Selected

Recent Advances in PDFs From Lattice QCD

Martha Constantinou

Temple University

Disclaimer

Mistakes attributed to Wine Tasting Excursion in Breisach

Disclaimer

Mistakes attributed to Wine Tasting Excursion in Breisach

Before...

Disclaimer

Mistakes attributed to Wine Tasting Excursion in Breisach

Before...

OUTLINE

- A. Lattice QCD @ LHC
- **B.** Methods to access PDFs (+ GPDs, TMDs) from lattice QCD
- C. Selected recent results on:
 - Quark PDFs
 - Gluon PDFs
 - Novel Developments
- **D.** Synergy with phenomenology
- E. Concluding remarks

Lattice QCD @ LHC

Inputs for interpreting high-energy collisions at LHC for SM and Beyond.

M. Seidel, Thu 9:00 am

M. Muskinja, Thu 9:30 am

J. M. Cruz Martinez, Thu 10:00 am

Predictions of the Higgs boson production cross section in pp collisions

G. Heinrich, Tue 9:30 am

- ★ Lattice QCD-derived PDFs complement phenomenological fits to experimental data sets. Better constraints on the isovector proton PDF for high-x region at ~10% level will impact predictions for new-physics searches at ATLAS and CMS [2017 PDFLattice Report, Prog. Part. Nucl. Phys. 100, 107 (2018)]
- ★ Lattice can complement experimental data in kinematic regions where data are sparse or unavailable. Essential for heavy ion collisions, small-x physics, and precision Higgs and top-quark physics
- ★ Lattice results on spin-dependent PDFs interest for experiments at the LHC and other spin-polarized collision experiments.
- Strange PDFs have important role in precision EW physics can be coupled with W + c data from LHC (unpolarized PDFs).
 T. Hobbs, Tue 2 pm

Accessing PDFs/GPDs from lattice QCD

Nucleon Characterization

Wigner distributions

Т

- ★ Fully characterize partonic structure of hadrons
- ★ Provide multi-dim images of the parton distributions in phase space

Correlations between momenta, positions, spins

★ Information on the hadron's mechanical properties (OAM, pressure, etc.)

Nucleon Characterization

Wigner distributions

'זנ'

- ★ Fully characterize partonic structure of hadrons
- \star Provide multi-dim images of the parton distributions in phase space

★ Partons contain information on
 x: longitudinal momentum fraction
 k_T: transverse momentum
 *b*_⊥: impact parameter

Correlations between momenta, positions, spins

Information on the hadron's mechanical properties (OAM, pressure, etc.)

Hadron Structure

★ Structure of hadrons explored in high-energy scattering processes

★ Processes cross-section contains information on hadron $\sigma_{\text{DIS}}(x, Q^2) = \sum_{i} \left[H^i_{\text{DIS}} \otimes f_i \right](x, Q^2) \qquad [a \otimes b](x) \equiv \int_x^1 \frac{d\xi}{\xi} a\left(\frac{x}{\xi}\right) b(\xi)$

 Hadron structure expressed in terms of distribution functions of partonic constituents (PDFs, GPDs, TMDs)

Hadron Structure

Structure of hadrons explored in high-energy scattering processes

Processes cross-section contains information on hadron

$$\sigma_{\text{DIS}}(x,Q^2) = \sum_i \left[H^i_{\text{DIS}} \otimes f_i \right](x,Q^2)$$

$$\left[a \otimes b\right](x) \equiv \int_{x}^{1} \frac{d\xi}{\xi} a\left(\frac{x}{\xi}\right) b(\xi)$$

Perturb. part (process dependent)

 ★ Hadron structure expressed in terms of distribution functions of partonic constituents (PDFs, GPDs, TMDs)

Hadron Structure

Structure of hadrons explored in high-energy scattering processes

Processes cross-section contains information on hadron

$$\sigma_{\text{DIS}}(x, Q^2) = \sum_{i} \left[H^i_{\text{DIS}} \otimes f_i \right](x, Q^2) \qquad [a \otimes b](x) \equiv \int_x^1 \frac{d\xi}{\xi} a\left(\frac{x}{\xi}\right) b(\xi)$$
Perturb. part
(process dependent) Non-Perturb. part
(process "independent")

 Hadron structure expressed in terms of distribution functions of partonic constituents (PDFs, GPDs, TMDs)

- In parton model, physical picture valid for infinite momentum frame [R. P. Feynman, Phys. Rev. Lett. 23, 1415 (1969)]
- **PDFs** parameterized via matrix elements of nonlocal light-cone operators

$$f(x) = \frac{1}{4\pi} \int dy^{-} e^{-ixP^{+}y^{-}} \langle P, S | \bar{\psi}_{f} \gamma^{+} \mathcal{W} \psi_{f} | P, S \rangle$$

- In parton model, physical picture valid for infinite momentum frame [R. P. Feynman, Phys. Rev. Lett. 23, 1415 (1969)]
- **PDFs** parameterized via matrix elements of nonlocal light-cone operators

$$f(x) = \frac{1}{4\pi} \int dy^{-} e^{-ixP^{+}y^{-}} \langle P, S | \bar{\psi}_{f} \gamma^{+} \mathcal{W} \psi_{f} | P, S \rangle$$

$$\langle N(P') | \mathcal{O}_{V}^{\mu\mu_{1}\cdots\mu_{n-1}} | N(P) \rangle \sim \sum_{\substack{i=0 \\ \text{even}}}^{n-1} \left\{ \gamma^{\{\mu} \Delta^{\mu_{1}} \cdots \Delta^{\mu_{i}} \overline{P}^{\mu_{i+1}} \cdots \overline{P}^{\mu_{n-1}\}} A_{n,i}(t) - i \frac{\Delta_{\alpha} \sigma^{\alpha\{\mu}}{2m_{N}} \Delta^{\mu_{1}} \cdots \Delta^{\mu_{i}} \overline{P}^{\mu_{i+1}} \cdots \overline{P}^{\mu_{n-1}\}} B_{n,i}(t) \right\} \\ + \frac{\Delta^{\mu} \Delta^{\mu_{1}} \cdots \Delta^{\mu_{n-1}}}{m_{N}} C_{n,0}(\Delta^{2}) \Big|_{n \text{ even}} \rangle \left\{ \left. + \frac{\Delta^{\mu} \Delta^{\mu_{1}} \cdots \Delta^{\mu_{n-1}}}{m_{N}} C_{n,0}(\Delta^{2}) \right|_{n \text{ even}} \right\} \right\} \\ + \frac{\Delta^{\mu} \Delta^{\mu_{1}} \cdots \Delta^{\mu_{n-1}}}{m_{N}} C_{n,0}(\Delta^{2}) \Big|_{n \text{ even}} \right\} \\ + \frac{\Delta^{\mu} \Delta^{\mu_{1}} \cdots \Delta^{\mu_{n-1}}}{m_{N}} C_{n,0}(\Delta^{2}) \Big|_{n \text{ even}} \right\} \\ + \frac{\Delta^{\mu} \Delta^{\mu_{1}} \cdots \Delta^{\mu_{n-1}}}{m_{N}} C_{n,0}(\Delta^{2}) \Big|_{n \text{ even}} \right\} \\ + \frac{\Delta^{\mu} \Delta^{\mu_{1}} \cdots \Delta^{\mu_{n-1}}}{m_{N}} C_{n,0}(\Delta^{2}) \Big|_{n \text{ even}} \right\} \\ + \frac{\Delta^{\mu} \Delta^{\mu_{1}} \cdots \Delta^{\mu_{n-1}}}{m_{N}} C_{n,0}(\Delta^{2}) \Big|_{n \text{ even}} \right\} \\ + \frac{\Delta^{\mu} \Delta^{\mu_{1}} \cdots \Delta^{\mu_{n-1}}}{m_{N}} C_{n,0}(\Delta^{2}) \Big|_{n \text{ even}} \right\} \\ + \frac{\Delta^{\mu} \Delta^{\mu_{1}} \cdots \Delta^{\mu_{n-1}}}{m_{N}} C_{n,0}(\Delta^{2}) \Big|_{n \text{ even}} \right\} \\ + \frac{\Delta^{\mu} \Delta^{\mu_{1}} \cdots \Delta^{\mu_{n-1}}}{m_{N}} C_{n,0}(\Delta^{2}) \Big|_{n \text{ even}} \right\} \\ + \frac{\Delta^{\mu} \Delta^{\mu_{1}} \cdots \Delta^{\mu_{n-1}}}{m_{N}} C_{n,0}(\Delta^{2}) \Big|_{n \text{ even}} \right\} \\ + \frac{\Delta^{\mu} \Delta^{\mu_{1}} \cdots \Delta^{\mu_{n-1}}}{m_{N}} C_{n,0}(\Delta^{2}) \Big|_{n \text{ even}} \right\} \\ + \frac{\Delta^{\mu} \Delta^{\mu_{1}} \cdots \Delta^{\mu_{n-1}}}{m_{N}} C_{n,0}(\Delta^{2}) \Big|_{n \text{ even}} \right\} \\ + \frac{\Delta^{\mu} \Delta^{\mu_{1}} \cdots \Delta^{\mu_{n-1}}}{m_{N}} C_{n,0}(\Delta^{2}) \Big|_{n \text{ even}} \right\} \\ + \frac{\Delta^{\mu} \Delta^{\mu_{1}} \cdots \Delta^{\mu_{n-1}}}{m_{N}} C_{n,0}(\Delta^{2}) \Big|_{n \text{ even}} \right\} \\ + \frac{\Delta^{\mu} \Delta^{\mu_{1}} \cdots \Delta^{\mu_{n-1}}}{m_{N}} C_{n,0}(\Delta^{2}) \Big|_{n \text{ even}} \right\} \\ + \frac{\Delta^{\mu} \Delta^{\mu_{1}} \cdots \Delta^{\mu_{n-1}}}{m_{N}} C_{n,0}(\Delta^{2}) \Big|_{n \text{ even}} \right\} \\ + \frac{\Delta^{\mu} \Delta^{\mu_{1}} \cdots \Delta^{\mu_{n-1}}}{m_{N}} C_{n,0}(\Delta^{2}) \Big|_{n \text{ even}} \right\}$$

- In parton model, physical picture valid for infinite momentum frame [R. P. Feynman, Phys. Rev. Lett. 23, 1415 (1969)]
- **PDFs** parameterized via matrix elements of nonlocal light-cone operators

$$f(x) = \frac{1}{4\pi} \int dy^{-} e^{-ixP^{+}y^{-}} \langle P, S | \bar{\psi}_{f} \gamma^{+} \mathcal{W} \psi_{f} | P, S \rangle$$

$$\wedge \text{ Mellin moments}_{\text{(local OPE expansion)}} \bar{q}(-\frac{1}{2}z) \gamma^{\sigma} W[-\frac{1}{2}z, \frac{1}{2}z] q(\frac{1}{2}z) = \sum_{n=0}^{\infty} \frac{1}{n!} z_{\alpha_{1}} \dots z_{\alpha_{n}} \left[\bar{q} \gamma^{\sigma} \overleftrightarrow{D}^{\alpha_{1}} \dots \overleftrightarrow{D}^{\alpha_{n}} q \right]$$

$$\text{Reconstruction of PDFs/GPDs very challenging}$$

$$\langle N(P') | \mathcal{O}_{V}^{\mu\mu_{1}\cdots\mu_{n-1}} | N(P) \rangle \sim \sum_{i=0}^{n-1} \left\{ \gamma^{(\mu}\Delta^{\mu_{1}}\cdots\Delta^{\mu_{i}}\overline{P}^{\mu_{i+1}}\cdots\overline{P}^{\mu_{n-1}}A_{n,i}(t) - i\frac{\Delta_{\alpha}\sigma^{\alpha(\mu}}{2m_{N}}\Delta^{\mu_{1}}\cdots\Delta^{\mu_{i}}\overline{P}^{\mu_{i+1}}\cdots\overline{P}^{\mu_{n-1}}B_{n,i}(t) \right\} + \frac{\Delta^{\mu}\Delta^{\mu_{1}}\cdots\Delta^{\mu_{n-1}}}{m_{N}} C_{n,0}(\Delta^{2})|_{n \text{ even}} \right\} + \frac{\Delta^{\mu}\Delta^{\mu_{1}}\cdots\Delta^{\mu_{n-1}}}{m_{N}} C_{n,0}(\Delta^{2})|_{n \text{ even}} \right] U(P)$$

- In parton model, physical picture valid for infinite momentum frame [R. P. Feynman, Phys. Rev. Lett. 23, 1415 (1969)]
- ★ PDFs parameterized via matrix elements of nonlocal light-cone operators

$$f(x) = \frac{1}{4\pi} \int dy^{-} e^{-ixP^{+}y^{-}} \langle P, S | \bar{\psi}_{f} \gamma^{+} \mathcal{W} \psi_{f} | P, S \rangle$$

$$\frac{1}{p(-\frac{1}{2}z)\gamma^{\sigma}W[-\frac{1}{2}z,\frac{1}{2}z]q(\frac{1}{2}z)} = \sum_{n=0}^{\infty} \frac{1}{n!} z_{\alpha_{1}} \dots z_{\alpha_{n}} \left[\overline{q}\gamma^{\sigma} \overrightarrow{D}^{\alpha_{1}} \dots \overrightarrow{D}^{\alpha_{n}}q \right] }{\mathbf{local operators}}$$

$$\frac{1}{p(-\frac{1}{2}z)\gamma^{\sigma}W[-\frac{1}{2}z,\frac{1}{2}z]q(\frac{1}{2}z)}{\mathbf{local operators}} = \sum_{n=0}^{\infty} \frac{1}{n!} z_{\alpha_{1}} \dots z_{\alpha_{n}} \left[\overline{q}\gamma^{\sigma} \overrightarrow{D}^{\alpha_{1}} \dots \overrightarrow{D}^{\alpha_{n}}q \right] }{\mathbf{local operators}}$$

$$\frac{1}{p(-\frac{1}{2}z)\gamma^{\sigma}W[-\frac{1}{2}z,\frac{1}{2}z]q(\frac{1}{2}z)}{\mathbf{local operators}} = \sum_{n=0}^{\infty} \frac{1}{n!} z_{\alpha_{1}} \dots z_{\alpha_{n}} \left[\overline{q}\gamma^{\sigma} \overrightarrow{D}^{\alpha_{1}} \dots \overrightarrow{D}^{\alpha_{n}}q \right] }{\mathbf{local operators}}$$

★ Matrix elements of nonlocal operators (quasi-GPDs, pseudo-GPDs, …)

 $\langle N(P_f) | \overline{\Psi}(z) \Gamma \mathcal{W}(z,0) \Psi(0) | N(P_i) \rangle_{\mu}$

Nonlocal operator with Wilson line

$$\langle N(P')|O_V^{\mu}(x)|N(P)\rangle = \overline{U}(P') \left\{ \gamma^{\mu}H(x,\xi,t) + \frac{i\sigma^{\mu\nu}\Delta_{\nu}}{2m_N} E(x,\xi,t) \right\} U(P) + \text{ht},$$

$$\langle N(P')|O_A^{\mu}(x)|N(P)\rangle = \overline{U}(P') \left\{ \gamma^{\mu}\gamma_5 \widetilde{H}(x,\xi,t) + \frac{\gamma_5\Delta^{\mu}}{2m_N} \widetilde{E}(x,\xi,t) \right\} U(P) + \text{ht},$$

$$\langle N(P')|O_T^{\mu\nu}(x)|N(P)\rangle = \overline{U}(P') \left\{ i\sigma^{\mu\nu}H_T(x,\xi,t) + \frac{\gamma^{[\mu}\Delta^{\nu]}}{2m_N} E_T(x,\xi,t) + \frac{\overline{P}^{[\mu}\Delta^{\nu]}}{m_N^2} \widetilde{H}_T(x,\xi,t) + \frac{\gamma^{[\mu}\overline{P}^{\nu]}}{m_N} \widetilde{E}_T(x,\xi,t) \right\} U(P) + \text{ht},$$

- In parton model, physical picture valid for infinite momentum frame [R. P. Feynman, Phys. Rev. Lett. 23, 1415 (1969)]
- ★ PDFs parameterized via matrix elements of nonlocal light-cone operators

$$f(x) = \frac{1}{4\pi} \int dy^{-} e^{-ixP^{+}y^{-}} \langle P, S | \bar{\psi}_{f} \gamma^{+} \mathcal{W} \psi_{f} | P, S \rangle$$

$$\frac{1}{p(-\frac{1}{2}z)\gamma^{\sigma}W[-\frac{1}{2}z,\frac{1}{2}z]q(\frac{1}{2}z)} = \sum_{n=0}^{\infty} \frac{1}{n!} z_{\alpha_{1}} \dots z_{\alpha_{n}} \left[\overline{q}\gamma^{\sigma} \overrightarrow{D}^{\alpha_{1}} \dots \overrightarrow{D}^{\alpha_{n}}q \right] }{\mathbf{local operators}}$$

$$\frac{1}{p(-\frac{1}{2}z)\gamma^{\sigma}W[-\frac{1}{2}z,\frac{1}{2}z]q(\frac{1}{2}z)}{\mathbf{local operators}} = \sum_{n=0}^{\infty} \frac{1}{n!} z_{\alpha_{1}} \dots z_{\alpha_{n}} \left[\overline{q}\gamma^{\sigma} \overrightarrow{D}^{\alpha_{1}} \dots \overrightarrow{D}^{\alpha_{n}}q \right] }{\mathbf{local operators}}$$

$$\frac{1}{p(-\frac{1}{2}z)\gamma^{\sigma}W[-\frac{1}{2}z,\frac{1}{2}z]q(\frac{1}{2}z)}{\mathbf{local operators}} = \sum_{n=0}^{\infty} \frac{1}{n!} z_{\alpha_{1}} \dots z_{\alpha_{n}} \left[\overline{q}\gamma^{\sigma} \overrightarrow{D}^{\alpha_{1}} \dots \overrightarrow{D}^{\alpha_{n}}q \right] }{\mathbf{local operators}}$$

★ Matrix elements of nonlocal operators (quasi-GPDs, pseudo-GPDs, …)

$$\left< N(P_f) \, \big| \, \underline{\bar{\Psi}}(z) \, \Gamma \, \mathcal{W}(z,\!0) \Psi(0) \, \big| \, N(P_i) \right>_{\mu}$$

Nonlocal operator with Wilson line

$$\langle N(P')|O_V^{\mu}(x)|N(P)\rangle = \overline{U}(P') \left\{ \gamma^{\mu}H(x,\xi,t) + \frac{i\sigma^{\mu\nu}\Delta_{\nu}}{2m_N}E(x,\xi,t) \right\} U(P) + \text{ht},$$

$$\langle N(P')|O_A^{\mu}(x)|N(P)\rangle = \overline{U}(P') \left\{ \gamma^{\mu}\gamma_5 \widetilde{H}(x,\xi,t) + \frac{\gamma_5\Delta^{\mu}}{2m_N}\widetilde{E}(x,\xi,t) \right\} U(P) + \text{ht},$$

$$\langle N(P')|O_T^{\mu\nu}(x)|N(P)\rangle = \overline{U}(P') \left\{ i\sigma^{\mu\nu}H_T(x,\xi,t) + \frac{\gamma^{[\mu}\Delta^{\nu]}}{2m_N}E_T(x,\xi,t) + \frac{\overline{P}^{[\mu}\Delta^{\nu]}}{m_N^2}\widetilde{H}_T(x,\xi,t) + \frac{\gamma^{[\mu}\overline{P}^{\nu]}}{m_N}\widetilde{E}_T(x,\xi,t) \right\} U(P) + \text{ht},$$

Novel Approaches

Hadronic tensor Auxiliary scalar quark Fictitious heavy quark Auxiliary scalar quark Higher moments Quasi-distributions (LaMET) Compton amplitude and OPE Pseudo-distributions Good lattice cross sections PDFs without Wilson line Moments of PDFs of any order

[K.F. Liu, S.J. Dong, PRL 72 (1994) 1790, K.F. Liu, PoS(LATTICE 2015) 115]
[U. Aglietti et al., Phys. Lett. B441, 371 (1998), arXiv:hep-ph/9806277]
[W. Detmold, C. J. D, Lin, Phys. Rev. D73, 014501 (2006)]
[V. Braun & D. Mueller, Eur. Phys. J. C55, 349 (2008), arXiv:0709.1348]
[Z. Davoudi, M. Savage, Phys. Rev. D86, 054505 (2012)]
[X. Ji, PRL 110 (2013) 262002, arXiv:1305.1539; Sci. China PPMA. 57, 1407 (2014)]
[A. Chambers et al. (QCDSF), PRL 118, 242001 (2017), arXiv:1703.01153]
[A. Radyushkin, Phys. Rev. D 96, 034025 (2017), arXiv:1705.01488]
[Y-Q Ma & J. Qiu, Phys. Rev. Lett. 120, 022003 (2018), arXiv:1709.03018]
[Y. Zhao Phys.Rev.D 109 (2024) 9, 094506, arXiv:2306.14960]
[A. Shindler, Phys.Rev.D 110 (2024) 5, L051503, arXiv:2311.18704]

Novel Approaches

Hadronic tensor
 K.F. Liu, S.J. Dong, PRL 72 (1)
 Auxiliary scalar quark
 Fictitious heavy quark
 Auxiliary scalar quark
 Auxiliary scalar quark
 Auxiliary scalar quark
 Higher moments
 Quasi-distributions (LaMET)
 Compton amplitude and OPE
 Pseudo-distributions
 Good lattice cross sections
 PDFs without Wilson line
 Moments of PDFs of any order
 K.F. Liu, S.J. Dong, PRL 72 (1)
 Auxiliary scalar quark
 Magietti et al., Phys. Lett. B
 W. Detmold, C. J. D, Lin, Phys
 W. Braun & D. Mueller, Eur. Pr
 Z. Davoudi, M. Savage, Phys
 X. Ji, PRL 110 (2013) 262002,
 A. Chambers et al. (QCDSF),
 A. Radyushkin, Phys. Rev. D 109
 Compton applications
 A. Shindler, Phys.Rev.D 109 (2022)

[K.F. Liu, S.J. Dong, PRL 72 (1994) 1790, K.F. Liu, PoS(LATTICE 2015) 115]
[U. Aglietti et al., Phys. Lett. B441, 371 (1998), arXiv:hep-ph/9806277]
[W. Detmold, C. J. D, Lin, Phys. Rev. D73, 014501 (2006)]
[V. Braun & D. Mueller, Eur. Phys. J. C55, 349 (2008), arXiv:0709.1348]
[Z. Davoudi, M. Savage, Phys. Rev. D86, 054505 (2012)]
[X. Ji, PRL 110 (2013) 262002, arXiv:1305.1539; Sci. China PPMA. 57, 1407 (2014)]
[A. Chambers et al. (QCDSF), PRL 118, 242001 (2017), arXiv:1703.01153]
[A. Radyushkin, Phys. Rev. D 96, 034025 (2017), arXiv:1705.01488]
[Y-Q Ma & J. Qiu, Phys. Rev. Lett. 120, 022003 (2018), arXiv:1709.03018]
[Y. Zhao Phys.Rev.D 109 (2024) 9, 094506, arXiv:2306.14960]
[A. Shindler, Phys.Rev.D 110 (2024) 5, L051503, arXiv:2311.18704]

★ Reviews of methods and applications

- A guide to light-cone PDFs from Lattice QCD: an overview of approaches, techniques and results K. Cichy & M. Constantinou (invited review) Advances in HEP 2019, 3036904, arXiv:1811.07248
- Large Momentum Effective Theory X. Ji, Y.-S. Liu, Y. Liu, J.-H. Zhang, and Y. Zhao (2020), 2004.03543
- The x-dependence of hadronic parton distributions: A review on the progress of lattice QCD
 M. Constantinou (invited review) Eur. Phys. J. A 57 (2021) 2, 77, arXiv:2010.02445

Novel Approaches

$$\mathcal{M}(P_f, P_i, z) = \langle N(P_f) \, | \, \bar{\Psi}(z) \, \Gamma \, \mathcal{W}(z, 0) \Psi(0) \, | \, N(P_i) \rangle_{\mu}$$

$$\mathcal{M}(P_{f}, P_{i}, z) = \langle N(P_{f}) | \bar{\Psi}(z) \Gamma \mathcal{W}(z, 0) \Psi(0) | N(P_{i}) \rangle_{\mu}$$

$$[X. Ji, Phys. Rev. Lett. 110 (2013) 262002] [X. Ji, Sci. China Phys. M.A. 57 (2014) 1407] \qquad quasi-PDFs \qquad pseudo-ITD [A. Radyushkin, PRD 96, 034025 (2017)]$$

$$\tilde{q}_{\Gamma}^{\text{GPD}}(x, t, \xi, P_{3}, \mu) = \int \frac{dz}{4\pi} e^{-ixP_{3}z} \mathcal{M}(P_{f}, P_{i}, z) \qquad \mathfrak{M}(\nu, \xi, t; z_{3}^{2}) \equiv \frac{\mathcal{M}(\nu, \xi, t; z_{3}^{2})}{\mathcal{M}(0, 0, 0; z^{2})} \qquad (\nu = z \cdot p)$$

$$\mathcal{M}(P_{f}, P_{i}, z) = \langle N(P_{f}) | \bar{\Psi}(z) \Gamma \mathcal{W}(z, 0) \Psi(0) | N(P_{i}) \rangle_{\mu}$$

$$[X. Ji, Phys. Rev. Lett. 110 (2013) 262002] (X. Ji, Sci. China Phys. M.A. 57 (2014) 1407] (Quasi-PDFs) (A. Radyushkin, PRD 96, 034025 (2017)] (A. Radyushkin, PRD 96, 03$$

$$\mathcal{M}(P_{f}, P_{i}, z) = \langle N(P_{f}) | \bar{\Psi}(z) \Gamma \mathcal{W}(z, 0) \Psi(0) | N(P_{i}) \rangle_{\mu}$$

$$(X. Ji, Phys. Rev. Lett. 110 (2013) 262002] (Y. Ji, Sci. China Phys. M.A. 57 (2014) 1407] (Quasi-PDFs) (Provide the second secon$$

$$\mathcal{M}(P_{f}, P_{i}, z) = \langle N(P_{f}) | \bar{\Psi}(z) \Gamma \mathcal{W}(z, 0) \Psi(0) | N(P_{i}) \rangle_{\mu}$$

$$(X. J. Phys. Rev. Lett. 110 (2013) 262002] (X. J. Sci. China Phys. M.A. 57 (2014) 1407] (Quasi-PDFs) (Q$$

Quark PDFs:

The unpolarized case

Collection of results

[M. Constantinou et al. (2020 PDFLattice Report), Prog.Part.Nucl.Phys. 121 (2021) 103908]

★ Several improvements:

- More calculations at physical quark masses
- Ensembles at various lattice spacings
- Addressing systematic uncertainties due to methodologies

Refining the unpolarized proton PDF (u-d)

★ Physical quark masses

- HISQ, a=0.076 fm, P~1.5 GeV
- Deep Neural Network for inverse problem
- NNLO for matching

[X. Gao et al., PRD 107 (2023) 7, 074509]

Refining the unpolarized proton PDF (u-d)

★ Physical quark masses

- HISQ, a=0.076 fm, P~1.5 GeV
- Deep Neural Network for inverse problem
- NNLO for matching

[X. Gao et al., PRD 107 (2023) 7, 074509]

★ Continuum limit

- TM&clover, a=0.09 fm, m_{π} =350 MeV
- P~1.8 GeV
- NNLO for matching

Improving evolution of PDFs

★ Continuum limit - higher twist effects

- Clover, a=0.075, 0.065, 0.048 fm
- m_{π} =440 MeV
- Jacobi polynomials for controlling finite-a & higher twist

[Karpie et al., JHEP 11 (2021) 024]

Improving evolution of PDFs

★ Continuum limit - higher twist effects

- Clover, a=0.075, 0.065, 0.048 fm
- m_{π} =440 MeV

ר'

 Jacobi polynomials for controlling finite-a & higher twist

[Karpie et al., JHEP 11 (2021) 024]

- Non-perturbative scale evolution of pseudo distributions:
 - lattice scale much different than scale for light-cone PDFs
 - addresses the subtle z² behavior of matrix elements

[H. Dutrieux et al. (HadStruc), JHEP 04 (2024) 061]

Evolution of vector operator much larger than anticipated

Gluon PDFs for the proton

Elimination of Mixing with Quark Singlet PDFs

Elimination of Mixing with Quark Singlet PDFs

Gluon Helicity PDF

- Neural network analysis of lattice calculation disfavors negative gluon polarizability

[T. Khan et al., PRD 108, 074502]

Gluon Helicity PDF

Without Lattice

- Neural network analysis of lattice calculation disfavors negative gluon polarizability

[T. Khan et al., PRD 108, 074502]

0.5 $\mathcal{M}(
u,z_3^2)$ 0.0 2.55.0 7.5 2.57.5 0.0 5.0 0.0 ν ν $\Delta g > 0$ $\mu^2 = 10 \text{ GeV}^2$ $\Delta g < 0$ 0.2 0.2 $\pm |g|$ $x \Delta g$ 0.0 0.0 -0.2-0.20.2 0.6 0.8 0.2 0.4 0.4 0.6 0.8 \boldsymbol{x} \boldsymbol{x}

[J. Karpie et al., PRD 109 (2024) 3, 036031]

Including Lattice

LQCD: Hint for a nonzero gluon spin (proton) JAM analysis: No positivity constraint $(\Delta g > |g|$ for some regions of x)

Gluon Helicity PDF

Without Lattice

- Neural network analysis of lattice calculation disfavors negative gluon polarizability

[T. Khan et al., PRD 108, 074502]

0.5 $\mathcal{M}(
u,z_3^2)$ 0.0 2.55.0 7.5 2.55.0 7.5 0.0 0.0 ν ν $\Delta g > 0$ $\mu^2 = 10 \text{ GeV}^2$ $\Delta g < 0$ 0.2 0.2 $\pm |g|$ $x \Delta g$ 0.0 0.0 -0.20.2 0.2 0.4 0.6 0.8 0.6 0.80.4 \boldsymbol{x}

[J. Karpie et al., PRD 109 (2024) 3, 036031]

Including Lattice

LQCD: Hint for a nonzero gluon spin (proton) JAM analysis: No positivity constraint $(\Delta g > |g|$ for some regions of x)

New Developments

★ Twist-3 PDFs

★ GPDs

Twist-classification of PDFs, GPDs, TMDs $f_i = f_i^{(0)} + \frac{f_i^{(1)}}{Q} + \frac{f_i^{(2)}}{Q^2} \cdots$

★ Twist: The order in Q^{-1} entering factorization

(Selected) Twist-3 $(f_i^{(1)})$

() Nucleon	γ^j	$\gamma^j \gamma^5$	σ^{jk}
U	G_1, G_2 G_3, G_4		
L		$\widetilde{G}_1, \widetilde{G}_2$ $\widetilde{G}_3, \widetilde{G}_4$	
т			$H_2'(x,\xi,t)$ $E_2'(x,\xi,t)$

Twist-classification of PDFs, GPDs, TMDs $f_i = f_i^{(0)} + \frac{f_i^{(1)}}{O} + \frac{f_i^{(2)}}{O^2} \cdots$

 \star Twist: The order in Q^{-1} entering factorization

- **Twist-2**: probabilistic densities a wealth of information exists (mostly on PDFs)
- \star Twist-3: poorly known, but very important and have physical interpretation: - as sizable as twist-2
 - contain information about quark-gluon correlations inside hadrons
 - appear in QCD factorization theorems for various observables (e.g. g_2)

Twist-classification of PDFs, GPDs, TMDs $f_i = f_i^{(0)} + \frac{f_i^{(1)}}{O} + \frac{f_i^{(2)}}{O^2} \cdots$

 \star Twist: The order in Q^{-1} entering factorization

- **Twist-2**: probabilistic densities a wealth of information exists (mostly on PDFs)
- \star Twist-3: poorly known, but very important and have physical interpretation: - as sizable as twist-2
 - contain information about quark-gluon correlations inside hadrons
 - appear in QCD factorization theorems for various observables (e.g. g_2)

The extraction of twist-3 is very challenges both experimentally and theoretically

★ Correlation functions in coordinate space

$$F^{[\Gamma]}(x,\Delta;P^3) = \frac{1}{2} \int \frac{dz^3}{2\pi} e^{ik \cdot z} \langle p_f, \lambda' | \bar{\psi}(-\frac{z}{2}) \Gamma \mathcal{W}(-\frac{z}{2},\frac{z}{2}) \psi(\frac{z}{2}) | p_i, \lambda \rangle \Big|_{z^0 = 0, \vec{z}_\perp = \vec{0}_\perp}$$

★ Parametrization of coordinate-space correlation functions

[D. Kiptily and M. Polyakov, Eur. Phys. J. C37 (2004) [F. Aslan et a., Phys. Rev. D 98, 014038 (2018)]

$$\begin{split} F^{[\gamma^{\mu}\gamma_{5}]}(x,\Delta;P^{3}) &= \frac{1}{2P^{3}} \bar{u}(p_{f},\lambda') \bigg[P^{\mu} \frac{\gamma^{3}\gamma_{5}}{P^{0}} F_{\widetilde{H}}(x,\xi,t;P^{3}) + P^{\mu} \frac{\Delta^{3}\gamma_{5}}{2mP^{0}} F_{\widetilde{E}}(x,\xi,t;P^{3}) \\ &+ \Delta^{\mu}_{\perp} \frac{\gamma_{5}}{2m} F_{\widetilde{E}+\widetilde{G}_{1}}(x,\xi,t;P^{3}) + \gamma^{\mu}_{\perp}\gamma_{5} F_{\widetilde{H}+\widetilde{G}_{2}}(x,\xi,t;P^{3}) \\ &+ \Delta^{\mu}_{\perp} \frac{\gamma^{3}\gamma_{5}}{P^{3}} F_{\widetilde{G}_{3}}(x,\xi,t;P^{3}) + i\varepsilon^{\mu\nu}_{\perp}\Delta_{\nu} \frac{\gamma^{3}}{P^{3}} F_{\widetilde{G}_{4}}(x,\xi,t;P^{3}) \bigg] u(p_{i},\lambda) \end{split}$$

★ Correlation functions in coordinate space

$$F^{[\Gamma]}(x,\Delta;P^3) = \frac{1}{2} \int \frac{dz^3}{2\pi} e^{ik \cdot z} \langle p_f, \lambda' | \bar{\psi}(-\frac{z}{2}) \Gamma \mathcal{W}(-\frac{z}{2},\frac{z}{2}) \psi(\frac{z}{2}) | p_i, \lambda \rangle \Big|_{z^0 = 0, \vec{z}_\perp = \vec{0}_\perp}$$

★ Parametrization of coordinate-space correlation functions

[D. Kiptily and M. Polyakov, Eur. Phys. J. C37 (2004) [F. Aslan et a., Phys. Rev. D 98, 014038 (2018)]

$$\begin{split} F^{[\gamma^{\mu}\gamma_{5}]}(x,\Delta;P^{3}) &= \frac{1}{2P^{3}} \bar{u}(p_{f},\lambda') \bigg[P^{\mu} \frac{\gamma^{3}\gamma_{5}}{P^{0}} F_{\widetilde{H}}(x,\xi,t;P^{3}) + P^{\mu} \frac{\Delta^{3}\gamma_{5}}{2mP^{0}} F_{\widetilde{E}}(x,\xi,t;P^{3}) \\ &+ \Delta^{\mu}_{\perp} \frac{\gamma_{5}}{2m} F_{\widetilde{E}+\widetilde{G}_{1}}(x,\xi,t;P^{3}) + \gamma^{\mu}_{\perp}\gamma_{5} F_{\widetilde{H}+\widetilde{G}_{2}}(x,\xi,t;P^{3}) \\ &+ \Delta^{\mu}_{\perp} \frac{\gamma^{3}\gamma_{5}}{P^{3}} F_{\widetilde{G}_{3}}(x,\xi,t;P^{3}) + i\varepsilon^{\mu\nu}_{\perp} \Delta_{\nu} \frac{\gamma^{3}}{P^{3}} F_{\widetilde{G}_{4}}(x,\xi,t;P^{3}) \bigg] u(p_{i},\lambda) \end{split}$$

★ Correlation functions in coordinate space

$$F^{[\Gamma]}(x,\Delta;P^3) = \frac{1}{2} \int \frac{dz^3}{2\pi} e^{ik \cdot z} \langle p_f, \lambda' | \bar{\psi}(-\frac{z}{2}) \Gamma \mathcal{W}(-\frac{z}{2},\frac{z}{2}) \psi(\frac{z}{2}) | p_i, \lambda \rangle \Big|_{z^0 = 0, \vec{z}_\perp = \vec{0}_\perp}$$

Parametrization of coordinate-space correlation functions
 [D. Kiptily and M. Polyakov, Eur. Phys. J. C37 (2004)
 [F. Aslan et a., Phys. Rev. D 98, 014038 (2018)]

$$\begin{split} F^{[\gamma^{\mu}\gamma_{5}]}(x,\Delta;P^{3}) &= \frac{1}{2P^{3}} \bar{u}(p_{f},\lambda') \bigg[P^{\mu} \frac{\gamma^{3}\gamma_{5}}{P^{0}} F_{\widetilde{H}}(x,\xi,t;P^{3}) + P^{\mu} \frac{\Delta^{3}\gamma_{5}}{2mP^{0}} F_{\widetilde{E}}(x,\xi,t;P^{3}) \\ &+ \Delta^{\mu}_{\perp} \frac{\gamma_{5}}{2m} F_{\widetilde{E}+\widetilde{G}_{1}}(x,\xi,t;P^{3}) + \gamma^{\mu}_{\perp}\gamma_{5} F_{\widetilde{H}+\widetilde{G}_{2}}(x,\xi,t;P^{3}) \\ &+ \Delta^{\mu}_{\perp} \frac{\gamma^{3}\gamma_{5}}{P^{3}} F_{\widetilde{G}_{3}}(x,\xi,t;P^{3}) + i\varepsilon^{\mu\nu}_{\perp} \Delta_{\nu} \frac{\gamma^{3}}{P^{3}} F_{\widetilde{G}_{4}}(x,\xi,t;P^{3}) \bigg] u(p_{i},\lambda) \end{split}$$

★ Forward limit for twist-3: only $\widetilde{H} + \widetilde{G}_2 \equiv g_T$ survives

★ Correlation functions in coordinate space

$$F^{[\Gamma]}(x,\Delta;P^3) = \frac{1}{2} \int \frac{dz^3}{2\pi} e^{ik \cdot z} \langle p_f, \lambda' | \bar{\psi}(-\frac{z}{2}) \Gamma \mathcal{W}(-\frac{z}{2},\frac{z}{2}) \psi(\frac{z}{2}) | p_i, \lambda \rangle \Big|_{z^0 = 0, \vec{z}_\perp = \vec{0}_\perp}$$

★ Parametrization of coordinate-space correlation functions

[D. Kiptily and M. Polyakov, Eur. Phys. J. C37 (2004) [F. Aslan et a., Phys. Rev. D 98, 014038 (2018)]

$$\begin{split} F^{[\gamma^{\mu}\gamma_{5}]}(x,\Delta;P^{3}) &= \frac{1}{2P^{3}} \bar{u}(p_{f},\lambda') \bigg[P^{\mu} \frac{\gamma^{3}\gamma_{5}}{P^{0}} F_{\widetilde{H}}(x,\xi,t;P^{3}) + P^{\mu} \frac{\Delta^{3}\gamma_{5}}{2mP^{0}} F_{\widetilde{E}}(x,\xi,t;P^{3}) \\ &+ \Delta^{\mu}_{\perp} \frac{\gamma_{5}}{2m} F_{\widetilde{E}+\widetilde{G}_{1}}(x,\xi,t;P^{3}) + \gamma^{\mu}_{\perp}\gamma_{5} F_{\widetilde{H}+\widetilde{G}_{2}}(x,\xi,t;P^{3}) \\ &+ \Delta^{\mu}_{\perp} \frac{\gamma^{3}\gamma_{5}}{P^{3}} F_{\widetilde{G}_{3}}(x,\xi,t;P^{3}) + i\varepsilon^{\mu\nu}_{\perp}\Delta_{\nu} \frac{\gamma^{3}}{P^{3}} F_{\widetilde{G}_{4}}(x,\xi,t;P^{3}) \bigg] u(p_{i},\lambda) \end{split}$$

★ Forward limit for twist-3: only $\widetilde{H} + \widetilde{G}_2 \equiv g_T$ survives [S. Bhattacharya et al., PRD 102 (2020) 11 (Editors Selection)]

Pion mass:	260 MeV	
Lattice spacing:	0.093 fm	
Volume:	32 ³ x 64	

Twist-3 counterpart as sizable as twist-2

Burkhardt-Cottingham sum rule important check

 $\int_{-1}^{1} dx g_1(x) - \int_{-1}^{1} dx g_T(x) = 0$

★ Correlation functions in coordinate space

$$F^{[\Gamma]}(x,\Delta;P^3) = \frac{1}{2} \int \frac{dz^3}{2\pi} e^{ik \cdot z} \langle p_f, \lambda' | \bar{\psi}(-\frac{z}{2}) \Gamma \mathcal{W}(-\frac{z}{2},\frac{z}{2}) \psi(\frac{z}{2}) | p_i, \lambda \rangle \Big|_{z^0 = 0, \vec{z}_\perp = \vec{0}_\perp}$$

★ Parametrization of coordinate-space correlation functions

[D. Kiptily and M. Polyakov, Eur. Phys. J. C37 (2004) [F. Aslan et a., Phys. Rev. D 98, 014038 (2018)]

$$\begin{split} F^{[\gamma^{\mu}\gamma_{5}]}(x,\Delta;P^{3}) &= \frac{1}{2P^{3}}\bar{u}(p_{f},\lambda') \bigg[P^{\mu}\frac{\gamma^{3}\gamma_{5}}{P^{0}}F_{\widetilde{H}}(x,\xi,t;P^{3}) + P^{\mu}\frac{\Delta^{3}\gamma_{5}}{2mP^{0}}F_{\widetilde{E}}(x,\xi,t;P^{3}) \\ &+ \Delta^{\mu}_{\perp}\frac{\gamma_{5}}{2m}F_{\widetilde{E}+\widetilde{G}_{1}}(x,\xi,t;P^{3}) + \gamma^{\mu}_{\perp}\gamma_{5}F_{\widetilde{H}+\widetilde{G}_{2}}(x,\xi,t;P^{3}) \\ &+ \Delta^{\mu}_{\perp}\frac{\gamma^{3}\gamma_{5}}{P^{3}}F_{\widetilde{G}_{3}}(x,\xi,t;P^{3}) + i\varepsilon^{\mu\nu}_{\perp}\Delta_{\nu}\frac{\gamma^{3}}{P^{3}}F_{\widetilde{G}_{4}}(x,\xi,t;P^{3}) \bigg] u(p_{i},\lambda) \end{split}$$

Forward limit for twist-3: only $\widetilde{H} + \widetilde{G}_2 \equiv g_T$ **Survives** [S. Bhattacharya et al., PRD 102 (2020) 11 (Editors Selection)]

Pion mass:	260 MeV	
Lattice spacing:	0.093 fm	
Volume:	32³ x 64	

Twist-3 counterpart as sizable as twist-2

Burkhardt-Cottingham sum rule important check

 $\int_{-1}^{1} dx g_1(x) - \int_{-1}^{1} dx g_T(x) = 0.01(20)$

WW approximation

[S. Bhattacharya et al., PRD 102 (2020) 11 (Editors Selection)]

WW approximation:

twist-3 $g_T(x)$ determined by the twist-2 $g_1(x)$

 $g_T^{WW}(x) = \int_{-\infty}^{1} \frac{dy}{y} g_1(y)$

- $g_T(x)$ agrees with $g_T^{WW}(x)$ for x < 0.5(violations up to 30-40% possible)
- Violations of 15-40% expected from experimental data

 [A. Accardi et al., JHEP 11 (2009) 093]

WW approximation

[S. Bhattacharya et al., PRD 102 (2020) 11 (Editors Selection)]

WW approximation: $g_T^{WW}(x) = \int_{-\infty}^{1} \frac{dy}{y} g_1(y)$

twist-3 $g_T(x)$ determined by the twist-2 $g_1(x)$

- $g_T(x)$ agrees with $g_T^{WW}(x)$ for x < 0.5(violations up to 30-40% possible)
- Violations of 15-40% expected from experimental data
 [A. Accardi et al., JHEP 11 (2009) 093]

Twist-3 h_L(x) PDF

[S. Bhattacharya et al., PRD 104 (2021) 11, 114510]

- h_L^u dominant tension between h_L & h_L^{WW}
- h_L^d <0 and decays faster then h_L^u

Proton GPDs

 Tomographic imaging of proton has central role in the science
 program of EIC
 GPDs, FFs, GFFs, TMDs, ...
 [R. Abdul Khalek et al.,
 EIC Yellow Report 2021, arXiv:2103.05419]

★ GPDs are not well-constrained experimentally

$$\langle N(P')|O_V^{\mu}(x)|N(P)\rangle = \overline{U}(P') \left\{ \gamma^{\mu}H(x,\xi,t) + \frac{\imath\sigma^{\mu\nu}\Delta_{\nu}}{2m_N}E(x,\xi,t) \right\} U(P) + \mathrm{ht}$$

$$\langle N(P')|O_A^{\mu}(x)|N(P)\rangle = \overline{U}(P') \left\{ \gamma^{\mu}\gamma_5\widetilde{H}(x,\xi,t) + \frac{\gamma_5\Delta^{\mu}}{2m_N}\widetilde{E}(x,\xi,t) \right\} U(P) + \mathrm{ht}$$

★ Can be accessed also at the twist-3 level

$$\begin{split} F^{[\gamma^{\mu}\gamma_{5}]}(x,\Delta;P^{3}) &= \frac{1}{2P^{3}} \bar{u}(p_{f},\lambda') \bigg[P^{\mu} \frac{\gamma^{3}\gamma_{5}}{P^{0}} F_{\widetilde{H}}(x,\xi,t;P^{3}) + P^{\mu} \frac{\Delta^{3}\gamma_{5}}{2mP^{0}} F_{\widetilde{E}}(x,\xi,t;P^{3}) \\ &+ \Delta^{\mu}_{\perp} \frac{\gamma_{5}}{2m} F_{\widetilde{E}+\widetilde{G}_{1}}(x,\xi,t;P^{3}) + \gamma^{\mu}_{\perp}\gamma_{5} F_{\widetilde{H}+\widetilde{G}_{2}}(x,\xi,t;P^{3}) \\ &+ \Delta^{\mu}_{\perp} \frac{\gamma^{3}\gamma_{5}}{P^{3}} F_{\widetilde{G}_{3}}(x,\xi,t;P^{3}) + i\varepsilon^{\mu\nu}_{\perp} \Delta_{\nu} \frac{\gamma^{3}}{P^{3}} F_{\widetilde{G}_{4}}(x,\xi,t;P^{3}) \bigg] u(p_{i},\lambda) \end{split}$$

Light-cone GPDs

★ Direct access to \widetilde{E} -GPD not possible for zero skewness $P^{\mu} \frac{\Delta^{3} \gamma_{5}}{2mP^{0}} F_{\widetilde{E}}(x,\xi,t;P^{3})$

\star Glimpse into \widetilde{E} -GPD through twist-3 :

$$\int_{-1}^{1} dx \, \widetilde{E}(x,\xi,t) = G_P(t)$$
$$\int_{-1}^{1} dx \, \widetilde{G}_i(x,\xi,t) = 0, \quad i = 1, 2, 3, 4$$

★ Direct access to \widetilde{E} -GPD not possible for zero skewness $P^{\mu} \frac{\Delta^{3} \gamma_{5}}{2mP^{0}} F_{\widetilde{E}}(x,\xi,t;P^{3})$

★ Glimpse into \widetilde{E} -GPD through twist-3 :

$$\int_{-1}^{1} dx \, \widetilde{E}(x,\xi,t) = G_P(t) \ \int_{-1}^{1} dx \, \widetilde{G}_i(x,\xi,t) = 0 \,, \quad i = 1,2,3,4$$

Synergy/Complementarity of lattice and phenomenology

Incorporating lattice PDFs in global analyses

Synergy between lattice and phenomenology

 Lattice and experimental data sets data within the same global analysis (JAM framework)
 [J. Bringewatt et al., PRD 103 (2021) 016003, arXiv:2010.00548]

- Consistent picture with JAM for unpolarized PDF

- Significant impact for helicity PDF

Incorporating lattice PDFs in global analyses

Synergy between lattice and phenomenology

 Lattice and experimental data sets data within the same global analysis (JAM framework)
 [J. Bringewatt et al., PRD 103 (2021) 016003, arXiv:2010.00548]

- Consistent picture with JAM for unpolarized PDF

- Significant impact for helicity PDF

★ Other efforts within NNPDF framework

[K. Cichy et al., JHEP 10 (2019) 137, arXiv:1907.06037] [L. Del Debbio et al., JHEP 02 (2021) 138, 2010.03996] ★ Interest in applying similar approach to quantities that are more challenging to extract experimentally (GPDs, twist-3 distributions, ...)

★ Lattice data may be incorporated in global analysis of experimental data and may influence parametrization of t and ξ dependence

★ Lattice data may be incorporated in global analysis of experimental data and may influence parametrization of t and ξ dependence

- 1. Theoretical studies of high-momentum transfer processes using perturbative QCD methods and study of GPDs properties
- 2. Lattice QCD calculations of GPDs and related structures
- 3. Global analysis of GPDs based on experimental data using modern data analysis techniques for inference and uncertainty quantification

★ Lattice data may be incorporated in global analysis of experimental data and may influence parametrization of t and ξ dependence

- 1. Theoretical studies of high-momentum transfer processes using perturbative QCD methods and study of GPDs properties
- 2. Lattice QCD calculations of GPDs and related structures
- 3. Global analysis of GPDs based on experimental data using modern data analysis techniques for inference and uncertainty quantification

Other GPD global analysis efforts:

- Gepard [https://gepard.phy.hr/]
- PARTONS [https://partons.cea.fr]
- EXCLAIM [https://exclaimcollab.github.io/web.github.io/#/]

Synergies: constraints & predictive power of lattice QCD

M. Constantinou, QCD@LHC 2024

Concluding remarks

Concluding Remarks

- ★ Impressive progress in the extraction of PDFs from Lattice QCD
- ★ New Developments in several promising directions:

- **Extensive programs in Gluon PDFs**
- ★ Synergy with phenomenology has the potential to enhance the impact of lattice QCD data and complement data sets

Concluding Remarks

- ★ Impressive progress in the extraction of PDFs from Lattice QCD
- ★ New Developments in several promising directions:

- **★** Extensive programs in Gluon PDFs
- ★ Synergy with phenomenology has the potential to enhance the impact of lattice QCD data and complement data sets

DOE Early Career Award (NP) Grant No. DE-SC0020405

U.S. DEPARTMENT OF ENERGY