

Electroweak corrections to double Higgs production at the LHC

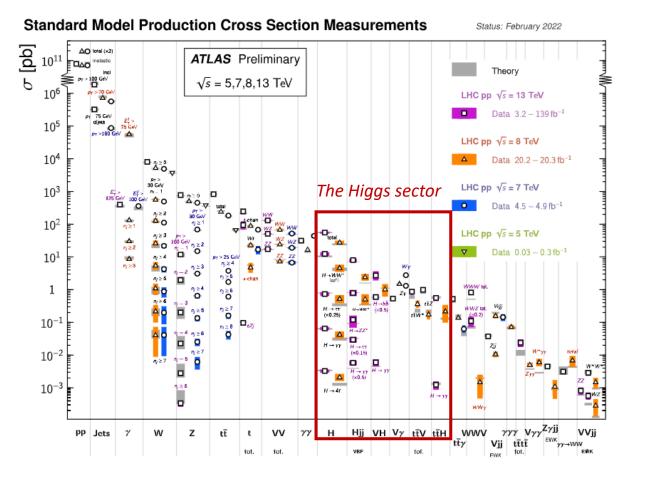
Huai-Min Yu

School of Physics, Peking University

October 7th, 2024 QCD@LHC 2024 Conference

Based on: Phys. Rev. Lett. 132 (2024), 231802 (arXiv: 2311.16963)

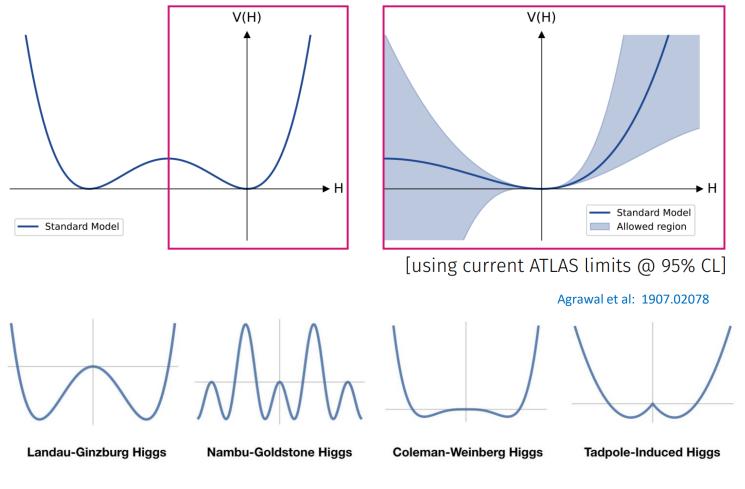
In cooperation with: Huan-Yu Bi, Li-Hong Huang, Rui-Jun Huang, Yan-Qing Ma


1/19

Introduction to Higgs

• Discovery of Higgs boson(2012,LHC): the last found elementary particle in SM.

Azzurri: Int.J.Mod.Phys.A 38 (2023) 09n10, 23300077



Higgs Potential

Problems not clear: shape of Higgs potential, new physics beyond SM...

Plot taken from B. Moser: Higgs 2023

Higgs potential predicted by other BSM theories.

Higgs trilinear coupling

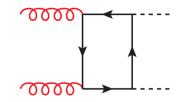
• Higgs potential is probed through determining the strength of Higgs boson selfinteractions in searches for HH production. ($\lambda^{SM} \approx 1/8$)

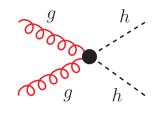
$$V(h) = \frac{m_h^2}{2}h^2 + \lambda^{SM}vh^3 + \frac{1}{4}\lambda^{SM}h^4 \implies H$$

• Experiment constraints on Higgs boson self-interactions:

ATLAS: 2007.02873 CMS: 2202. 09617 Jones: LHEP 2023 (2023) 442

- Current: $-1.5 < \lambda_{hhh}^{EX} / \lambda^{SM} < 6.7$ for ATLAS, $-2.3 < \lambda_{hhh}^{EX} / \lambda^{SM} < 9.4$ for CMS.
- Future: a limit of $-0.5 < \lambda_{hhh}^{EX} / \lambda^{SM} < 1.5$ will be achieved.

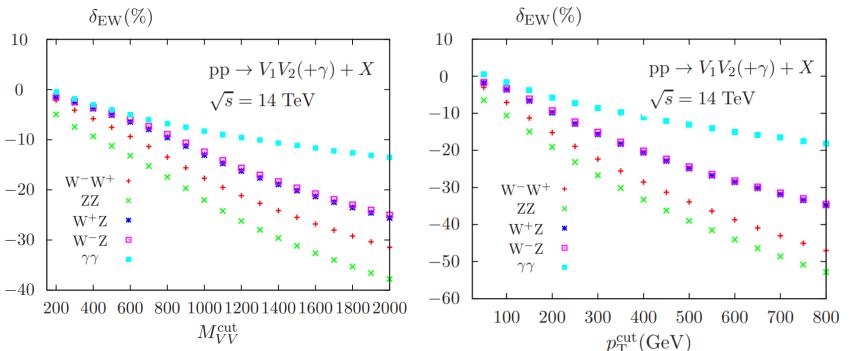

QCD corrections status



- corrections with full top quark mass dependence
 - NLO corrections keeping top quark mass, Borowka et al:1604.06447
 - NLO corrections matched to parton shower, Heinrich et al: 1703.09252
 - NLO corrections with soft-gluon resummation, Ferrera et al: 1609.01691
- corrections in heavy top limit (HTL) approximation
 - N²LO in HTL, Florian et al:1305.5206
 - N³LO in HTL, Chen et al:1909.06808
 - N²LO in HTL+ NLO with full top-quark mass dependence, Florian et al:2106.14050
 - N³LO in HTL include the top-quark mass effects, Chen et al:1912.13001
 - N²LO in HTL matched to parton shower, Alioli et al: 2212.10489
 - N³LO in HTL+ NLO with full top-quark mass dependence + soft-gluon resummation,

• Current QCD corrections uncertainties: O(1%) Jones: LHEP 2023 (2023) 442

Process	QCD	$\sigma_{th}[pb]$	δ_{th} [%]
HH production via gg fusion	N ³ LO _{HTL} NLO _{QCD}	0.03105	+2.2 -5.0



Ajjath et al:2209.03914

Why EW corrections

- EW corrections
 - $\alpha \sim \mathcal{O}(1\%)$, the biggest uncertainty from theoretical side!
 - Sudakov enhancement, $O(10\% \sim 30\%)$ corrections in high energy region.

 NLO EW corrections are crucial, a focal point in 2015, 2017, 2019 and 2021 Les Houches precision wish lists.
 Les Houches 2017:1803.07977
 Amoroso et al:2003.01700
 Huss et al:2207.02122

Bierweiler et al:1305.5402

EW corrections status

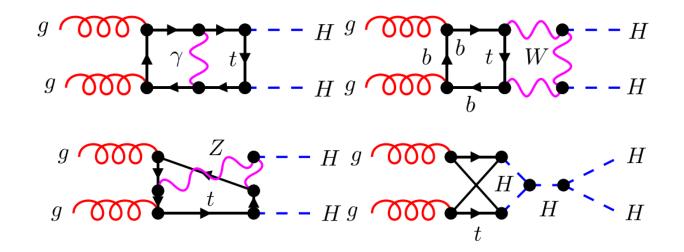
- Multiple scales make reduction of scalar integrals and calculation of master integrals difficult.
 - Four mass scales m_H, m_t, m_W, m_Z , two Mandelstam variables \hat{s}, \hat{t} .
- Recent developments on this topic :
 - Higgs self-coupling corrections in SMEFT, Borowka et al: 1811.12366
 - two-loop box diagrams, Davies et al:2207.02587
 - top-quark Yukawa corrections, Muhlleitner et al: 2207.02524
 - NLO EW corrections in large- m_t limit, Davies et al:2308.01355
 - Yukawa and Higgs self-coupling corrections, Heinrich et al: 2407. 04653, Li et at: 2407, 14716
 - Comprehensive NLO EW corrections, Bi et al:2311. 16963
- A series of developments and efforts have paved the way for full calculation of NLO EW corrections.

This talk

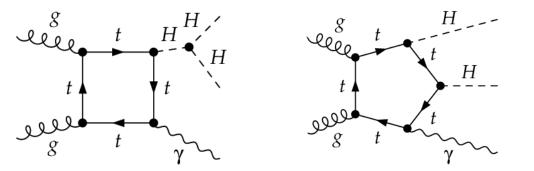
Production Rate

• Di-Higgs production cross section:

$$\sigma(\text{pp} \to \text{HH}) = \int dx_1 \, dx_2 f_g(x_1) f_g(x_2) \hat{\sigma}_{gg \to HH}(\hat{s}, m^2)$$


- Multiple mass scales, analytic result for $\hat{\sigma}$ is challenging. X
- Monte Carlo integration method can be adopted.

• Lots of numerical results for $d\hat{\sigma}/d\hat{t}$ at different phase space points are required.


Feynman Diagrams

- Generate Feynman diagrams and amplitudes using FeynArts Package.
 - 2020 NLO virtual correction diagrams, some typical Feynman diagrams.

• NLO real corrections are forbidden due to Furry theorem.

T. Hahn:0012260

Manipulate amplitudes

- Amplitudes for $g(p_1)g(p_2) \rightarrow H(p_3)H(p_4)$, $M_{ab} = \delta_{ab}\epsilon_1^{\mu}\epsilon_2^{\nu}M_{\mu\nu}$
 - Decomposition to form factor:

$$M_{\mu\nu} = F_1(\hat{s}, \hat{t}, m^2) T_1^{\mu\nu} + F_2(\hat{s}, \hat{t}, m^2) T_2^{\mu\nu}$$

- Decomposition to scalar integrals: $F_i(\hat{s}, \hat{t}, m^2) = \sum_j C_{i,j}(\hat{s}, \hat{t}, m^2) \times F_{I_{i,j}}(\hat{s}, \hat{t}, m^2)$ To be reduced
- Reduction to master integrals using integration-by-part identity, implemented by Blade package.

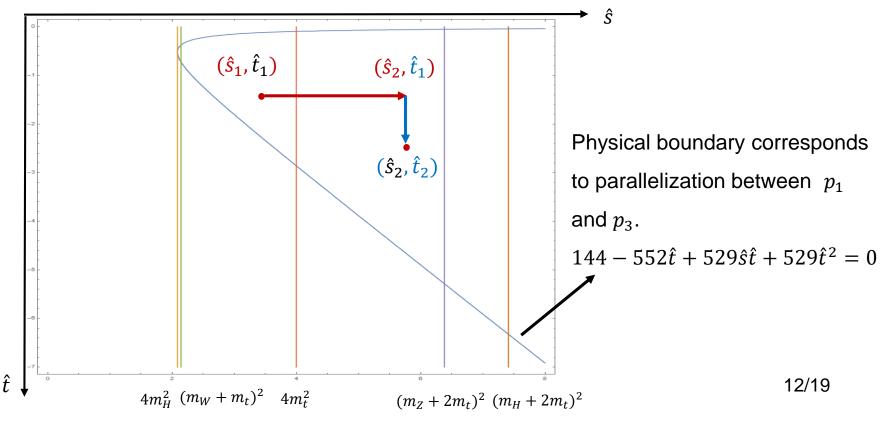
https://gitlab.com/multiloop-pku

$$FI_{i,j}(\hat{s}, \hat{t}, m^2) = \sum_k P_{i,j,k}(\hat{s}, \hat{t}, m^2) \times I_{i,j,k}(\hat{s}, \hat{t}, m^2)$$
 Key point !

To be calculated, numerical results for $\mathcal{O}(10^4)$ (\hat{s}_i, \hat{t}_i) are required.

Calculate integrals

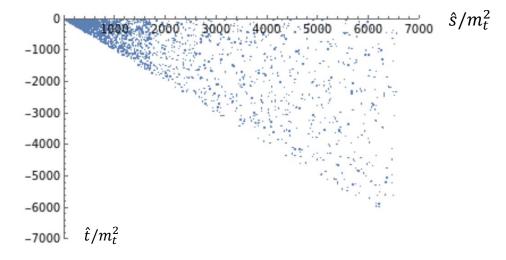
- Calculate integrals for a phase space point:
 - Two dimensional regulator ϵ points ($\epsilon = \pm \frac{1}{1000}$) are sufficient to confirm the cancelation of divergences.
 - 3000 cpu.h run time using AMFlow program package.
 https://gitlab.com/multiloop-pku
 Liu et al:2201.11636
- Calculate integrals for 30000 phase space points:
 - $\chi O(10^8)$ cpu.h run time with all points calculated by AMFlow.
- Calculate integrals using differential equation:
 - Analytical differential equation $\frac{\partial}{\partial \hat{s}}\vec{I} = A_{\hat{s}}\vec{I}, \frac{\partial}{\partial \hat{t}}\vec{I} = A_{\hat{t}}\vec{I}$ provided by Blade.
 - Numerical boundary $\vec{I}(\hat{s}_0, \hat{t}_0)$ provided by AMFlow.


• 🗸

Differential equation running method required $\mathcal{O}(10^5)$ cpu.h run time.

DE running

- Physical singularities occur only in \hat{s} direction: $4m_H^2$, $(m_W + m_t)^2$, $4m_t^2$, $(m_z + 2m_t)^2$, $(m_z + 2m_t)^2$.
- Continuation direction for \hat{s} is $+i\delta$.
- Asymptotic expansion at singularities is required in the \hat{s} direction and Taylor expansion is performed in the \hat{t} direction.


MC samples

• LO production cross section:

$$\sigma_{\rm LO} = \sum_{i=1}^{N} \frac{1}{\mathrm{flux}_i} f_g(x_1^i, \mu) f_g(x_2^i, \mu) |\overline{M_{\rm LO}^i}(\hat{s}, \hat{t})|^2 \Delta x_1^i \Delta x_2^i \Delta \Phi_2^i$$

- μ is factorization scale and $\Delta \Phi_2$ corresponds to the element of phase space integral, $\Delta \Phi_2 \sim \Delta \hat{t}$.
- Importance sampling based on LO cross section:

• Samples are sparse at high energy region due to the suppression of gluon PDFs.

Total cross sections

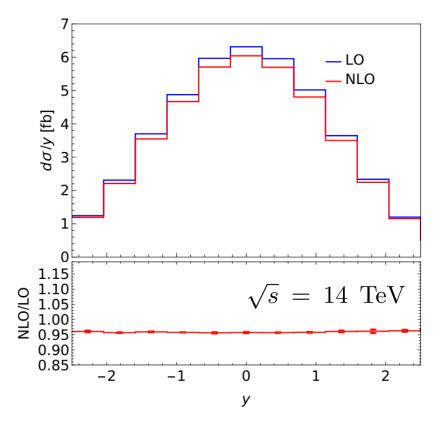
• Input parameters

•
$$\alpha = \frac{\sqrt{2}}{\pi} G_{\mu} m_W^2 \left(1 - \frac{m_W^2}{m_Z^2} \right), \frac{m_H^2}{m_t^2} = \frac{12}{23}, \frac{m_Z^2}{m_t^2} = \frac{23}{83}, \frac{m_W^2}{m_t^2} = \frac{14}{65}, m_t = 172.69 \text{ GeV}$$

 $G_{\mu} = 1.166378 \times 10^{-5} \text{ GeV}^{-2}, \alpha = 1/133.12$

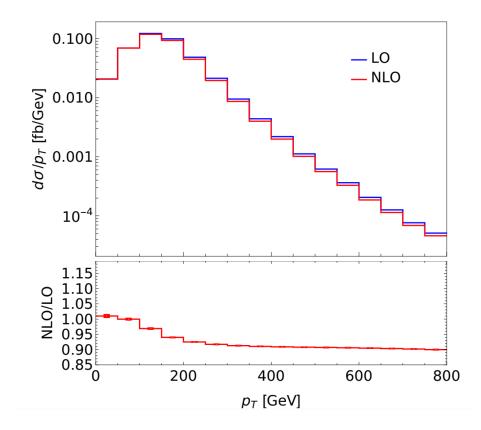
- NNPDF3.1 PDF set
- Renormalization
 - On-shell renormalization for masses and fields.
 - G_{μ} -scheme renormalization for electromagnetic coupling.

• Results: 1.8×10^4 events	μ	$M_{HH}/2$	$\sqrt{p_T^2 + m_H^2}$	m_H
• K factor is stable. Differences are around 20%	LO	19.96(6)	21.11(7)	25.09(8)
at LO and NLO cross sections.	NLO	19.12(6)	20.21(6)	23.94(8)
 -4% NLO EW corrections. 	$\mathcal{K} ext{-factor}$	0.958(1)	0.957(1)	0.954(1)

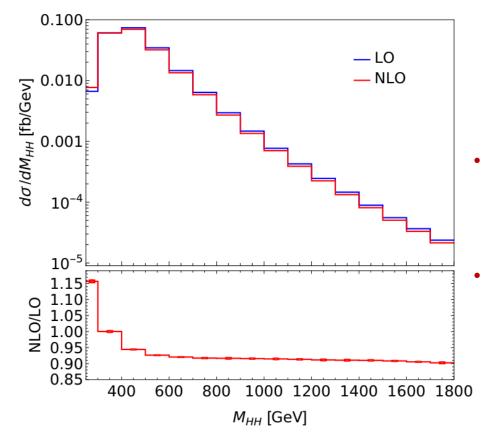

y differntial distribution

• The differential K factor can get a controllable error with far fewer events

 $\Delta \sigma^{\rm NLO} = \Delta \sigma^{\rm LO} \times \Delta K$


- $\Delta \sigma^{\text{LO}}$ uses 3×10^5 events.
- ΔK uses 1.8×10^4 events for σ and additional 400 events for each bin.
- Up to NLO, $K \approx 0.96$.

p_T differntial distribution



• -10% NLO corrections at the tail, Sudakov enhancement.

M_{HH} differntial distribution

- +15% NLO corrections at the beginning of spectrum.
 - -10% corrections in the tail, similar to p_T differential distribution. Sudakov enhancement.

Cross Check

- NLO EW corrections in large- m_t limit: Davies et al:2308.01355
 - Performed a $1/m_t$ expansion in the heavy top limit.
 - Expansion results converge well for a top mass above 200 GeV.
 - We choose a non-physical top-quark mass m_t =244.22 GeV to compare with their results of NLO corrections.

PKU group	KIT group
316.1%	316.3%

• Yukawa and Higgs self-coupling corrections: Li et at:2407, 14716

	PKU group	SDU group
Higgs-Higgs	-1.395%	-1.401%
Higgs-Yukawa	2.345%	2.355%

• These minor differences can be attributed to variations in input parameters.

Summary

- Higgs trilinear coupling is important.
- NLO EW correction to total cross sections is about -4%.
- <u>-4% NLO EW corrections to rapidity distribution.</u>
- +15% NLO corrections at the beginning of spectrum for the M_{HH} , Sudakov effect was observed for both p_T and M_{HH} distribution.
- Sufficient precision from current QCD corrections and NLO EW corrections for measurements at the HL-LHC.

Thanks for your attention!