18 MeV
 - Reducible by inflating prefit uncertainties but not applied by default

${\sf Measurement}\ of\ the\ W\ width$

ATLAS STDM-2019-24

W width from lepton p_{T}

- Huge uncertainty from charm modeling $(m_c \pm 0.5 \, \text{GeV})$
- Cannot be distinguished from width variation!
- Consider different observable
- W width from transverse mass m_T
 - Impact of charm modeling reduced by factor 4

Combined value mostly $m_{\rm T}$

Total uncertainty ±47 MeV

W mass at CMS $(\pm 9.9 \, \text{MeV})$

- **•** Full profile likelihood fit to lepton $p_{\rm T}$ and η
- Prediction: MiNNLO reweighted to SCETlib+DYTurbo N³LL+NNLO
- TNPs instead of scale variations for resummation Tackmann $\rightarrow p_T^W$ uncertainty $\pm 2 \text{ MeV}$

- W-like Z: one muon treated as neutrino \rightarrow good agreement in p_T^Z and m_Z
- MiNNLO scale uncertainties on $A_i \rightarrow \pm 3.2 \text{ MeV}$, larger than p_T^W now

W mass at CMS ($\pm 9.9 \text{ MeV}$): PDF treatment

- \blacksquare CT18Z as default PDF, profiling the eigenvectors $\rightarrow \pm 4.4\,\text{MeV}$
- Derive scale factors to cover m_W extracted with all other PDF sets

 \blacksquare Very good consistency between PDF sets even before scaling, owed to η^{μ}

Difference CT18 vs NNPDF4.0 reduced from 5 MeV to 3 MeV

Markus Seidel (RTU)

Impact of QCD and PDF uncertainties on SM precision measurements

Weak mixing angle at ATLAS and CMS $% \left({{{\rm{CMS}}} \right) = {{\rm{TMS}}} \right)$

- \blacksquare Measured by Z/γ^* forward-backward asymmetry, need to infer initial state
- \blacksquare Less dilution at higher Z rapidity \rightarrow use electrons in forward calorimeters

7 TeV atlas stdm-2011-34 (total $\pm 12 \times 10^{-4}$) $\rightarrow 8$ TeV atlas conf-2018-037 (total $\pm 3.6 \times 10^{-4}$)

PDF treatment: ATLAS-epWZ12 ($\pm 9 \times 10^{-4}$) \rightarrow MMHT14 ($\pm 2.4 \times 10^{-4}$)

13 TeV measurement CMS SMP-22-010 (total $\pm 3.1 \times 10^{-4}$)

- \blacksquare PDF profiling \rightarrow reduction of differences, decrease of individual PDF uncertainties
- \blacksquare Central value with CT18Z (±2.7 \times 10^{-4}), covers other PDF sets

Markus Seidel (RTU)

Impact of QCD and PDF uncertainties on SM precision measurements

Weak mixing angle at LHCb

- Advantage: muon reconstruction in the forward region (2.0 $< \eta < 4.5$)
- 7+8 TeV: NNPDF2.3 $\rightarrow \pm 4.3 \times 10^{-4}$ (total $\pm 10.6 \times 10^{-4}$)
- 13 TeV: average of NNPDF3.1, CT18, and MSHT20 $\rightarrow \pm 2.1 \times 10^{-4}$ (total $\pm 4.9 \times 10^{-4}$)

Dominated by statistical uncertainty, great prospects with more data LHCb PUB-2018-013

Remark for all $\sin^2 \theta$ measurements: $A_{4/FB}$ fully unfolded, available for reinterpretation

Diboson measurements: electroweak $W\gamma jj$

- QCD uncertainties relevant in EW measurements where QCD-induced subtracted
- Using NN to isolate EW from QCD-induced in VBS-enhanced phase space
 - ightarrow observation of electroweak $W\gamma jj$, measured fiducial and differential cross sections

Strong Wγjj modeling uncertainties large at high lepton p_T

- Sherpa NLO scale uncertainties, Sherpa vs MadGraph5_aMCatNLO
- Corresponding CMS measurement CMS SMP-21-011

Diboson measurements: electroweak W^+W^-

• Observation of electroweak W^+W^- production

- Selected uncertainties
 - Leading uncertainty: statistical (14.9%)
 - tt̄ scale variation (NLO, 5.1%)
 - VBS signal scale variation (WWjj@LO, 4.9%)
 - QCD-induced scale variation (WW@NNLO, 2.1%)
- Modeling might become limiting factor in the future
- Corresponding ATLAS paper ATLAS STDM-2022-06

Top quark mass: direct measurements

- Direct m_t measurements fit reconstructed top mass peak
- Progress in top quark modeling: switched to NLO generators, improved tunes, using parton shower weights for uncertainties CMS TOP-23-003

- PDF negligible but leading uncertainties from QCD modeling: Pythia vs Herwig b jet response, FSR scale, color reconnection
- Can we expect higher precision in top decays from NLL showers?

Markus Seidel (RTU)

Impact of QCD and PDF uncertainties on SM precision measurements

Top quark mass: alternative measurements

- Circumvent jet energy scale uncertainty by using heavy hadrons and leptons
- Large b fragmentation uncertainties in Run 1 CMS measurements
 - $\blacksquare m_{\text{SecVtx},\ell} \rightarrow ^{+1.00}_{-0.64} \text{ GeV (bfrag)} \text{ CMS TOP-12-030 }, m_{\text{J}/\Psi,\ell} \rightarrow \pm 0.3 \text{ GeV (bfrag)} \text{ CMS TOP-15-014}$

For all: no standard FSR variations evaluated, huge statistical uncertainties for J/Ψ

LHC Run 1 combination (direct+alternative)

- \blacksquare Most precise direct value from ATLAS+CMS Run 1 combination $\rightarrow \pm 0.33\,\text{GeV}$
- CR uncertainty reduced, likely to be effect from limited sample size in each measurement

T in containing on the second	Uncertainty impact [GeV]				
Uncertainty category	LHC	ATLAS	CMS		
b-JES	0.18	0.17	0.25		
b tagging	0.09	0.16	0.03		
ME generator	0.08	0.13	0.14		
JES 1	0.08	0.18	0.06		
JES 2	0.08	0.11	0.10		
Method	0.07	0.06	0.09		
CMS b hadron B	0.07	_	0.12		
QCD radiation	0.06	0.07	0.10		
Leptons	0.05	0.08	0.07		
JER	0.05	0.09	0.02		
CMS top quark p_T	0.05	_	0.07		
Background (data)	0.05	0.04	0.06		
Color reconnection	0.04	0.08	0.03		
Underlying event	0.04	0.03	0.05		
g-JES	0.03	0.02	0.04		
Background (MC)	0.03	0.07	0.01		
Other	0.03	0.06	0.01		
1-JES	0.03	0.01	0.05		
CMS JES 1	0.03	_	0.04		
Pileup	0.03	0.07	0.03		
JES 3	0.02	0.07	0.01		
Hadronization	0.02	0.01	0.01		
p_{T}^{miss}	0.02	0.04	0.01		
PDF	0.02	0.06	< 0.01		
Trigger	0.01	0.01	0.01		
Total systematic	0.30	0.41	0.39		
Statistical	0.14	0.25	0.14		
Total	0.33	0.48	0.42		

Top pole mass from cross section ATLAS TOPQ-2013-04 ATLAS+CMS 2205.13830 CMS TOP-17-001

- Measured and predicted $\sigma_{t\bar{t}}$ have different dependence on m_t
- Extract m_t in well-defined mass scheme from intersection

- Largest uncertainties from PDF+ α_s and QCD scale (NNLO+NNLL)
 - No breakdown given but $\alpha_s \pm 0.001$ may account for $\pm 1.5 \, {\rm GeV}$ in m_t
- Most precise result: ATLAS+CMS Run 1 combination: $m_t = 173.4^{+1.8}_{-2.0}$ GeV (NNPDF3.1)
- \blacksquare CMS 13 TeV: 3 GeV downward shift with ABMP16 which uses a lower value of α_{s}
 - \rightarrow pole mass results envelope the direct measurements

Pole mass from $t\bar{t} + jet$

• Using mass-sensitive observable $ho=2m_0/m\left(t\bar{t}+jet
ight)$

ATLAS measurement at 7 TeV

• $m_t = 173.7 \pm 1.5 \text{ (stat)} \pm 1.4 \text{ (syst)}^{+1.0}_{-0.5} \text{ (theory)}$

Large QCD scale uncertainty from NLO tτ
 + jet (+0.93 / -0.44 GeV), using fixed scale μ = m_t

CMS measurement at 13 TeV

- Dynamic QCD scale choice $H_T^B/2 \rightarrow {+0.51 \atop -0.43} \text{GeV}$
- Largest uncertainty from gluon jet response CMS JME-13-004
- $m_t = 172.93 \pm 1.36 \text{ GeV} (ABM16),$ $m_t = 172.13 \pm 1.43 \text{ GeV} (CT18) \leftarrow 0.8 \text{ GeV} \text{ difference}$
- \rightarrow wishlist: NNLO calculation, resolve PDF discrepancy, resolve light-quark vs gluon jet response (Pythia vs Herwig)

Strong coupling from jet production

- 7 TeV: $\alpha_s = 0.1185 \pm 0.0028$ (CT10)^{+0.0053}_{-0.0024} (NLO scale) ± 0.0019 (exp+NP)
- 8 TeV: $\alpha_s = 0.1164^{+0.0025}_{-0.0029}$ (CT10) $^{+0.0053}_{-0.0028}$ (NLO scale) $^{+0.0014}_{-0.0015}$ (exp+NP)
 - HERA+CMS result: $\alpha_s = 0.1185^{+0.0002}_{-0.0016} \text{ (model+param)}^{+0.0022}_{-0.0018} \text{ (NLO scale)}^{+0.0019}_{-0.0021} \text{ (exp)}$
 - Smaller QCD scale uncertainties due to consistent treatment in PDF and theory prediction

- 13 TeV: main result now HERA+CMS full QCD fit at NNLO
 - $\alpha_s = 0.1170 \pm 0.0007 \text{ (model+param)} \pm 0.0008 \text{ (NNLO scale)} \pm 0.0014 \text{ (exp)}$
 - Jet energy response to gluons starts to become an important factor
 - \rightarrow new parton showers, or clever idea for calibration?

Strong coupling from Z boson recoil

- Measurement of Z p_T and rapidity in full phase space (without lepton cuts)
- Fitted using N³LO+aN⁴LL prediction, profiling MSHT20 PDFs $\rightarrow \alpha_s = 0.1183 \pm 0.0009$
 - Experimental ± 0.44 , PDF ± 0.51 , scale variation $\pm 0.42 \times 10^{-3}$

- Cross-check fits at N³LO+N³LL, profiling NNLO PDFs
 - MSHT20 in agreement with NNPDF4.0 and HERAPDF2.0 within PDF uncertainties
 - Value extracted with CT18A significantly higher (0.1198)
- HERA+ATLAS fit $\rightarrow \alpha_s = 0.1187 \pm 0.0010$ with ± 0.0006 from PDF

Summary: W mass and weak mixing angle

- LHC is a precision machine!
- W boson mass: uncertainties balanced between experimental and modeling

Total uncertainty

Phys. Rept. 427 (2006) 257

Statistical uncertainty

• Weak mixing angle: precision limited by PDFs, good prospects for LHCb with more data

Summary: top quark mass and strong coupling

Direct m_t : limited by modeling of top quark decay and scheme uncertainty

- m_t from cross section: large uncertainties from PDF, α_s , and QCD scale (NNLO+NNLL)
- α_s : dominated by theory and modeling, genuine detector effects becoming smaller

 \Rightarrow further improve precision by collaboration between theory and LHC experiments!