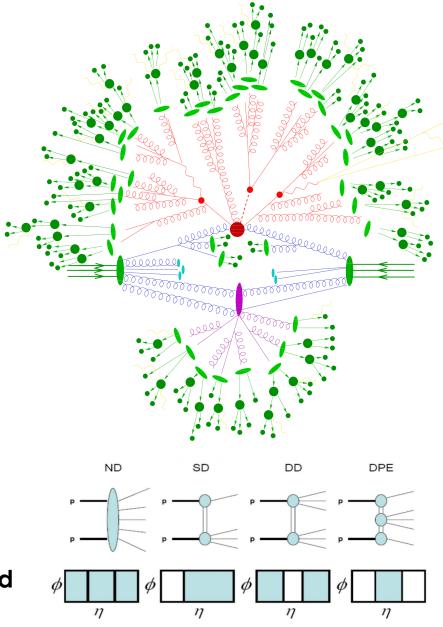
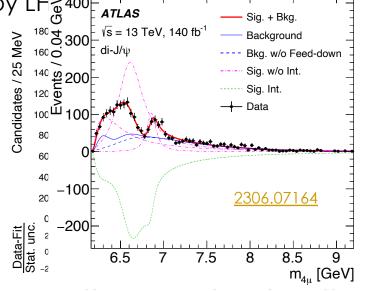
Recent soft and diffractive QCD measurements at the LHC

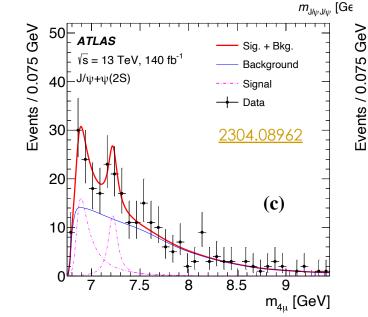
Francesco Giuli (University of Rome 'Tor Vergata')

QCD@LHC 2024 Freiburg (Germany) 11/10/2024



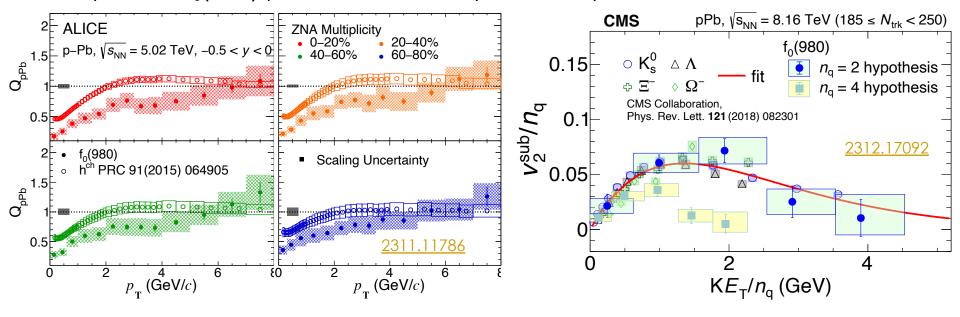
Introduction


- LHC collisions are complex due to substructure of protons
- QCD: theory of strong interactions between interacting quarks and gluons
 - Hard QCD high p_T: PDFs, ISR & FSR, PS, perturbation theory
 - Soft QCD low p_T: perturbative QCD approach not applicable
 - Minimum bias events, fragmentation and hadronisation
 - Radiation ISR/FSR
 - Underlying events (MPI)
 - Diffraction
- pp collisions: elastic or inelastic
- Inelastic collisions: diffractive or nondiffractive
- Diffractive processes dominate in forward regions



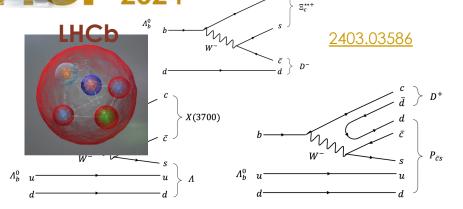
Events / 0.04 GeV

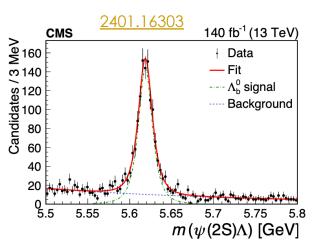
Tetraquark with di-J/ ψ spectrum

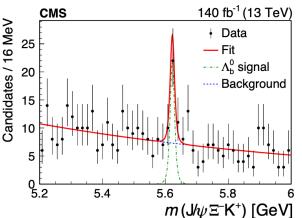

- > Tetraquark candidate X(6900) first observed by LH 3400
- > X(6900) confirmed by CMS and ATLAS in channels $T_{cc\bar{c}\bar{c}} \rightarrow J/\psi J/\psi$ and $T_{cc\bar{c}\bar{c}} \rightarrow J/\psi \psi(2s)$
- > Structure observed by CMS in $J/\psi J/\psi$ spectrum
- Hint for X(6600) and X(7100)
- New charmed tetraquark candidates

2-quark structure in p-Pb collisions

- > Is the $f_0(980)$ a $q\bar{q}$ meson, a tetraquark state, a $K\bar{K}$ molecule or a $q\bar{q}$ -gluon hybrid state?
- \triangleright Study of the f₀(980) production and dynamic in p-Pb collisions

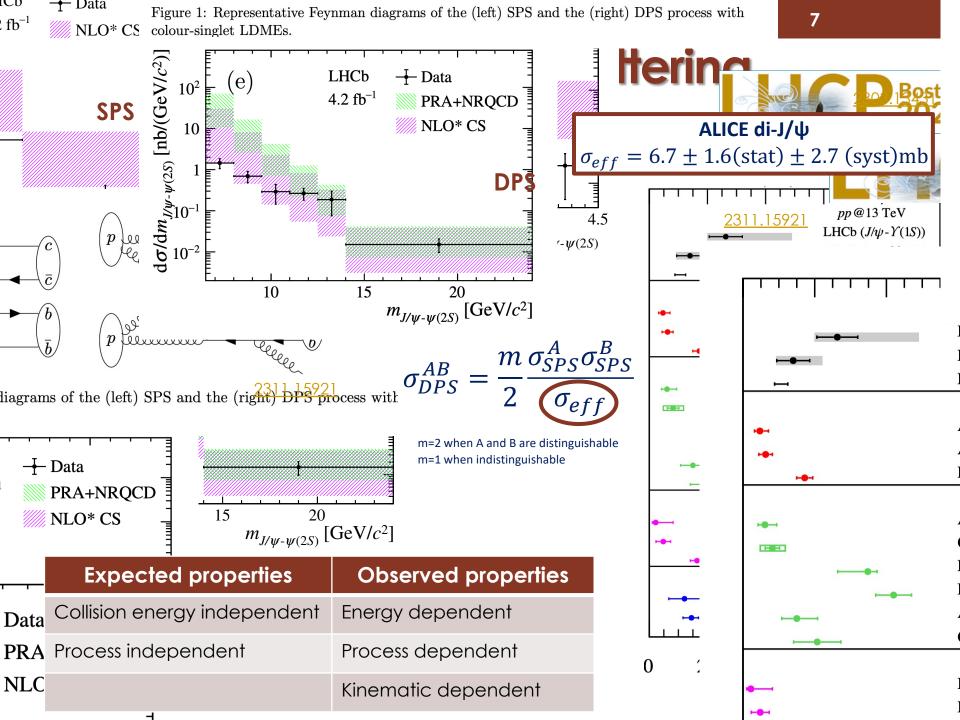

- Clear suppression of the f₀ nuclear modification factor suggests impact of final state scattering and meson-like structure
- > f_0 (980) is found to be a $q\bar{q}$ meson (number-of-constituent-quarks scaling hypothesis) other hypotheses ruled out

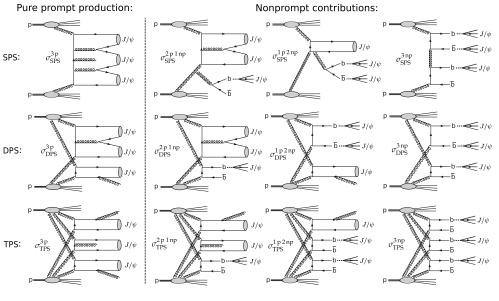

Figu


spon

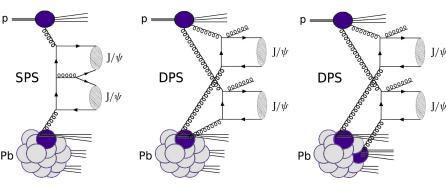
Search for pentaguarks Boston Boston

First observation of $\Lambda_h^0 \to D^+D^-\Lambda$

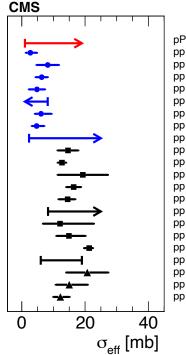




First observation of $\Lambda_b^0 \to J/\psi \; \Xi^- K^+$


Opens the possibility to search for doubly-strange hidden-charm pentaquarks

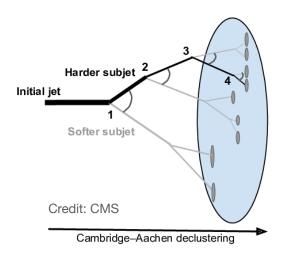
Next orders: $tri-J/\psi$ in pp and $di-J/\psi$ in pPb

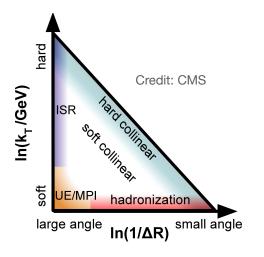


Also extracted from p-Pb collisions

CMS, $\sqrt{s}=13$ TeV, $J/\psi+J/\psi+J/\psi$ CMS*, \sqrt{s} =7 TeV, $J/\psi+J/\psi$ ATLAS, √s=8 TeV, J/ψ+J/ψ **D0**, \sqrt{s} =1.96 TeV, $J/\psi + J/\psi$ **D0***, √s=1.96 TeV, J/ψ+Y ATLAS*, √s=7 TeV, W+J/ψ ATLAS*, √s=8 TeV, Z+J/ψ ATLAS*, \sqrt{s} =8 TeV, Z+b \rightarrow J/ ψ **D0**, √s=1.96 TeV, γ+b/c+2-jet **D0**, \sqrt{s} =1.96 TeV, γ +3-jet **D0**, √s=1.96 TeV, 2-γ+2-jet **D0**, √s=1.96 TeV, γ+3-jet **CDF**, √s=1.8 TeV, γ+3-jet UA2, \(\s = 640 \text{ GeV}, 4-jet \) **CDF**, √s=1.8 TeV, 4-jet ATLAS, \subseteq 5 TeV, 4-jet CMS, √s=7 TeV, 4-jet CMS, √s=13 TeV, 4-jet CMS, √s=7 TeV, W+2-jet ATLAS, Vs=7 TeV, W+2-jet CMS. √s=13 TeV. WW $\sigma_{\text{eff.DPS}}$ [mb] 2111.05370

Dependence of the $\sigma_{eff,DPS}$ on the relevant parton species and x fractions probed

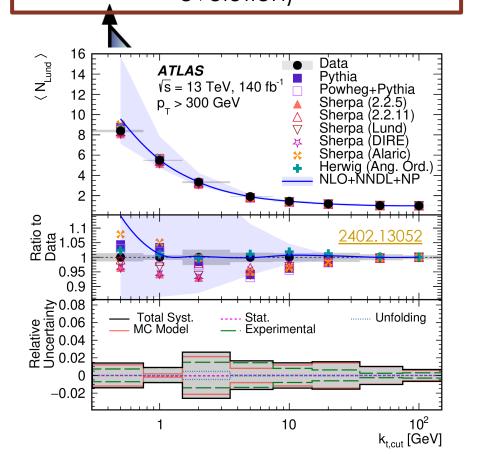


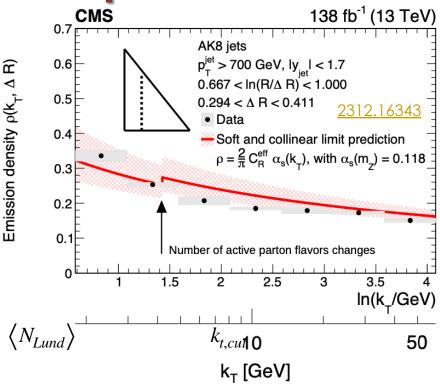

pPb \rightarrow J/ ψ +J/ ψ , $\sqrt{s_{NN}}$ =8.16 TeV,**CMS** pp $\rightarrow J/\psi + J/\psi + J/\psi$, $\sqrt{s}=13$ TeV, CMS pp \rightarrow J/ ψ +J/ ψ , \sqrt{s} =7 TeV, **CMS*** pp $\rightarrow J/\psi + J/\psi$, $\sqrt{s}=8$ TeV, **ATLAS** pp \rightarrow J/ ψ +J/ ψ , \sqrt{s} =1.96 TeV, **D0** pp \rightarrow J/ ψ +Y, \sqrt{s} =1.96 TeV, **D0*** pp \rightarrow W+J/ ψ , \sqrt{s} =7 TeV, **ATLAS*** pp \rightarrow Z+J/ ψ , \sqrt{s} =8 TeV, **ATLAS*** pp \rightarrow Z+b \rightarrow J/ ψ . \sqrt{s} =8 TeV. **ATLAS*** pp $\rightarrow \gamma$ +b/c+2-jet, \sqrt{s} =1.96 TeV, **D0** pp $\rightarrow \gamma + 3$ -jet, $\sqrt{s} = 1.96$ TeV, **D0** pp \rightarrow 2- γ +2-jet, \sqrt{s} =1.96 TeV, **D0** pp $\rightarrow \gamma + 3$ -jet, $\sqrt{s} = 1.96$ TeV, **D0** pp $\rightarrow \gamma + 3$ -jet, $\sqrt{s} = 1.8$ TeV, **CDF** pp \rightarrow 4-jet, \sqrt{s} =640 GeV, **UA2** pp \rightarrow 4-jet, \sqrt{s} =1.8 TeV, **CDF** pp \rightarrow 4-iet, \sqrt{s} =7 TeV, **ATLAS** pp \rightarrow 4-jet, \sqrt{s} =7 TeV, CMS pp \rightarrow 4-jet, \sqrt{s} =13 TeV, **CMS** pp \rightarrow W+2-jet, \sqrt{s} =7 TeV, CMS pp \rightarrow W+2-jet, \sqrt{s} =7 TeV, **ATLAS** pp → WW, √s=13 TeV, CMS

2407.03223

Lund sub-jet multiplicities

- Lund plane: theory tool used for many years, particularly by MC authors Z.Phys.C 43 (1989) 625
- Lund jet plane: applied to jet substructure, probe entire emission history of originating parton 1807.04758
- > Two-dimensional representation of the phase space of emissions inside a jet
- ightharpoonup Parameterize emissions of angle-ordered jet in terms of relative energies (z) and angles (ΔR)
- Allow to probe different mechanisms depending on kinematic

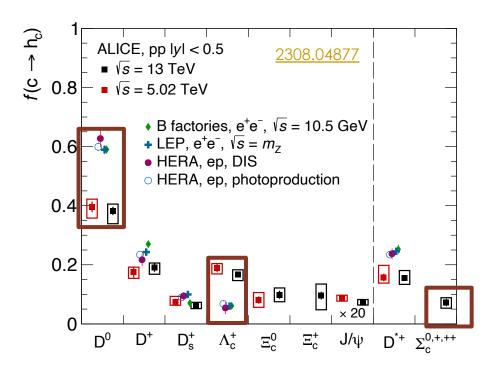


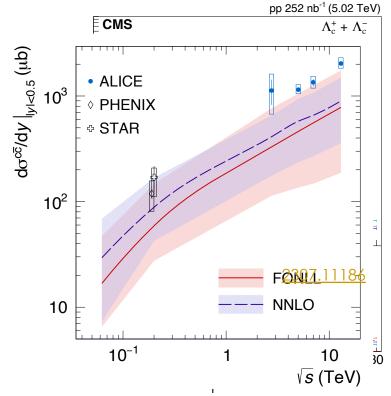


Lund sub-jet multiplicities

Running of α_S in the jet shower

dominant mechanism responsible for the rise of the LJP density at low k_T (characteristic energy scale in α_S evolution)


 $k_{t,cut} > 5$ Measurement of average number of Lund subject multiplicities to constrained models N_{Lund}

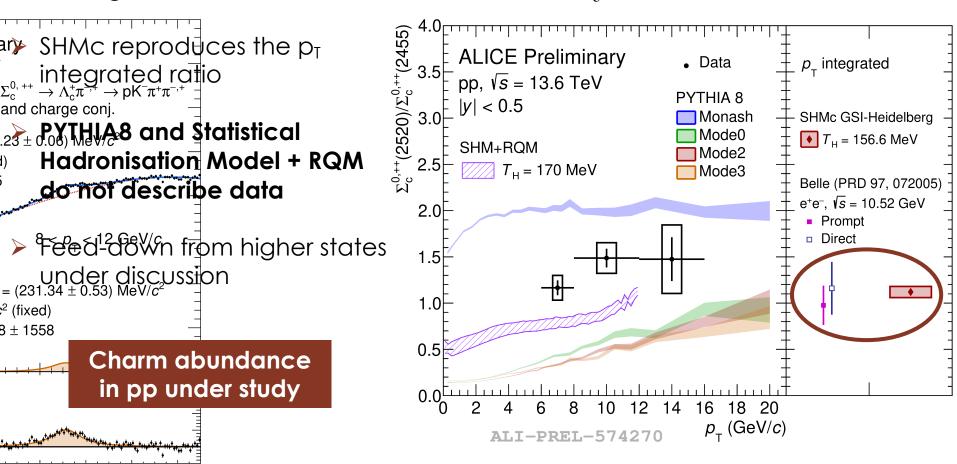

Charm fragmentation at the LHC

- $\succ \Lambda_c^+$ -baryon yields much higher than predicted
 - Breakdown of the universality of charm quark fragmentation functions
- \triangleright Prompt Λ_c^+ -baryon FF in pp is ~3x larger than in e⁺e⁻ and ep

Imply an overall reduction of the relative D-meson abundance (charm

fragmentation function sum up to 1)

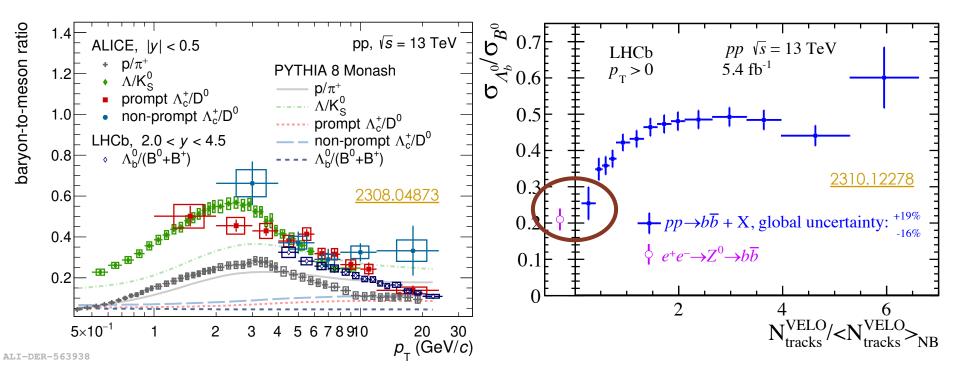
Charm hadronization is different in hadronic environment and in ete-


0.22 0.24

0.26

 $M(pK\pi\pi) - M(pK\pi) (GeV/c^2)$

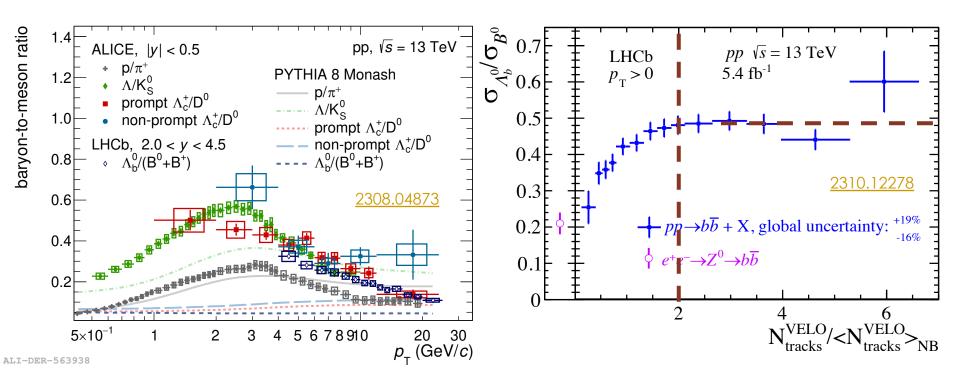
Charm fragmentation at the LHC $\Sigma_c^{0,++}$ First measurement $\Sigma_c^{0,++}$ (2520) relative production at the LHC


- \triangleright ALICE measurement in 6 < p_T < 14 GeV compatible with e⁺e⁻ p_T integrated withing uncertainties

Beauty fragmentation at the LHC

Beauty, charm, and strange hadrons show a similar trend as a function of p_T

Lowest multiplicity bins: pp data ~ e^e data at LEP (fragmentation in vacuum)

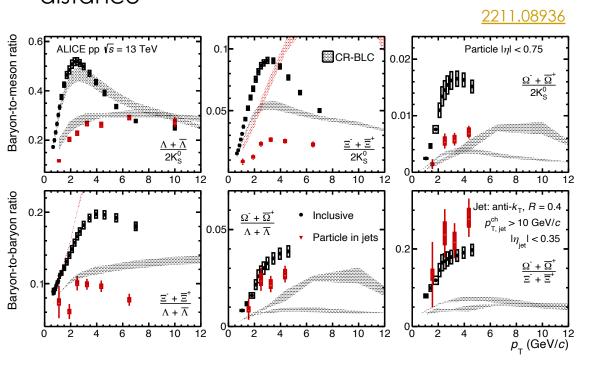


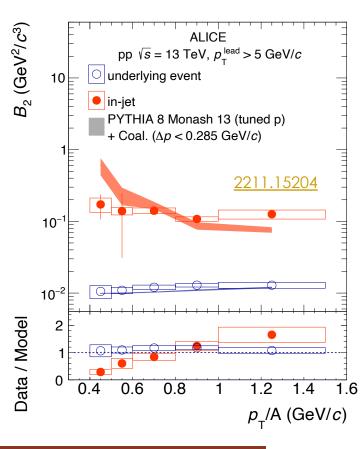
Beauty hadronization is different in hadronic environment and in e⁺e⁻

Beauty fragmentation at the LHC

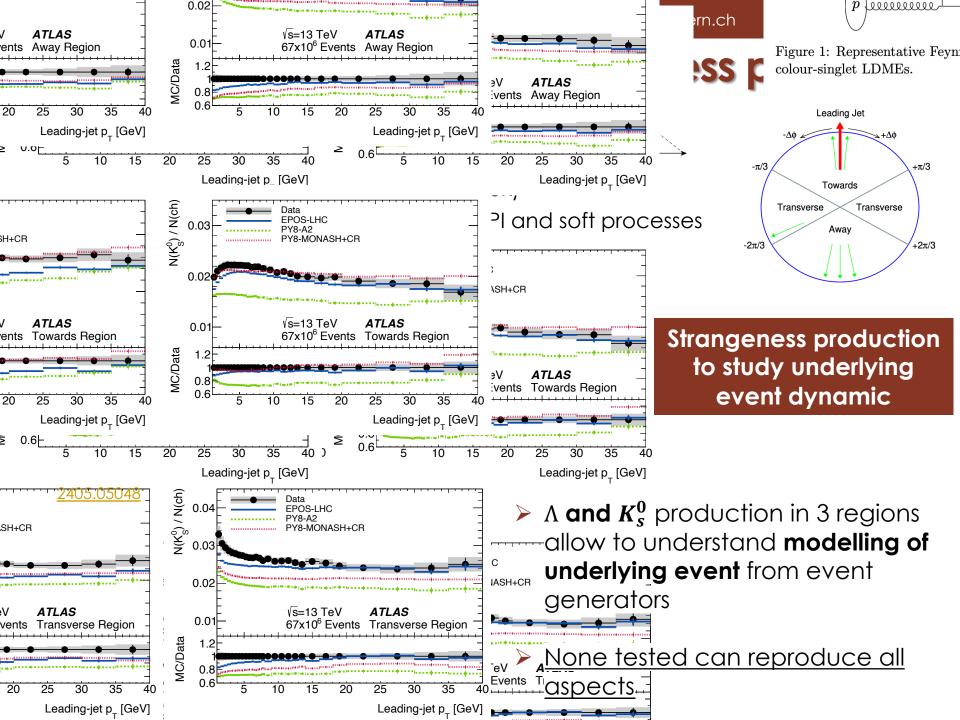
Beauty, charm, and strange hadrons show a similar trend as a function of p_T

Rise of the baryon fraction with multiplicity, plateau for collisions > 2x average number of VELO tracks

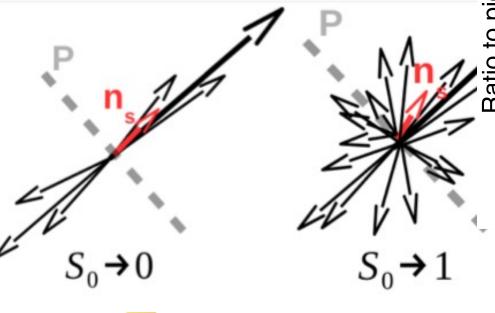



Beauty hadronization is different in hadronic environment and in e⁺e⁻

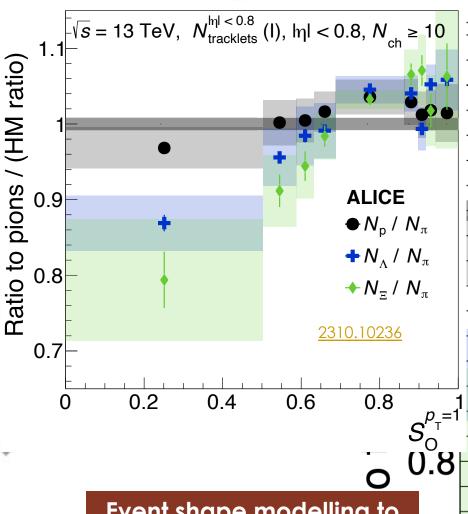
Hadronization in and out of jets


- Strange baryon-to-meson and baryon-to baryon ratios suppressed by a factor
 2 in jets w.r.t inclusive measurements
- > Deuteron coalescence probability in jets x 10 vs. underlying event

Nucleons have a smaller average phase-space distance

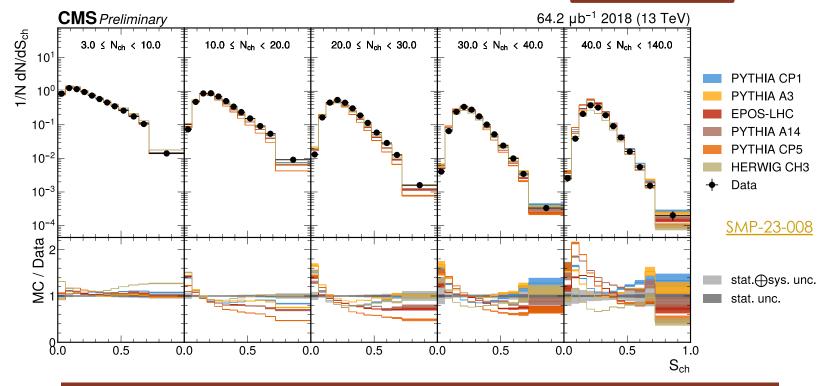


Hadronic environment (in jet vs. out of jet) impact hadronization



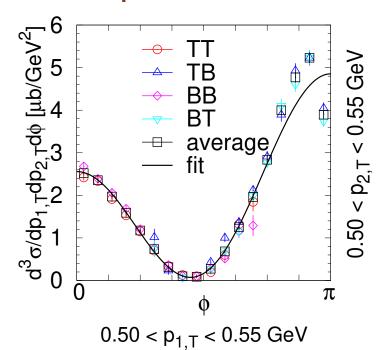
Event shape modelling

- Strangeness production
- Suppressed in events with jet-like topologies
- Slightly enhanced in softer, isotropic events topologies


$$S_0 = rac{\pi^2}{4} \mathrm{min}_{ec{n}=(n_x,n_y,0)} \Bigg(rac{\sum_i |ec{p}_{T_i} imes \hat{n}|}{\sum_i p_{T_i}} \Bigg)^2$$

Event shape modelling to understand strangeness production in pp collisions

Event shape modelling


- The tensor $S^{\alpha\beta} = \frac{\sum_{i} p_{i}^{\alpha} p_{i}^{\beta}}{\sum_{i} |\overrightarrow{p_{i}}|^{2}}$ $(\alpha, \beta \in \{x, y, z\} \text{ refer to cartesian coordinates})$
- i is the index for the final-state charged particles which passed the selections based on the detector acceptance
- $ilde{S}$ Sphericity constructed from the two smallest eigenvalues $\mathcal{S}=rac{3}{2}(\lambda_2+\lambda_3)$

Data more isotropic than the modelling in event generators

Central exclusive production of charged pions

- \triangleright Differential cross sections in bins of [p_{1,T}, p_{2,T}] with 0.4 < p_{1/2,T} < 0.6 GeV
- \triangleright Azimuthal angle φ between the surviving protons
- \succ First observation of parabolic minimum in φ distribution
- First model tuning of pomeron related quantities

Parameter	Exponential	Orear-type	Power-law	DIME 1 / 2
Empirical model				2401.14494
$a_{\text{ore}}[\text{GeV}]$	_	0.735 ± 0.015	_	
$b_{\text{exp/ore/pow}}[\text{GeV}^{-2 \text{ or } -1}]$	1.084 ± 0.004	1.782 ± 0.014	1.356 ± 0.001	CMS
$B_{\mathbb{P}} [\text{GeV}^{-2}]$	3.757 ± 0.033	3.934 ± 0.027	4.159 ± 0.019	CIVIO
χ^2 /dof	9470/5796	10059/5795	11409/5796	
One-channel model				
$\sigma_0[\mathrm{mb}]$	34.99 ± 0.79	27.98 ± 0.40	26.87 ± 0.30	
$\alpha_P - 1$	0.129 ± 0.002	0.127 ± 0.001	0.134 ± 0.001	
α_P' [GeV ⁻²]	0.084 ± 0.005	0.034 ± 0.002	0.037 ± 0.002	
$a_{\rm ore}[{\rm GeV}]$	_	0.578 ± 0.022	_	
$b_{\rm exp/ore/pow} [{\rm GeV}^{-2 \text{ or } -1}]$	0.820 ± 0.011	1.385 ± 0.015	1.222 ± 0.004	
$B_{\mathbb{P}} [\text{GeV}^{-2}]$	2.745 ± 0.046	4.271 ± 0.021	4.072 ± 0.017	•
χ^2/dof	7356/5793	7448/5792	8339/5793	
Two-channel model				
$\sigma_0[\mathrm{mb}]$	20.97 ± 0.48	22.89 ± 0.17	23.02 ± 0.23	23 / 33
$\alpha_P - 1$	0.136 ± 0.001	0.129 ± 0.001	0.131 ± 0.001	0.13 / 0.115
α_P' [GeV ⁻²]	0.078 ± 0.001	0.075 ± 0.001	0.071 ± 0.001	0.08 / 0.11
$a_{\rm ore}[{\rm GeV}]$		0.718 ± 0.012	_	
$b_{\rm exp/ore/pow} [{\rm GeV}^{-2 \text{ or } -1}]$	0.917 ± 0.007	1.517 ± 0.008	0.931 ± 0.002	0.45
$\Delta a ^2$	0.070 ± 0.026	-0.058 ± 0.009	0.042 ± 0.011	-0.04 / -0.25
$\Delta\gamma$	0.052 ± 0.042	0.131 ± 0.018	0.273 ± 0.023	0.55 / 0.4
$b_1 [\text{GeV}^2]$	8.438 ± 0.108	8.951 ± 0.041	8.877 ± 0.040	8.5 / 8.0
c_1 [GeV ²]	0.298 ± 0.012	0.278 ± 0.004	0.266 ± 0.006	0.18 / 0.18
d_1	0.472 ± 0.007	0.465 ± 0.002	0.465 ± 0.003	0.45 / 0.63
b_2 [GeV ²]	4.982 ± 0.133	4.222 ± 0.052	4.780 ± 0.060	4.5 / 6.0
c_2 [GeV ²]	0.542 ± 0.015	0.522 ± 0.006	0.615 ± 0.006	0.58 / 0.58
d_2	0.453 ± 0.009	0.452 ± 0.003	0.431 ± 0.004	0.45 / 0.47
χ^2/dof	5741/5786	6415/5785	7879/5786	

Summary

- Many results in the realm of soft and diffractive QCD
- Insight on multi-parton scattering with associated production
 - \triangleright DPS with charm and beauty show non universal σ_{eff}
 - Next orders: Tri- I/ψ in pp and di- I/ψ in pPb collisions
- > Jet fragmentation and substructure
 - Testing QCD with jet substruture
- Hadronization in hadronic environment
 - > Charm and beauty hadronization are different in hadronic environment and in e⁺e⁻
 - Hadronic environment (in jet vs out of jet) impacts hadronization
 - Underlying event dynamic and event shape modelling under study
- Soft central exclusive production processes
 - ightharpoonup Observation of parabolic minimum in φ distribution
 - > First model tuning of pomeron related quantities
- ➤ We are now in the middle of LHC Run 3... More and more data to be analysed soon! Interesting time ahead... Stay tuned! ©

THANKS FOR YOUR ATTENTION!

