

Highlights on heavy-ion collisions at the LHC

Enrico Fragiacomo INFN Trieste

QCD@LHC 2024 Freiburg, 10 October 2024

Stock Credit: Kai-Marco Fischer

Relativistic heavy-ion collision and evolution

Initial stage nPDF, saturation,

1

10

shadowing

Gluon and quark-pair creation All heavy quarks created at this stage

QGP: deconfined nuclear matter expanding hydrodynamically

Hadronization and chemical freeze-out Inelastic collisions cease

Kinetic freeze-out Elastic collisions cease Free streaming particles to the detectors

Thermodynamics of the medium

Thermodynamics of the medium: statistical hadronization models (SHM)

ALICE, arXiv:2211.04384

- At hadronization the system is close to thermal equilibrium
- A rapid hadrochemical freeze-out takes place at the phase boundary
- Hadron abundances described by SHM over 9 orders of magnitude!
- Also loosely bound objects (light nuclei and hypernuclei) are described by SHM

Measurements of the chemical potentials

System created at midrapidity in Pb-Pb collisions is baryon and electrically neutral on average

ALICE, Phys. Rev. Lett. 133, 092301(2024)

Speed of sound from ultra-central collisions

Original idea from F. Gardim et al., PLB 809 (2020) 135749

CMS, Rep. Prog. Phys. 87, 077801(2024)

Impact parameter (b) $\approx \langle p_T \rangle / 3$) $b \approx 0$ **Temperature (T** $d(\ln(p_T))$ $d(\ln N_{ch})$ Entropy density (s), # of charged particles (N_{ch})

- Amount of energy deposited in the collision depends on the overlap among the nuclei
- With complete overlap, fluctuations in the number of partonic interactions can still change the amount of energy in the system
- At b ~ 0, <p_T> and N_{ch} are proxies for temperature and entropy density

Nat. Phys. 16 (2020) 6, 615-619

Speed of sound from ultra-central collisions

Measurement of $\langle p_{\tau} \rangle$ vs multiplicity, normalized by their values in the 0–5% most central events Steep rising trend matching the hydrodynamic model predictions

Data compatible with lQCD and state-of-the-art hydro simulations

Speed of sound from ultra-central collisions

Strong dependence on the kinematic acceptance and centrality estimator

 $[p_T]$ is the mean p_T calculated for each event < $[p_T]$ > is averaged over all events in a given class < c_2 > is the variance, $k_2 \equiv \langle c_2 \rangle / \langle [p_T] \rangle^2$

Assuming stochastic sources of the fluctuations:

$$k_2 \propto (N_{part})^{-1} \propto (N^{rec}_{ch})^{-1}$$

True for mid-central to central collisions

Not true for peripheral and very central collisions

Strangeness production in the QGP

Understanding strangeness production

ALICE, Nat. Phys **13,** 535–539 (2017)

- Smooth evolution of particle production from small to large systems vs. charged-particle multiplicity
- Steeper increase for particles with more strangeness content
- High-multiplicity pp: same hadrochemistry as larger (p-Pb, peripheral Pb-Pb) systems
- Common particle production mechanism for all systems

- Local conservation law applied to strangeness quantum numbers
- Baryon numbers and charge treated grand-canonically

Understanding strangeness production with event-by-event fluctuations

String fragmentation (PYTHIA) and canonical statistical hadronization (SHM) provide different treatments of conservation laws.

ALICE, arXiv:2405.19890

 10^{2}

10

10³

 $\langle dN_{cb}/d\eta \rangle$

Enrico Fragiacomo

 $\langle dN_{ch}/d\eta \rangle$

10²

10

Understanding strangeness production with strange-hadron angular correlations

Strangeness in/out of the jets:

ALICE, JHEP 09 (2024) 204

- Yields dominated by transverse-to-leading production and increase with multiplicity
- toward-leading yields → milder dependence on multiplicity

- Production in the direction of the trigger particle associated with hard scattering processes
- Production in the transverse-to-leading direction related to the underlying event

Strangeness enhancement with charmed mesons

LHCb, Phys. Rev. D 110, L031105 (2024)

Hydrodynamics of the medium

Hydrodynamics of the medium: anisotropic flow

Anisotropies in the initial energy density distribution (eccentricity) lead to azimuthal anisotropies in particle production

- Depends on EOS and fluid viscosities
- Measured via Fourier expansion

$$\frac{\mathrm{d}N}{\mathrm{d}\varphi} \propto 1 + 2 \sum_{\mathrm{n=1}}^{\infty} v_{\mathrm{n}} \cos[n(\varphi - \psi_{\mathrm{n}})]$$

Mass ordering (higher mass \rightarrow lower v_2): interplay between radial and elliptic flow Higher n_q higher $v_2 \rightarrow$ quark coalescence as dominant particle production mechanism

Probing the structure of exotic particle with v_2

Nature of the $f_0(980)$ state has not yet been established (ordinary qqbar meson, a tetraquark state, a KKbar molecule, or a qqbar-gluon hybrid state?)

CMS, arXiv:2312.17092

Number of constituent quarks (NCQ) scaling of the anisotropic flow

 $v_{\rm n}(p_{\rm T}) \approx n_{\rm q} v_{\rm n,q} (p_{\rm T}/n_{\rm q})$

Probe structure of exotic bound states in heavy-ion collisions

- Tetraquark and KKbar molecule hypotheses ruled out
- Not clear what v₂ a hybrid qqbargluon state would attain (if as n_q=3, ruled out with 3.5σ significance)

Observation of partonic flow in small systems

Mass ordering at low transverse momentum

- Baryon-meson splitting at intermediate p_{T}
- Model indicates partonic flow + coalescence

Charm flows but beauty does not

- v₂ of prompt D⁰ compatible light-flavor hadrons
- Beauty v₂ compatible with 0

Nuclear structure from fluctuations of v_2

- Colliding randomly oriented deformed nuclei impacts the initial geometry, enhancing the fluctuations of the eccentricity and v_n
- Structure of nuclear ground states is well constrained by nuclear experiments at low energy
- Studies using multiparticle azimuthal correlation at the LHC are opening new avenues for the investigation of nuclear structure at the energy frontier

Parton energy loss in the QGP

Nuclear modification factor from light to beauty flavour

CMS, arXiv:2409.07258

$$R_{\rm AA}(p_{\rm T}) = \frac{1}{\langle N_{\rm coll} \rangle} \times \frac{{\rm d}^2 N_{\rm AA}/{\rm d}p_{\rm T} {\rm d}\eta}{{\rm d}^2 N_{\rm pp}/{\rm d}p_{\rm T} {\rm d}\eta}$$

In absence of nuclear effects:

- → collision is superposition of N_{coll} independent nucleon-nucleon collisions
- $\rightarrow R_{AA}=1 (N_{coll} \text{ scaling})$
- R_{AA} of B⁺ meson compatible with R_{AA} of charged hadrons and D⁰ mesons for $10 < p_T < 30$ GeV/c
- R_{AA} for 7 < p_T < 10 GeV/c consistent with expectations based on the quark mass dependence of parton energy loss

 $N_{\rm coll}$: Total number of nucleon pairs that collide, assuming transparency of the collision

Nuclear modification factor of isolated photons

$$R_{AA}(p_{T}) = \frac{1}{\langle N_{coll} \rangle} \times \frac{d^{2}N_{AA}/dp_{T}d\eta}{d^{2}N_{pp}/dp_{T}d\eta}$$

 $N_{\rm coll}$: Total number of nucleon pairs that collide, assuming transparency of the collision

In absence of nuclear effects:

- → collision is superposition of N_{coll} independent nucleon-nucleon collisions
- $\rightarrow R_{AA}=1 (N_{coll} \text{ scaling})$

Verified with EW probes

Isolated photons:

- Prompt photons from hard scatterings
- No contributions from fragmentation and bremsstrahlung
- Do not interact strongly and are produced before the QGP formation

CMS, JHEP01(2024)128

Nuclear modification factor of Λ_c

- R_{AA} of Λ_c smallest near $p_T \approx 14$ GeV/c,
- Trend is in general consistent with other heavy flavor hadron measurements, but p_T of the minimum R_{AA} is different (e.g. R_{AA} reaches a minimum at $p_T \approx 8$ GeV/c for nonprompt D⁰ from b hadron decay and at $p_T \approx 9$ GeV/c for prompt D⁰)

Conclusions

- Complementary approaches to relativistic heavy-ion collisions
- Observation in pp and pPb collisions of AA-typical phenomena are challenging our knowledge on particle production
- Require both a refinement of models and both new observables and new regime of investigation (e.g. ultra-central)

- Several ongoing heavy-flavour analyses on fresh collected Pb–Pb and pp Run 3 data...
- ✓ …and exciting upgrade programs ahead

THANK YOU FOR YOUR ATTENTION!