Di-Higgs production measurements and EFT interpretations

Nathan Readioff on behalf of the ATLAS & CMS Collaborations

QCD@LHC 2024 Freiburg, Germany, 7-11 October 2024

The Higgs Potential

- The Higgs field has non-zero vacuum expectation value
 - Leads to electroweak symmetry breaking
- The Higgs mechanism explains non-zero gauge boson masses
 - Also produces fermion masses!
- Higgs Boson is an excitation of the Higgs field
 - Forms unique probe of the Higgs field
 - Provides means of indirectly observing Higgs Potential

Higgs Potential:
$$V(\phi) = \frac{1}{2}\mu^2\phi^2 + \frac{1}{4}\lambda\phi^4$$

When $\mu^2 < 0$ the potential has a minimum at:

$$\left|\phi\right|_{min} = \sqrt{-\frac{\mu^2}{2\lambda}} \equiv \frac{\nu}{2\lambda}, \nu = 246 \text{ GeV}$$

 $\lambda = \frac{m_H^2}{2\nu^2} \approx 0.13$

• Expanding the potential around the minimum yields:

- Higgs self-coupling provides direct measurement of Higgs potential
- Helps identify precise shape of the Higgs potential

Measurement of λ is crucial for reconstructing the Higgs potential and testing the Higgs mechanism

Higgs Boson Pair Production

Large Decay Fraction

- No perfect channel to study
- bbbb (34%):
 - Most abundant final state
 - Challenging multi-jet backgrounds
- bbyy (0.26%):
 - Low decay fraction
 - Excellent $m_{\gamma\gamma}$ resolution
- bbtt (7.3%):
 - Good all round
- Other channels provide valuable data
 - Investigated by ATLAS and CMS
 - Various combinations available

		bb	WW	ττ	ZZ	γγ
	bb	34%				
	WW	25%	4.6%			
	ττ	7.3%	2.7%	0.39%		
	ZZ	3.1%	1.1%	0.33%	0.069%	
	γγ	0.26%	0.10%	0.028%	0.012%	0.0005%

Clean Final State

Seminar by Rui Zhang

ATLAS and CMS

• LHC hosts two general purpose detectors

CMS

- Different construction techniques
- Similar science goals
- Designed to investigate wide range of physics
- Study of Higgs boson is key topic

6

HH→bbbb (ATLAS)

- Fit to m_{HH} (BDT) in Resolved (Boosted) analysis
- Main background from QCD multijet
 - Data driven normalisation from signal region sidebands
 - Simple scale factor (neural net) in Resolved (Boosted)
- Dominant systematic uncertainties:
 - Xbb calibration
 - Background estimation
 - Signal cross section calculation
- Observed 95% CL limits:

	μнн	Kλ	K _{2v}
Resolved	5.4	[-3.5, 11.3]	[-0.0, 2.1]
Boosted			[0.52, 1.52]
Combined			[0.55, 1.49]

<u>Phys. Rev. D 108 (2023) 052003</u> (Resolved) <u>Phys. Lett. B 858 (2024) 139007</u> (Boosted)

CMS-PAS-B2G-21-001 (Preliminary)

HH→bbbb (CMS)

- Boosted analysis targeting VBF events
- Higgs candidates from two highest p_{T} large-R jets
- Novel approach using ParticleNet (link, link)
 - Multivariate classifier based on graph convolutional neural networks
 - Ensures efficient reconstruction of b-jets
 - Significant rejection of light-quark or gluon jets
- Background dominated by QCD multijet and $t\overline{t}$
 - Background enriched control regions defined
 - Contributions estimated through simultaneous fit to $m_{\rm HH}$
- Fit performed on m_{HH} templates
- Dominant systematic uncertainty:
 - Calibration of *ParticleNet* $H \rightarrow bb$ ID algorithm
- 95% CL limits:
 - $0.6 < \kappa_{2v} < 1.4$
 - -1.2 < κ_V < 0.8 or -0.8 < κ_V < 1.2
 - (Note K_V , not K_λ)

 $VHH \rightarrow Vbbbb(\rightarrow \ell \ell)$ (ATLAS, CMS)

- Search for $HH \rightarrow bbbb$ with associated V
 - V=W $\rightarrow \ell \nu$, Z \rightarrow ee, µµ, vv
- Backgrounds include:
 - tt, single top quarks, V+jets, multi-jet events
- ATLAS
 - Multivariate analysis
 - Eight BDTs generated (inc. for $A \rightarrow ZH$ search)
 - Jet energy scale/resolution uncertainties dominate
 - 95% CL limits:
 - μ_{HH} < 183 (87 exp)
 - $-34.3 < \kappa_{\lambda} < 33.3$
 - -8.6 < κ_{2ν} < 10.0
- CMS
 - Categories optimised for sensitivity to $\kappa_\lambda, \kappa_{2\nu}$
 - Uncertainties dominated by
 - B-tagging efficiency
 - Background modelling
 - 95% CL limits:
 - μ_{HH} < 294 (124 exp)
 - $-37.7 < \kappa_{\lambda} < 37.2$
 - $-12.2 < \kappa_{2v} < 13.5$

- T_{Had}T_{Had}:
 - Single- τ_{Had} and di- τ_{Had} triggers (high purity) $\rightarrow 2 \tau_{Had}$, e/ μ veto
- T_{Lep}T_{Had}:
 - Single ℓ trigger (large acceptance) \rightarrow I τ_{Had} , I e/ μ
 - ℓ + τ_{Had} trigger (low ℓ p_T) \rightarrow I τ_{Had} , I e/ μ
- $\tau_{Lep}\tau_{Lep}$ not considered
- Events split to nine categories based on trigger, m_{HH}, BDTs
- Background dominated by tt, QCD multi-jet, Z+heavy jets
- Signal/Background separation from BDT (one trained per signal region)
- Dominant uncertainties:
 - Data statistics
 - Modelling uncertainties on top-quark and single-H background
- 95% CL limits:
 - μ_{HH} < 5.9 (3.3 exp)
 - -3.1 < κ_λ < 9.0
 - -0.5 < κ_{2ν} < 2.7

2InA

HH→bbγγ (ATLAS)

JHEP 01 (2024) 066

- Events selected with 2 b-jets and 2 photons
- Events classified using modified $m_{bb\gamma\gamma}$:

$$m_{bb\gamma\gamma}^* = m_{bb\gamma\gamma} - (m_{bb} - 125 \text{ GeV}) - (m_{\gamma\gamma} - 125 \text{ GeV})$$

- Define high/low mass regions at $m_{bb\gamma\gamma}^* = 350 \text{ GeV}$
 - One BDT per region, categorise based on score
 - High mass region: 4 categories
 - Low mass region: 3 categories
- Signal and Background modelled using $m_{\gamma\gamma}$:
 - HH and Single H (double sided Crystal Ball)
 - γγ+jets background (exponential)
 - Fit performed on $m_{\gamma\gamma}$ in each category
- Dominant uncertainties:
 - Data statistics
 - Theory uncertainties on HH cross-section

- 95% CL limits:
 - μ_{HH} < 4.0 (5.0 exp)
 - -Ι.4 < κ_λ < 6.9
 - -0.5 < κ_{2ν} < 2.7

HH→bbττ, bbγγ (CMS)

- bbττ:
 - Events split into 8 orthogonal categories
 - Deep neural network for event selection/categorisation
 - Background: tt, QCD multi-jet, Z+heavy jets
 - 95% CL limits:
 - μ_{HH} < 3.3 (5.2 exp)
 - -1.7 < κ_{λ} < 8.7
 - $-0.4 < \kappa_{2v} < 2.6$
- bbүү:
 - Analysis originally developed the $m^*_{bb\gamma\gamma}$ variable
 - Dedicated event classifier for tt background rejection
 - Custom DNN combining feed-forward and long short-term memory neural networks
 - BDT separates signal from background:
 - non-resonant γγ+jets, γ+jets
 - Events split into 14 categories based on BDT output
 - 95% CL limits:
 - μ_{HH} < 8.4 (5.5 exp)
 - -3.3 < κ_λ < 8.5

$HH \rightarrow bb \ell \ell + E_T^{miss}$ (ATLAS)

JHEP 02 (2024) 037

- Consider:
 - HH→bbWW
 - HH→bbZZ
 - ΗΗ→bbττ
- Events split to VBF/ggF categories
- DNN (BDT) selects ggF (VBF) events
 - Outputs used as discriminant in fit
- Multiple backgrounds:
 - tt and tW
 - Single Higgs
 - Z+ heavy flavour
 - "Fake" leptons

- Data statistics
- Z+jets modelling

- μ_{HH} < 9.7 (16.2 exp)
- -6.7 < κ_λ < 15.3
- -0.17 < κ_{2v} < 2.4

JHEP 07 (2024) 293 (bbWW) JHEP 06 (2023) 130 (bbZZ)

HH→bbWW, bbZZ(4I) (CMS)

- bbWW:
 - Events categorised by trigger
 - Single-lepton, dilepton
 - Sub-categories based on DNN classification
 - Background includes tt, single top, W+jets
 - DNN score fitted
 - 95% CL limits:
 - μ_{HH} < I4 (I8 exp)
 - -7.2 < κ_{λ} < 13.8
 - -I.I < κ_{2ν} < 3.2
 - ATLAS constrains $\kappa_{2\nu}$ more strongly
 - Dedicated VBF category helps
- bbZZ(4I):
 - Events split to nine categories using BDT
 - Nine BDT distributions in data are fitted
 - Main backgrounds from H, qq, gg decaying to ZZ
 - 95% CL limits:
 - μ_{HH} < 32.4 (39.6 exp)
 - -8.8 < κ_λ < 13.4

$HH \rightarrow Multilepton (ATLAS)$

Number of hadronic taus

2

0

<u>JHEP 08 (2024) 164</u>

HH→Various (CMS)

HH Combination (ATLAS)

10

Kλ

 Observed limit (95% CL) ATLAS Expected limit (95% CL) $(\mu_{HH} = 0 \text{ hypothesis})$ $\sqrt{s} = 13 \text{ TeV}, 126 - 140 \text{ fb}^{-1}$ Expected limit ±1o $\sigma_{aaF+VBF}^{SM}(HH) = 32.8 \text{ fb}$ Expected limit ±20 Exp. Obs. 10 $bbll + E_T^{miss}$ 14 17 11 Multilepton bbbb 5.3 8.1 4.0 5.0 bbγγ $b\bar{b}\tau^{+}\tau^{-}$ 5.9 3.3 2.9 2.4 Combined 95% CL upper limit on HH signal strength μ_{HH} Obs 95% CL Best Fit Exp 95% CL Leading Channel 3.8 [-1.2, 7.2] bbyy, bbtt [-1.6, 7.2]Kλ 1.0 [0.6, 1.5] [0.4, 1.6] bbbb (boosted) K_{2v} K2V bbvv Combined bbvv ATLAS Multilepton bbbb — bbbb Multilepton $\sqrt{s} = 13 \text{ TeV}, 126 - 140 \text{ fb}^{-1}$ bb
 τ⁺τ⁻
 $b\bar{b}\ell\ell + E_T^{miss}$ bbll + E^{miss} bb
 τ⁺τ⁻
 HH combination Best fit (4.3, 0.92) Obs 95% CI Obs.: 95% CL [0.6, 1.5] --- Exp. (SM): 95% CL [0.4, 1.6] Exp. (SM) 95% CL 😭 SM prediction

- Combines channels:
 - bbbb, bb $\gamma\gamma$, bb $\tau\tau$, bb $\ell\ell$ + E_T^{miss}, Combined Multilepton
- Common sources of uncertainty correlated unless:
 - Different calibrations used
 - Different post fit profilings from different phase space
- Dominant uncertainties:
 - HH QCD scale + $m_{top} \left({}^{+6\%}_{-23\%} \right)$ on ggF HH)
 - Modelling of single H associated with b-jets
 - Background estimation in 4b
- Combination 95% CL limits:
 - μ_{HH} < 2.9 (2.4 exp)
 - σ_{HH} < 85.8 (71.1 exp) fb

- Each diagram sensitive to specific coupling factors
- Some diagrams appear if deviations from SM predictions in coefficients cggh, cgghh, Ctthh
- HEFT parameterisation has quadratic structure, hence multiple minima
- Best fit driven by bbbb where data-driven background modelling not perfectly accurate
 - Fits in channel favour non-SM signals

Single H and HH Constraints

- Single Higgs production constrains self-coupling
 - NLO electroweak corrections from self-coupling
 - Corrections affect:
 - Higgs cross-section
 - Branching fractions
 - Kinematics
 - Can be used to constrain κ_λ
- Wide selection of processes combined
- ATLAS: $-0.4 < \kappa_{\lambda} < 6.3$ • CMS: $-1.2 < \kappa_{\lambda} < 7.5$

The HL-LHC...

- The High-Luminosity LHC (HL-LHC) will:
 - Increase peak luminosity to 5-7.5x10³⁴ cm⁻²s⁻¹
 - Provide at least 3000fb⁻¹ of data at 14TeV
 - Allow precision measurements of Higgs couplings and differential cross-sections
 - Provide access to rare decays and probes for New Physics

Long Term Schedule for CERN Accelerator complex

- Initial prospects study performed in 2018
 - Based on best HH result available at that time
- Signals normalised to 14 TeV cross-section and luminosity
- Background yields scaled to 3000 fb⁻¹
- Parametric functions model upgraded detector response
- Assume theory/modelling & b-tagging 2x better, other objects are Run 2-like (conservative)
- Combination places constraints on κ_{λ} :
 - + 0.35 < κ_λ < 1.9 at 68% CL
 - -0.18 < κ_λ < 3.6 at 95% CL

Channel	Signific	cance	95% CL limit on $\sigma_{\rm HH}/\sigma_{\rm HH}^{\rm SM}$			
Channel	Stat. + syst. Stat. only		Stat. + syst.	Stat. only		
bbbb	0.95	1.2	2.1	1.6		
bb au au	1.4	1.6	1.4	1.3		
$bbWW(\ell\nu\ell\nu)$	0.56	0.59	3.5	3.3		
$bb\gamma\gamma$	1.8	1.8	1.1	1.1		
$bbZZ(\ell\ell\ell\ell)$	0.37	0.37	6.6	6.5		
Combination	2.6	2.8	0.77	0.71		

The HL-LHC: ATLAS prospects

- Combination of bbbb + $bb\tau\tau$ + $bb\gamma\gamma$
 - Assume theory/modelling & b-tagging 2x better, other objects are Run 2-like (conservative)
 - HH discovery significance of 3.40; κ_{λ} constrained within [0.0, 2.5] at 95% CL
- Sensitivity driven by theoretical uncertainties on HH cross-section and:
 - b-tag performance in bbbb (potential improvement from ITk and better b-tagging)
 - background modelling uncertainty in $bb\gamma\gamma$
 - additional heavy-flavour jet radiation in single Higgs background

22

Summary

- Study of HH events provides unique experimental reconstruction of Higgs Potential
- HH events are rare process
 - No observation yet!
 - Cross-section of 33 fb means ~4600 SM events in Run 2 dataset
 - Requires highly efficient analyses from ATLAS and CMS
- Combinations with Single H events can further constrain Higgs potential
- Best constraints on HH cross-section:
 - ATLAS: μ_{HH} < 2.9 (2.4 exp)
 - CMS: μ_{HH} < 3.4 (2.5 exp)
- Best constraints on Higgs self-coupling:
 - ATLAS: $-1.2 < \kappa_{\lambda} < 7.2$ ($-1.6 < \kappa_{\lambda} < 7.2$ exp)
 - CMS: $-1.24 < \kappa_{\lambda} < 6.49$
- Exciting prospects for future analyses!

Backup

- Event selection:
 - b-jet trigger
 - \geq 4 b-jets with pT > 40 GeV
 - $\left| \Delta \eta_{HH} \right| < 1.5$
 - Veto Top-quark decay

- Higgs reconstructed by minimising ΔR_{jj} in leading Higgs (H₁)
 - No mass information used avoids sculpting H_1 - H_2 mass plane

• Categories based on $\left| \Delta \eta_{HH} \right|$ and X_{HH} :

•
$$X_{HH} = \sqrt{\left(\frac{m_{H1} - 124 \text{ GeV}}{0.1m_{H1}}\right)^2 + \left(\frac{m_{H2} - 117 \text{ GeV}}{0.1m_H2}\right)^2}$$

• VBF categories also require:

•
$$\left| \Delta \eta_{jj} \right| > 3 \text{ and } m_{jj} > 1 \text{ TeV}$$

HH→bbbb (Resolved) (ATLAS)

Cutflow

	Data	ggF	Signal	VBF	Signal
		SM	$\kappa_{\lambda} = 10$	SM	$\kappa_{2V} = 0$
Common preselection					
Preselection	5.70×10^{8}	530	7300	22	630
Trigger class	2.49×10^{8}	380	5300	16	410
ggF selection					
Fail VBF selection	2.46×10^{8}	380	5200	14	330
At least 4 b-tagged central jets	1.89×10^{6}	86	1000	1.9	65
$ \Delta \eta_{HH} < 1.5$	1.03×10^{6}	72	850	0.94	46
$X_{Wt} > 1.5$	7.51×10^5	60	570	0.74	43
$X_{HH} < 1.6$ (ggF signal region)	1.62×10^4	29	180	0.24	23
VBF selection					
Pass VBF selection	3.30×10^{6}	5.2	81	2.2	71
At least 4 <i>b</i> -tagged central jets	2.71×10^4	1.1	15	0.74	28
$X_{Wt} > 1.5$	2.18×10^4	1.0	11	0.67	26
$X_{HH} < 1.6$	5.02×10^{2}	0.48	3.1	0.33	17
$m_{HH} > 400 \text{GeV} (\text{VBF signal region})$	3.57×10^2	0.43	1.8	0.30	16

HH→bbbb (Resolved) (ATLAS)

Phys. Rev. D 108 (2023) 052003 (Resolved)

Category	Data	Expected	ggF Signal	VBF Signal
		Background	SM	SM
ggF signal region				
$ \Delta \eta_{HH} < 0.5, X_{HH} < 0.95$	1940	1935 ± 25	7.0	0.038
$ \Delta \eta_{HH} < 0.5, X_{HH} > 0.95$	3602	3618 ± 37	6.5	0.036
$0.5 < \Delta \eta_{HH} < 1.0, X_{HH} < 0.95$	1924	1874 ± 21	5.1	0.037
$0.5 < \Delta \eta_{HH} < 1.0, X_{HH} > 0.95$	3540	3492 ± 35	4.7	0.040
$ \Delta \eta_{HH} > 1.0, X_{HH} < 0.95$	1880	1739 ± 22	2.9	0.043
$ \Delta \eta_{HH} > 1.0, X_{HH} > 0.95$	3285	3212 ± 37	2.8	0.041
VBF signal region				
$ \Delta \eta_{HH} < 1.5$	116	125.3 ± 4.4	0.37	0.090
$ \Delta \eta_{HH} > 1.5$	241	230.6 ± 5.3	0.06	0.21

Source of Uncertainty	$\Delta \mu / \mu$
Theory uncertainties	
Theory uncertainty in signal cross-section	-9.0%
All other theory uncertainties	-1.4%
Background modeling uncertainties	
Bootstrap uncertainty	-7.1%
CR to SR extrapolation uncertainty	-7.5%
3b1f nonclosure uncertainty	-2.0%

95% CL exclusion limits as a function of κ_{λ} (obtained using the signal strength $\mu_{ggF+VBF}$ as the POI) and (b) κ_{2V} (obtained using the signal strength μ_{VBF} as the POI) from the combined ggF and VBF signal regions

HH→bbbb (Boosted) (ATLAS)

Selection	Data	Data Nonresonant SM ggF		ant VBF $(\kappa_V) =$	Spin-0 resonant VBF Narrow-width m_X	
		22	(1, 1, 1)	(1, 0, 1)	1.00 TeV	5.00 TeV
Raw events 16	854 036 422	1480	82.0	1290	140	140
Trigger & upstream selection	63 944 638	20.9	1.15	235	70.7	126
$\geq 2 \text{ large-} R \text{ jets } (\eta, m)$	57 510 800	14.1	0.531	168	48.7	119
Double <i>b</i> -tagging	12875	5.35	0.131	77.4	25.2	24.9
$\geq 2 \text{ small-} R \text{ jets}$	5762	2.24	0.105	57.2	18.8	16.0
Large- <i>R</i> jets $(p_{\rm T})$	3902	1.41	0.0700	48.3	13.7	16.0
Small- <i>R</i> jets $(\Delta \eta(j, j), m_{ij})$	314	0.148	0.0380) 32.3	8.58	12.0
Signal region	23	0.0970	0.0290) 24.5	6.68	6.59
Veto resolved selection	21	0.0590	0.0200) 18.8	-	-

Discriminant

Resonant parameterised BDT

HH→bbbb (Boosted) (ATLAS)

Event Selection

Trigger	Combination of $H_{\rm T}$ and single-jet triggers
Higgs boson	\geq 2 large-radius jets with $ \eta $ < 2.4
candidates	$p_{\rm T}^{\rm lead} > 500 { m GeV}, p_{\rm T}^{\rm subl} > 400 { m GeV}$
	$\Delta \phi > 2.6, \Delta \eta < 2.0$
Lepton veto	$N_{\rm e} = 0, N_{\mu} = 0$
$H \rightarrow b\overline{b}$ identification	Three exclusive search categories based on <i>D</i> _{bb} working points:
with ParticleNet	high purity (HP), medium purity (MP) and low purity (LP)
with ParticleNet VBF selections	high purity (HP), medium purity (MP) and low purity (LP) \geq 2 small-radius jets with $p_{\rm T}$ > 25 GeV, $ \eta $ < 4.7
with ParticleNet VBF selections	high purity (HP), medium purity (MP) and low purity (LP) ≥ 2 small-radius jets with $p_{\rm T} > 25$ GeV, $ \eta < 4.7$ $m_{\rm jj} > 500$ GeV, $\Delta \eta_{\rm jj} > 4.0$
with ParticleNet VBF selections Signal mass range	high purity (HP), medium purity (MP) and low purity (LP) ≥ 2 small-radius jets with $p_T > 25$ GeV, $ \eta < 4.7$ $m_{jj} > 500$ GeV, $\Delta \eta_{jj} > 4.0$ $110 < m^{\text{lead}} < 150$ GeV, $100 < m^{\text{subl}} < 145$ GeV

1000

$VHH \rightarrow Vbbbb(\rightarrow \ell \ell)$ (ATLAS)

	Channel and signal model								
	OL			1L			2L		
Variable	Vhh	VH	$A \rightarrow ZH$	Vhh	VH	Vhh	VH	$A \rightarrow ZH$	
$m_{h_1} + m_{h_2}$	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	
$m_{h_1} - m_{h_2}$	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	
N _{jets}	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	
$H_{\mathrm{T}}^{\mathrm{ex}}$	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	
$\sum s_{h-\text{tag}}^{\text{pc}}$	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	
$m_{h_1}^{\text{FSR}}$	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	
$m_{h_2}^{\rm FSR}$	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	
m_{hh}	\checkmark			\checkmark		\checkmark			
p_{T}^{hh}	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark	\checkmark		
$E_{\rm T}^{\rm miss}$	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	
p_{T}^{V}				\checkmark	\checkmark	\checkmark	\checkmark		
$m_{\rm T}^W$				\checkmark					
$\cosh(\Delta \eta)_1 - \cos(\Delta \phi)_1$	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark	\checkmark		
$\cosh(\Delta \eta)_2 - \cos(\Delta \phi)_2$	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark	\checkmark		
$ y_{h_1} - y_{h_2} $	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark	\checkmark		
$ y_V - y_{hh} $						\checkmark	\checkmark		

BDT training variables

		Signal regions		Control	regions
	0L	1L (1L+/1L-)	2L	tī	V + jets
Trigger	$E_{\mathrm{T}}^{\mathrm{miss}}$	single-lepton	single-lepton	single-lepton	single-photo
Lepton or photon	0 <i>loose</i> leptons, 0 identified τ_h	= 1 tight electron with $p_T > 27 \text{ GeV}$ OR 1 medium muon with $p_T > 25 \text{ GeV}$, 0 additional loose leptons, 0 identified τ_h	= 2 loose leptons $(e^+e^- \text{ or } \mu^+\mu^-),$ ≥ 1 lepton with $p_T > 27 \text{ GeV},$ $81 < m_{\ell\ell} < 101 \text{ GeV}$	$= 2 \ loose \ leptons$ $(e^{\pm}\mu^{\mp}),$ $\geq 1 \ lepton \ with$ $p_{\rm T} > 27 \ {\rm GeV}$	= 1 photon w $p_{\rm T} > 150 {\rm Ge}$ 0 <i>loose</i> lepto 0 identified
$p_{\mathrm{T}}^{\mathrm{miss}}$	$\begin{array}{l} E_{\mathrm{T}}^{\mathrm{miss}} > 150 \ \mathrm{GeV}, \\ \mathcal{S}(E_{\mathrm{T}}^{\mathrm{miss}}) > 12, \\ \Delta \phi(\boldsymbol{p}_{\mathrm{T}}^{\mathrm{miss}}, h) > 1 \end{array}$	$E_{\rm T}^{\rm miss} > 30 {\rm GeV}$	_	_	_
Jets		\geq 4 jets with $p_{\rm T} > 200$	GeV and passing the 85% b	-tagging WP	

~

Dominant uncertainties

Model	<i>Vhh</i> like in SM	WH	ZH	$\mathrm{NW}\:A\to ZH$	LW $A \rightarrow ZH$
Systematic uncertainty source			$\Delta\mu/\mu$ [%]		
Background modelling	+20, -15	+14, -11	+4.7, -3.0	+17, -13	+20, -18
MC statistics	+12, -9.1	+13, -7.8	+4.8, -2.2	+7.2, -4.1	+10, -8.3
Objects	+12, -8.6	+8.0, -5.2	+4.5, -2.2	+19, -11	+16, -12
Signal modelling	+10, -4.7	+12, -4.9	+8.6, -3.0	+14, -5.1	+17, -7.6
VR non-closure	+14, -11	+11, -9.4	+4.4, -3.0	+4.9, -3.7	+12, -10
Total systematic uncertainty	+30, -22	+27, -18	+12, -5.8	+30, -18	+33, -24
Statistical uncertainty	+44, -39	+52, -43	+68, -49	+59, -47	+42, -37
Total	+52, -44	+59, -47	+69, -49	+66, -50	+53, -45

Observed/expected 95% CL upper limits on the production cross-section at $\sqrt{s}=13$ TeV of a heavy narrow scalar resonance H in the decay mode $H \rightarrow hh \rightarrow bbbb$ in association with (left) a W boson and (right) a Z boson

$VHH \rightarrow Vbbbb(\rightarrow \ell \ell)$ (CMS)

BDT training variables

	BD T _{Ca}	t.		BD	Г _{SvB}		BDT _{Cat.}	BDT _{SvB}
Input variable	MET/1L	FH	MET (S)	1L (S)	MET/1L (L)	Input variable	2L	2L
$p_{\rm T}({\rm V}), p_{\rm T}({\rm H}_1)$	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	$p_{\rm T}({\rm V}), p_{\rm T}({\rm H}_1)$	\checkmark	\checkmark
$p_{\rm T}({\rm H_2}), p_{\rm T}({\rm HH})$	\checkmark		\checkmark	\checkmark	\checkmark	$m_{ m HH}$	\checkmark	\checkmark
$m_{\rm H_{1}}, m_{\rm H_{2}}$	\checkmark		\checkmark	\checkmark	\checkmark	$\Delta R(\mathrm{H_1},\mathrm{H_2})$	\checkmark	\checkmark
m _{HH}	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	$\Delta \phi(V, H_2)$	\checkmark	\checkmark
$\Delta R(H_1, H_2)$	\checkmark	\checkmark				$p_{\rm T}({\rm H_2})/p_{\rm T}({\rm H_1})$	\checkmark	
$\Delta \phi(V, H_2)$	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	$p_{\rm T}({\rm HH})$		\checkmark
$p_{\rm T}({\rm H_2})/p_{\rm T}({\rm H_1})$	\checkmark	\checkmark				$m_{\rm H_1}, m_{\rm V}$		\checkmark
$\Delta \eta(\mathrm{H_1},\mathrm{H_2})$	\checkmark	\checkmark	\checkmark			$\Delta \eta(H_1, H_2)$		\checkmark
$\Delta\phi({\rm H_1,H_2})$	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	Energy of H ₁		\checkmark
Energy of H ₁	\checkmark	\checkmark				Energy of HH		\checkmark
Energy of H ₂	\checkmark	\checkmark				$p_{\mathrm{T}}(\ell_2)/p_{\mathrm{T}}(\ell_1)$	\checkmark	\checkmark
Energy of HH	\checkmark	\checkmark				$\Delta \phi(\ell_1,\ell_2)$	\checkmark	\checkmark
$\eta_{ m HH}$	\checkmark	\checkmark				$\Delta\eta(\ell_1,\ell_2)$	\checkmark	\checkmark
$\eta_{\mathrm{H}_{1}}$		\checkmark	\checkmark			$\Delta R(j_{1,H_2}, j_{2,H_2})$	\checkmark	
$\phi(\mathrm{V})$			\checkmark	\checkmark	\checkmark	$\Delta R(\mathbf{j}_{1,\mathbf{H}_{1}},\mathbf{j}_{2,\mathbf{H}_{1}})$	\checkmark	
$s_{b-tag}(j_{1,2,3,4})$			\checkmark	\checkmark		$p_{\rm T}(\ell_1)/m_{\rm V}$	\checkmark	
$H_{\rm T}^{\rm ex}$			\checkmark			$p_{\mathrm{T}}(\ell_1)$	\checkmark	
N _{jets}			\checkmark			$p_{\rm T}(j_{3,4})$		\checkmark
$\tau_2/\tau_1(\mathrm{H_1,H_2})$					\checkmark	$H_{\mathrm{T}}^{\mathrm{VHH}}$		\checkmark
$\tau_3/\tau_2(\mathrm{H_1,H_2})$					\checkmark	$p_{\rm T}({\rm V})/p_{\rm T}({\rm HH})$		\checkmark
						$\Delta \phi(V, HH)$		\checkmark
						$p_{\rm T}(\ell_1)/m_{\rm V}$		\checkmark

Categorisation in channels

Variable for categorization	BDT _{Cat.}	$N_{\rm b}, D_{\rm b\overline{b}}$	$r_{\rm HH}, \delta_{\rm HH}, m_{\rm V}$	Year split	N(regions)
Signal regions					
MET small-radius	$\kappa_{\lambda}, \kappa_{2V}$	$N_{\rm b} \ge 3$	SR+CR	Per year	6
MET large-radius	κ_{2V}	HP, LP	SR+CR	Per year	6
1L small-radius	$\kappa_{\lambda}, \kappa_{2V}$	$N_{\rm b} \ge 3$	SR+CR	Per year	6
1L large-radius	κ_{2V}	HP, LP	SR+CR	Per year	6
2L	$\kappa_{\lambda}, \kappa_{2V}$	$N_{\rm b} = 3 { m or} 4$	SR,CR	Combined	8
FH	$\kappa_{\lambda}, \kappa_{2V}$	$N_{\rm b}=4$	SR	Per year	6
Control regions					
MET small-radius	—	$N_{\rm b} \ge 3$	SB	Per year	3
MET large-radius	—	HP, LP	SB	Per year	6
1L small-radius	—	$N_{\rm b} \ge 3$	SB	Per year	3
1L large-radius	—	HP, LP	SB	Per year	6
2L (DY)	—	$N_{\rm b} = 3 \text{ or } 4$	DY CR	Combined	2
2L (TT)	—	$N_{\rm b} \ge 3$	t ī CR	Combined	1

Summary of uncertainties

Uncertainty sources	2L	1L	MET	FH	Combined
Systematic uncertainty	+54%/-40%	+47%/-40%	+64%/-45%	+51%/-36%	+68%/-49%
Theory	+16%/-3%	+3%/-12%	+23%/-10%	+15%/-2%	+17%/-7%
Integrated luminosity	+6%/-0%	+5%/-1%	+8%/-1%	+4%/-0%	+6%/-4%
Lepton	+2%/-1%	+4%/-1%	+0%/-1%	+0%/-0%	+3%/-4%
Pileup	+3%/-6%	+4%/-2%	+8%/-7%	+3%/-0%	+9%/-14%
Small-radius jet	+17%/-5%	+15%/-5%	+26%/-23%	+21%/-2%	+26%/-16%
b tagging	+41%/-4%	+35%/-3%	+56%/-29%	+36%/-1%	+62%/-34%
Large-radius jet	+2%/-0%	+12%/-18%	+3%/-3%	+1%/-0%	+5%/-17%
Background modeling	+53%/-38%	+37%/-19%	+54%/-29%	+44%/-19%	+62%/-40%
Normalization	+40%/-12%	+34%/-4%	+52%/-25%	+35%/-0%	+58%/-32%
Reweighting	+34%/-36%	+13%/-17%	+22%/-13%	+12%/-1%	+25%/-19%
Kinematic	+11%/-10%	+17%/-3%	+13%/-4%	+24%/-24%	+19%/-14%
Statistical uncertainty	+84%/-91%	+88%/-92%	+77%/-89%	+86%/-93%	+73%/-87%
Signal strength and uncertainty	101^{+136}_{-99}	12^{+111}_{-83}	283^{+161}_{-123}	190^{+163}_{-132}	145_{-63}^{+81}

95% CL on coupling modifiers

	κ_{λ}	κ_{2V}	$\kappa_{ m V}$	κ_{2Z}	κ_{2W}
Observed	(-37.7, 37.2)	(-12.2, 13.5)	(-3.7, 3.8)	(-17.4, 18.5)	(-14.0, 15.4)
Expected	(-30.1, 28.9)	(-7.2, 8.9)	(-3.1, 3.1)	(-10.5, 11.6)	(-10.2, 11.6)

HH→bbττ (ATLAS)

Event Selection

Phys. Rev. D 110 (2024) 032012

HH→bbττ (ATLAS)

Variable

VBF $\eta_0 \times \eta_1$

 $m_{j\,j}^{\rm VBF}$ $\Delta \eta_{jj}^{\rm VBF}$

 $\Delta \phi^{
m VBF}_{jj}$ $\Delta R^{
m VBF}_{jj}$

 $\Delta R_{\tau\tau}$ m_{HH} f_2^a C^{a}

 $m^a_{\rm Eff}$ f_0^c f_0^a h_3^a

				ggF				VBF						
				Variable	$\tau_{\rm had} \tau_{\rm had}$	$ au_{ m lep} au_{ m had}$ SLT	$ au_{ m lep} au_{ m had}$ LTT	Variable	τ _{ha}	d ⁷ had high- mu u	$\tau_{\rm lep} \tau$	had SLT high- MHH	$\tau_{\rm lep} \tau_{\rm lep}$	had LTT high- MHH
				m _{HH}	1	1	1	m _{bb} MMC		√	V	√	✓ ✓	/ /
				m _{bb} MMC				$m_{\tau\tau}^{\text{MMC}}$		1				1
				$m_{\tau\tau}^{\text{WHVC}}$				ΔR_{bb}	1	1	1	1	· ·	·
				ΔR_{bb}		1		$\Delta R(\tau_0, \tau_1)$	1	1	1	1	1	1
_	-C 、	$\sim 1/D$		$\Delta R(\tau_0, \tau_1)$	1	1		N(jets)	1	1	1			
2	27 V	'S V D	Г	VBF $\eta_0 \times \eta_1$	1		1	$p_{\mathrm{T}}(HH)$		1	1			
0	0			$\Delta \eta_{ii}^{\text{VBF}}$	1	1		H_{T}						
	$ au_{ m hod} au_{ m hod}$	$\tau_{\rm low} \tau_{\rm had} {\rm SLT}$	$ au_{\rm low} au_{ m had} { m LTT}$	A d VBF				T_1		1				
	·nau ·nau			$\Delta \varphi_{jj}$				r ¹ 2 F ^{miss}		1	1			v
	1	1	1	ΔR_{jj}		v		E_{π}^{miss} centrality		·			1	
				m_{ii}^{VBF}	1	1	1	M _{T2}	1				1	
	~	1	1	N(iets)			1	m_T^{W}			1	1	1	
$\langle \eta_1$	1	1		и (jeas) Ц		/	·	$m_{\rm T}(\tau_1)$		1		1	1	
/1				n _T		V		$p_{\mathrm{T}}(au_0)$	1		1	1		
	\checkmark			ST			1	$p_{\mathrm{T}}(au_1)$	1		1	1		
		1	1	T_2			1	$p_{\mathrm{T}}(b_0)$	1		1			1
		•	•	m_T^W			1	$p_{\mathrm{T}}(b_1)$				1		
	1			1 Лини		1		$p_{\mathrm{T}}(bb)$						
	1					·	/	$p_{\rm T}(\tau \tau)$						
	v			$p_{\rm T}(HH)$			~	$\Delta p_{\mathrm{T}}(\tau_0, \tau_1)$,				
	\checkmark			m^*_{HH}			\checkmark	$\eta(\tau_0)$						
		./	./	m_{HH} scaled			1	$\eta(\tau_1)$	· ·	V				
		v	v	$p_{\rm T}(\tau_0)$			1	$\Delta \eta(i_0, i_1)$ $\Delta \phi(bb \ F^{\text{miss}})$		1				
		1	✓	$n_{\rm T}(\tau\tau)$				$\Delta \phi(bb, \Sigma_{\rm T})$		1				1
		/		$p_{\Gamma}(t,t)$			· ·	$\Delta \phi(\tau \tau, E_{\rm m}^{\rm miss})$			1	1	1	
		v		$p_{\mathrm{T}}(b_0)$			~	$\Delta \phi(\tau_1, E_{\rm m}^{\rm miss})$					1	1
			1	$\eta(au_0)$				DL1r quantile(b_0)	1	1		1		
			1	$\eta(au_1)$	1			DL1r quantile(b_1)	1	1		1		
			v	$\Delta R(b_0, \tau_0)$			1	$\Delta R(b_0, \tau_0)$	1	1	1			
				Thrusta	1			$\Delta R(b_1, \tau_1)$		1	1			
				aria di di	V			$\Delta R(b_1, \tau_0)$			1	1		
				Circularity				$m^{c}_{ m Eff}$	1					
				Planar Flow ^{<i>a</i>}		\checkmark		$m^b_{ m Eff}$						1
				f_0^a		1		$m(b_0 \tau_0)$						
				f_a		1		$m(b_1 \tau_0)$						1
				52 Fa		•		m^*_{HH}						
				J		V		mHH Ch		,				1
				$m_{ m Eff}^{a}$		\checkmark		C ^o Sphariaitr.b						
				$\cos heta^*$			1	Dianar flow b		<i>.</i>				
				$\cos(\Delta\theta_{\tau\tau}^{H\to\tau\tau} \text{ rest frame})$			1	$\cos(\Lambda \theta H \rightarrow b\bar{b} \text{ rest frame})$		v	1	1		
					1			bb)			· ·	•		

HH→bbττ (ATLAS)

Phys. Rev. D 110 (2024) 032012

bbττ BDT distributions in 9 categories

HH→bbττ (CMS)

$bb\gamma\gamma$ BDT training variables

Variable	Definition
Photon candidates	
$p_{\rm T}/m_{\gamma\gamma}$	Transverse momentum of each photon divided by the diphoton invariant mass $m_{\gamma\gamma}$
η and ϕ	Pseudorapidity and azimuthal angle of each photons
$\Delta R(\gamma_1,\gamma_2)$	Angular distance between the two photons
<i>b</i> -jet candidates	
<i>b</i> -tag status	Tightest fixed <i>b</i> -tag working point (60%, 70%, 77%) that each jet passes
p_{T}, η and ϕ	Transverse momentum, pseudorapidity and azimuthal angle of each jet
$p_{\mathrm{T}}^{bar{b}}$, $\eta_{bar{b}}$ and $\phi_{bar{b}}$	Transverse momentum, pseudorapidity and azimuthal angle of the two-b-jet system
$\Delta R(b_1, b_2)$	Angular distance between the two candidate <i>b</i> -jets
$m_{b\bar{b}}$	Invariant mass of the two candidate <i>b</i> -jets
Single topness	Variable used to identify $t \to Wb \to q\bar{q}'b$ decays. For the definition, see Eq.(1).
Other jets (only first two, if present, ranked by	discrete <i>b</i> -tagging score)
<i>b</i> -tag status	Tightest fixed <i>b</i> -tag working point (85% or none) that each jet passes
p_{T}, η and ϕ	Transverse momentum, pseudorapidity and azimuthal angle of each jet
VBF-jet candidates	
$\Delta \eta(j_1, j_2), m_{jj}$	Pseudorapidity difference and invariant mass of the two jets
Event-level variables	
Transverse sphericity, planar flow, $p_{\rm T}$ balance	For the definitions, see Ref. [83], Ref. [84], and Eq. (2)
H_{T}	Scalar sum of the $p_{\rm T}$ of the jets in the event
$E_{\rm T}^{\rm miss}$ and $\phi^{\rm miss}$	Missing transverse momentum and its azimuthal angle
*	The 4-body invariant mass of the two photons and two candidate <i>b</i> -jets, $m_{b\bar{b}\nu\nu}^* =$
$m_{b\bar{b}\gamma\gamma}$	$m_{b\bar{b}\gamma\gamma} - (m_{b\bar{b}} - 125 \text{ GeV}) - (m_{\gamma\gamma} - 125 \text{ GeV})$

HH→bbγγ (ATLAS)

HH→bbγγ (ATLAS)

Observed/expected limits of k_{λ} and $k_{2\nu}$

HH→bbγγ (CMS)

Category	MVA	\widetilde{M}_X (GeV)
VBF CAT 0	0.52-1.00	>500
VBF CAT 1	0.86-1.00	250-500
ggF CAT 0	0.78 - 1.00	>600
ggF CAT 1		510-600
ggF CAT 2		385-510
ggF CAT 3		250-385
ggF CAT 4	0.62-0.78	>540
ggF CAT 5		360-540
ggF CAT 6		330–360
ggF CAT 7		250-330
ggF CAT 8	0.37-0.62	>585
ggF CAT 9		375–585
ggF CAT 10		330–375
ggF CAT 11		250-330

HH→bbWW (CMS)

JHEP 07 (2024) 293 (bbWW)

Sing	e	Le	oton
0			

Dilepton

Single-lepton channel								
Categories	Subcategories							
HH (ggF)	Resolved 1b	Resolved 2b	Boosted					
HH (VBF)	Resolved 1b	Resolved 2b	Boosted					
Top + Higgs	Resc	Boosted						
W+jets + Other								

Dilepton channel								
Categories	Subcategories							
HH (ggF)	Resolved 1b	Resolved 2b	Boosted					
HH (VBF)	Resolved 1b	Resolved 2b	Boosted					
Top + Other	Resc	Boosted						
DY + Multiboson		Inclusive						

HH→bbZZ(4I) (CMS)

<u>JHEP 06 (2023) I 30</u> (bbZZ)

Theory uncertainties							
Branching fractions							
$\mathcal{B}(H \to b\overline{b})$	1.2%						
$\mathcal{B}(H \to ZZ)$	1.5%						
PDF set ar	nd $\alpha_{\rm S}$						
HH	3.0%						
HH (m_{top} effects)	+4.0 -180 %						
ggH (PDF set)	1.9%						
$ggH(\alpha_S)$	2.59–2.62%						
VBFH	2.1%						
ZH	1.6%						
WH	1.3%						
bbH	3.2%						
tīH	3.0%						
qqZZ	3.1-3.4%						
tĪŻ	7–14%						
VVV	2-17%						
ggZZ	3.2%						
Scale uncert	ainties						
HH	2.2–5%						
ggH	4.27-6.49%						
VBFH	0.3–0.4%						
ZH	2.7-3.5%						
tīH	6.0–9.2%						
qqZZ	3.2–4.2%						
tīZ	2–3%						
VVV	3%						
ggZZ	4.6-6.7%						
K-facto	rs						
qqZZ	0.1%						
ggZZ	10.0%						

Expected yields in the 4ℓ SR after additionally requiring at least two jets in the event.

Final state	Signal	tīZ	tĒH	bbH	ZZ	ggH+VBF	ZH+WH	Others	Z+X	Total expected	Observed
4μ	0.056	0.58	0.68	0.16	3.75	12.35	1.61	0.04	3.87	23.10	29
4e	0.030	0.37	0.39	0.07	1.42	6.16	0.82	0.02	2.65	11.93	12
2e2µ	0.082	0.95	0.91	0.20	4.93	15.56	2.08	0.10	7.22	32.03	33

Experimental uncertainties							
Source	2016	2017	2018				
Integrated luminosity	1.2%	2.3%	2.5%				
Lepton reco./ident. eff.	1.6–15.5%	1.1–12.1%	1.0-11.0%				
b-tagging SF	shape	shape	shape				
JES	shape	shape	shape				
JER	shape	shape	shape				
Z+X bkg. uncertainties	30-41%	30–38%	30–37%				

138 fb⁻¹ (13 TeV)

160 180 200 m_{bb} (GeV)

MC stat. unc.

 $q\overline{q} \rightarrow ZZ \rightarrow 4l$

 $HH \rightarrow bb\ell\ell + E_T^{miss}$ (ATLAS)

Event yields

Process	s ggF-SR VBF-SR $t\bar{t}$ -CR			Wt-CR	Z+HF-CR				
SM background									
tī	561220 ± 150	52670 ± 50	436840 ± 130	2270 ± 10	34700 ± 40				
$t\bar{t} + V$	1121 ± 4	194.7 ± 1.9	1133 ± 5	97.0 ± 1.1	440.1 ± 1.9				
Single top (Wt)	16260 ± 50	1165 ± 12	14100 ± 40	2901 ± 20	1237 ± 13				
Single top (s/t-channel)	12.7 ± 0.8	2.48 ± 0.35	1.21 ± 0.28	0.35 ± 0.14	0.25 ± 0.11				
$Z \rightarrow \ell \ell \text{ (HF)}$	16090 ± 180	1178 ± 34	3610 ± 70	525 ± 11	43390 ± 260				
$Z \rightarrow \ell \ell \ (LF)$	2720 ± 170	260 ± 40	600 ± 90	55 ± 8	5470 ± 190				
$Z \rightarrow \tau \tau (\text{HF})$	2200 ± 40	154 ± 13	3 ± 7	1.9 ± 0.5	4 ± 6				
$Z \rightarrow \tau \tau (LF)$	370 ± 50	24 ± 4	-1.3 ± 1.5	0.11 ± 0.06	0.8 ± 0.5				
W+jets	0.7 ± 0.5	0.09 ± 0.08	-0.2 ± 0.4	_	_				
Diboson	288 ± 4	32.6 ± 0.8	159.0 ± 2.8	39.0 ± 0.9	226.8 ± 3.3				
Single Higgs	601.0 ± 1.1	105.1 ± 0.4	336.5 ± 0.5	22.06 ± 0.12	48.28 ± 0.29				
Fakes	18510 ± 170	2390 ± 60	10020 ± 140	529 ± 35	1360 ± 50				
Total SM bkg.	619390 ± 350	58170 ± 100	466810 ± 230	6440 ± 40	86890 ± 330				
		НН	signal, ggF						
$ggF HH \rightarrow bbWW$	8.318 ± 0.016	0.857 ± 0.005	0.00113 ± 0.00019	0.00033 ± 0.00010	0.0014 ± 0.0002				
ggF $HH \rightarrow bb\tau\tau$	3.138 ± 0.009	0.3284 ± 0.0029	0.00332 ± 0.00029	0.00068 ± 0.00015	0.0047 ± 0.0004				
ggF $HH \rightarrow bbZZ$	0.633 ± 0.005	0.0873 ± 0.0018	0.00083 ± 0.00018	0.00020 ± 0.00009	0.0442 ± 0.0013				
\sum ggF HH	12.088 ± 0.019	1.272 ± 0.006	0.0053 ± 0.0004	0.00121 ± 0.00020	0.0504 ± 0.0014				
		НН	signal, VBF						
$VBF HH \rightarrow bbWW$	0.1518 ± 0.0014	0.2138 ± 0.0017	0.00013 ± 0.00004		0.00009 ± 0.00004				
$VBF HH \rightarrow bb\tau\tau$	0.0537 ± 0.0006	0.0769 ± 0.0007	0.000086 ± 0.000022	0.000048 ± 0.000018	0.00024 ± 0.00004				
$\mathrm{VBF}HH \to bbZZ$	0.0097 ± 0.0004	0.0184 ± 0.0006	0.000040 ± 0.000024	0.0000029 ± 0.0000016	0.00236 ± 0.00023				
\sum VBF <i>HH</i>	0.2152 ± 0.0016	0.3091 ± 0.0019	0.00026 ± 0.00005	0.000051 ± 0.000018	0.00269 ± 0.00024				
		HH sig	anal, ggF+VBF						
\sum ggF+VBF <i>HH</i>	12.303 ± 0.019	1.582 ± 0.006	0.0055 ± 0.0004	0.00126 ± 0.00020	0.0531 ± 0.0014				
45									

ggF NN inputs

VBF BDT inputs

Input feature	Description	Input feature	Description
same flavour p_{T}^{ℓ}, p_{T}^{b} $m_{\ell\ell}, p_{T}^{\ell\ell}$ m_{bb}, p_{T}^{bb} m_{T2}^{bb} $\Delta R_{\ell\ell}, \Delta R_{bb}$ $m_{b\ell}$ min $\Delta R_{b\ell}$ $E_{T}^{miss}, E_{T}^{miss}$ -sig $m_{T}(\ell_{0}, E_{T}^{miss})$ min $m_{T,\ell}$ H_{T2}^{R}	unity if final state leptons are <i>ee</i> or $\mu\mu$, zero otherwise transverse momenta of the leptons, <i>b</i> -tagged jets invariant mass and the transverse momentum of the di-lepton system invariant mass and the transverse momentum of the <i>b</i> -tagged jet pair system stransverse mass of the two <i>b</i> -tagged jets ΔR between the two leptons and two <i>b</i> -tagged jets min{max($m_{b0\ell_0}, m_{b1\ell_1}$), max($m_{b0\ell_1}, m_{b1\ell_0}$)} minimum ΔR of all <i>b</i> -tagged jet and lepton combinations invariant mass of the <i>bbll</i> system missing transverse energy and its significance transverse mass of the p_T -leading lepton with respect to E_T^{miss} minimum value of $m_T(\ell_0, E_T^{miss})$ and $m_T(\ell_1, E_T^{miss})$ measure for boostedness ¹ of the two Higgs bosons	$\begin{aligned} \eta_{\ell_0} , \eta_{\ell_1}, \phi_{\ell_0}, \phi_{\ell_1}, p_T^{\ell_0}, p_T^{\ell_1} \\ \eta_{b_0}, \eta_{b_1}, \phi_{b_0}, \phi_{b_1}, p_T^{b_0}, p_T^{j_1} \\ \eta_{j_0}, \eta_{j_1}, \phi_{j_0}, \phi_{j_1}, p_T^{j_0}, p_T^{j_1} \\ E_T^{\text{miss}}, \phi^{E_T^{\text{miss}}}, E_T^{\text{miss}} \text{-sig} \\ p_T^{bb}, \Delta R_{bb}, \Delta \phi_{bb}, m_{bb} \\ p_T^{\ell\ell}, \Delta R_{\ell\ell}, \Delta \phi_{\ell\ell}, m_{\ell\ell}, \phi_{\text{centrality}}^{\ell\ell} \\ p_T^{bb\ell\ell}, m_{bb\ell\ell} \\ p_T^{bb\ell\ell}, m_{bb\ell\ell} \\ p_T^{bb\ell\ell}, m_{bb\ell\ell} \\ p_T^{ct}, \Delta \phi_{\ell_T}^{miss}, \ell_{\ell_T} \\ p_T^{miss} + \ell_{\ell_T} \\ \eta_{t} \\ m_{tot} \\ m_{t}^{KLF} \\ min \Delta R_{\ell_0 j}, \min \Delta R_{\ell_1 j} \\ \sum m_{\ell j} \\ max \ p_T^{jj}, \max m_{jj} \\ max \ \Delta \eta_{jj}, \max \Delta \phi_{jj} \\ min \ \Delta R_{b\ell} \\ N_{\text{forward jets}}, N_j \\ m_{DMC}^{bb} \end{aligned}$	$η, φ, p_{T}$ of the p_{T} -(sub)leading lepton $η, φ, p_{T}$ of the p_{T} -(sub)leading <i>b</i> -tagged jet missing transverse energy, its φ and significance $p_{T}, \Delta R, \Delta φ$ and invariant mass of di- <i>b</i> -jet system $p_{T}, \Delta R, \Delta φ, p_{T}$ and centrality ¹ of di-leptons system p_{T} and invariant mass of the <i>bbll</i> system p_{T} and invariant mass of $bbll + E_{T}^{miss}$ system invariant mass of di-lepton + E_{T}^{miss} system p_{T} of and $\Delta φ$ between E_{T}^{miss} and di-lepton system p_{T} of $bbll + E_{T}^{miss} + p_{T}$ -leading and -sub-leading jet invariant mass of $bbll + E_{T}^{miss} + p_{T}$ -leading and -sub-leading jet Kalman fitter top-quark mass minimum ΔR between p_{T} -(sub)leading l - <i>j</i> couples sum of the invariant mass of all l +jet combinations maximum p_{T} and invariant mass of any two non <i>b</i> -tagged jets minimum ΔR of all <i>b</i> -tagged jet and lepton combinations number of forward jets, number of non <i>b</i> -tagged jets stransverse mass of the two <i>b</i> -tagged jets collinear mass (reconstruction of $m_{\tau\tau}$) value of the MMC algorithm (reconstruction of $m_{\tau\tau}$)

Channel Selection Criteria

Channel	l	$ au_{ m had-vis}$	Jets	<i>b</i> -jets						
4 <i>l</i> +2 <i>b</i>	$4\ell(B)$ $p_{T}(\ell_{1}) > 20 \text{ GeV}$ $p_{T}(\ell_{2}) > 15 \text{ GeV}$ $p_{T}(\ell_{3}) > 10 \text{ GeV}$ $\ell_{3} \text{ or } \ell_{4} \text{ pass loose PLV}$ 2 SFOC pairs $50 < m_{\text{on-shell-}\ell\ell}^{\text{SFOC}} < 106 \text{ GeV}$ $5 < m_{\text{off-shell-}\ell\ell}^{\text{SFOC}} < 115 \text{ GeV}$ All 4 pairs $\Delta R(\ell_{i}, \ell_{j}) > 0.02$ $ m_{4\ell} - m_{Z} > 10 \text{ GeV}$	$N_{\tau} = 0$	N _{jet} ≥ 2	1 ≤ <i>N</i> _{<i>b</i>-jet} ≤ 3						
3ℓ	3ℓ , sum of charges = ± 1	$N_{\tau} = 0$	$N_{\text{jet}} \ge 1$	$N_{b-\text{jet}} = 0$	Channel	l	$ au_{ m had-vis}$	Photons	$E_{\mathrm{T}}^{\mathrm{miss}}$	<i>b</i> -jets
	$\ell_{OC}(L)$ $\ell_{SC1}(T), p_T > 15 \text{ GeV}$		-	-	$\gamma\gamma$ +2(ℓ, τ_{had})	$\begin{array}{l} N_{\ell(\mathrm{P})} + N_{\tau} \\ m_{2(\ell,\tau)} > \end{array}$	= 2, OC 12 GeV	$N_{\gamma} = 2$ $E_{\rm T}(\gamma_1) > 35 {\rm GeV}$	$E_{\rm T}^{\rm miss}$ > 35 GeV	
	$\ell_{SC2}(1), p_T > 15 \text{ GeV}$ All $m_{\ell\ell}^{SFOC} > 12 \text{ GeV}$ Z-veto				$\gamma\gamma+\ell$	$N_{\ell(P)} = 1$	$N_{\tau} = 0$	$105 \text{ GeV} < m_{\gamma\gamma} < 160 \text{ GeV}$ $\gamma_1 : p_T/m_{\gamma\gamma} > 0.35$	$\overline{\gamma\gamma+e: E_{\rm T}^{\rm miss} > 35 {\rm GeV}} \gamma\gamma+\mu: -$	$N_{b-\text{jet}} = 0$
	$ m_{3\ell} - m_Z > 10 \mathrm{GeV}$				$\gamma\gamma$ + τ_{had}	$N_{\ell(P)} = 0$	$N_{\tau} = 1$	$\gamma_2: p_{\rm T}/m_{\gamma\gamma} > 0.25$	$E_{\rm T}^{\rm miss}$ > 35 GeV	
2ℓSC	$2\ell(T), p_T > 20 \text{ GeV}, \text{SC}$ $m_{\ell\ell} > 12 \text{ GeV}$	$N_{\tau} = 0$	$N_{\text{jet}} \ge 2$	$N_{b-\text{jet}} = 0$						
2ℓ SC+ τ_{had}	$2\ell(T), p_T > 20 \text{ GeV}, \text{SC}$ $m_{\ell\ell} > 12 \text{ GeV}$	$N_{\tau} = 1$ $p_{\rm T} > 25 {\rm GeV}$ OC to ℓ	$N_{\text{jet}} \ge 2$	$N_{b-\text{jet}} = 0$						
2ℓ + $2\tau_{had}$	$2\ell(L), OC$ $m_{\ell\ell} > 12 \text{ GeV}$ Z-veto	$N_{\tau} = 2, \text{ OC}$ $\Delta R(\tau_1, \tau_2) < 2$	$N_{\text{jet}} \ge 0$	$N_{b-\text{jet}} = 0$						
ℓ +2 τ_{had}	1ℓ(L)	$N_{\tau} = 2, \text{OC}$ $\Delta R(\tau_1, \tau_2) < 2$	$N_{\text{jet}} \ge 2$	$N_{b-\text{jet}} = 0$						

Control Region Definitions

Channel	Region	Leptons	Jets	<i>b</i> -jets	Additional selections	Channel	Region	Leptons	(anti-ID) $\tau_{had-vis}$	Jets	<i>b</i> -jets	Additional selections
$4\ell+2b$	tī CR*	Off-shell- $\ell\ell$ not SFOC	_	_	_	$2\ell SC + \tau_{had}$	VV CR*	-	_	_	_	BDT < -0.2
		Z-veto					HF- <i>e</i> CR1 [★]	$\ell(T)e(T)$, no PLV	-	$N_{\text{jet}} \ge 2$	$N_{b-jet} = 1$	-
	$t\bar{t}Z CR^*$	Off-shell- $\ell\ell$ not SFOC	_	_	_		HF-e CR2 [★]	$\ell(\mathbf{T})e(\mathbf{T})$, no PLV	-	$N_{\text{jet}} \ge 2$	$N_{b-jet} \ge 2$	_
		All ℓ pass loose PLV					HF- μ CR*	$\ell(T)\mu(T)$, no PLV	-	-	-	-
		Z-req.					Fake- $\tau_{had-vis}$ CR	OC leptons	-	-	-	_
		$m_{\Delta\ell}$ req. removed						Z-veto				
	$VV. H CR^*$	All ℓ pass loose PLV	_	$N_{h_{riet}} = 0$	_		Z+jets VR	OC leptons	-	-	-	-
	Z+jets CR*	$p_{\rm T}(\ell_3) < 10 {\rm GeV}$		_	_			Z-req.				
		$p_{\rm T}(\ell_A) < 10 {\rm GeV}$					<i>tī</i> VR	OC leptons	-	$N_{\rm jet} = 2$	$N_{b-jet} = 1$	-
		Z-req.			_			Z-veto				
	VR		_	_	$ m_{A\ell} - m_H > 10 \text{ GeV}$		VR	-	-	$N_{\rm jet} < 2$	-	
3ℓ	WZ CR*	Z-req.	_	_	$E_{\rm T}^{\rm miss} > 30 {\rm GeV}$	$2\ell + 2\tau_{had}$ and	Z+jets CR	$2\ell(T), OC$ Z-req.	$N_{\tau} + N_{\text{anti-ID } \tau} = 2$	$N_{\text{jet}} \ge 1$	$N_{b-\text{jet}} = 0$	_
	HF-e CR*	$\ell_{\text{SC1}}, \ell_{\text{SC2}} \text{ both } e$ No PLV on any ℓ	$N_{\text{jet}} \ge 2$	$N_{b-jet} \ge 2$		ℓ +2 τ_{had}	tī CR	$2\ell(T), OC$ Z-veto	$N_{\tau} + N_{\text{anti-ID } \tau} = 2$	$N_{\text{jet}} \ge 1$	$N_{b-\text{jet}} = 1$	-
	HF- μ CR*	$\ell_{\rm SC1}, \ell_{\rm SC2}$ both μ	$N_{\text{jet}} \ge 2$	$N_{b-jet} \ge 2$				I				
		No PLV on any ℓ				$2\ell + 2\tau_{had}$	Fake- $\tau_{had-vis}$ CR	-	$(N_{\tau} = 1, N_{\text{anti-ID} \tau} = 1)$ or $N_{\text{onti-ID} \tau} = 2$	_	-	_
	Mat. conv. CR [*]	$ m_{3\ell} - m_Z < 10 \text{ GeV}$ lsc1 or lsc2: rutx > 20 mm	_	_	-		Fake- $\tau_{had-vis}$ VR	_	SC $\tau_{had-vis}$	_	_	_
		$0 < m_{trk trk} < 100 \text{ MeV}$				$\ell + 2\tau_{\rm had}$	Fake- $\tau_{\rm had}$ via CR		$(N_{\tau} = 1, N_{\text{opti} \text{ ID } \tau} = 1)$	_	_	_
	VR		_	_	BDT < 0.55	e · = · nau	T and that vis ert		or $N_{\text{anti-ID} \tau} = 2$			
2ℓSC	WZ CR*	$\geq 3\ell(T), p_T > 20 \text{ GeV}$	_	_	$E_{\rm T}^{\rm miss} > 30 {\rm GeV}$		Fake- $\tau_{had-vis}$ VR	_	SC $ au_{had-vis}$	-	-	_
		Z-req										
		m_{ee} (any pair) > 12 GeV										
		$ m_{2\ell} - m_{7\ell} > 10 \text{ GeV}$										
	VVii CR*	Z-veto (SESC pair)	m:: > 300 GeV	_	BDT < -0.4							
	, , jj en		mj > 500 CC ($BDT_{7} \rightarrow -0.8$							
	$HF-e CR1^*$	$\ell(T)e(T)$ no PLV	$2 < N_{int} < 3$	$N_{h \text{ int}} = 1$								
	HF-e CR2*	$\ell(T)e(T)$ no PLV	$2 \leq N_{\text{int}} \leq 3$	$N_{L int} > 2$	_							
	$HF-\mu CR^*$	$\ell(T)\mu(T)$ no PLV	$2 \le N_{\text{jet}} \le 3$ $2 < N_{\text{int}} < 3$	$N_{b \text{ int}} \ge 1$	_							
	Mat conv CR*	$r_{\rm ver} > 20 \mathrm{mm}$		$N_{b \text{ int}} \ge 1$	_							
		$m_{\rm trik} = 20 \rm mm$		r, <i>v</i> -jet - 1								
	Int. conv. CR*	$r_{\rm vtx} < 20 \rm mm$	-	$N_{b-jet} \ge 1$	_							
	0 mis_ID	2a(T) OC or SC	$N_{\rm c} < 2$									
	VR		$_{\rm jet} > 2$	_	= BDT < -0.4							
	· • •				DDI VII							

HH→Multilepton (ATLAS)

					··· [- ··· -					
Variable	Description	$4\ell+2b$	3ℓ	2ℓSC	Variable	Description	1	$2\ell SC + \tau_{had}$	$2\ell + 2\tau_{had}$	ℓ +2 τ_{had}
$p_{\rm T}(\ell_i)$	$p_{\rm T}$ of the <i>i</i> th lepton	i = 1, 2, 3, 4	_	_	Dilepton type	μμ = 1, eμ	$\mu e = 2, ee = 3$	_	1	_
$ \eta(\ell_i) $	Absolute η of the <i>i</i> th lepton	i = 1, 2, 3, 4	_	i = 1, 2	$m_{\ell_1\ell_2}$	Invariant n	ass of the two leptons	_	\checkmark	-
$E_{\rm T}^{\Delta R < 0.3} / E_{\rm T}(\ell_i)$	Isolation metric (where $E_T^{\Delta R < 0.3}$ = total transverse	i = 1, 2, 3, 4	_	_	$m_{\ell_1, \text{close-jet}}$	Invariant n	ass of the leading lepton and its closest jet	1	-	\checkmark
1 / 1(1)	energy deposited in a cone of radius $R = 0.3$ around	, , ,			$m_{\ell_i j_i}$	Invariant n	ass of the <i>i</i> th lepton and <i>j</i> th jet	i, j = 1, 1	-	-
	the lepton, and $E_{\rm T}$ = lepton transverse energy)				-			i, j = 1, 2		
Dilepton type	$\mu\mu = 1, e\mu/\mu e = 2, ee = 3$	_	_	1				i, j = 2, 1		
m_{ℓ_1,ℓ_2}	Invariant mass of the <i>i</i> th and <i>j</i> th leptons	_	i, j = 1, 2	i, j = 1, 2	$\Delta\eta(\ell,\ell)$	Separation	in η between the two leptons	1	-	-
01,05	y 1		i, j = 1, 3	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	$\Delta R(\ell,\ell)$	Separation	in <i>R</i> between the two leptons		1	-
			i, j = 2, 3		$\Delta R(\ell_i, j_j)$	Separation	in R between the <i>i</i> th lepton and <i>j</i> th jet	i, j = 1, 1	-	i, j = 1, 1
<i>m</i> SFOC	Invariant mass of pair of SEOC leptons that	1	1	_		о <i>с</i>		. 10		i, j = 1, 2
m on-shell- $\ell\ell$	minimises the difference with the Z boson mass	·	·		$\Delta R(\ell_i, \text{close-jet})$	Separation	in R between the <i>i</i> th lepton and its	i = 1, 2	_	-
_m SFOC	Invariant mass of the other SEOC lepton pair		_	_	n (i)	closest jet	and ing int			/
$m_{\text{off-shell}-\ell\ell}$		·			$p_{T(J_1)}$	Magnitude	of the missing transverse momentum	—	_	v /
min. $m_{\ell\ell}^{\rm biolog}$	Minimum invariant mass out of all SFOC pairs	_	~	—	L _T	Diaginiuue		-	_	V
$m_{4\ell}$	Invariant mass of four leptons	~	_	_	$\theta_{\tau_{\rm had}, j_i}^{\rm boost vv}$	Polar angle	between the $\tau_{had-vis}$ and the <i>i</i> th jet after a	i = 1, 2	_	-
$m_{3\ell}$	Invariant mass of three leptons	_	• 1 2 2	-	1	Lorentz bo	ost to the dilepton system			
$m_{\ell_i, \text{close-jet}}$	Invariant mass of the <i>i</i> th lepton and its closest jet	_	i = 1, 2, 3	i = 1, 2	$\Delta R_{\ell_i,j_i}^{\text{boost-}\ell_i \tau_{\text{had}}}$	Separation	in <i>R</i> between the <i>i</i> th lepton and <i>j</i> th jet	i, j = 1, 2	-	-
$m_{3\ell jj}$	Invariant mass of the three leptons and the leading	—	~	—		after a Lor	entz boost to the $\tau_{had-vis}$ and <i>i</i> th lepton system	i, j = 2, 1		
	(or two leading, for events with $N_{jet} \ge 2$) jets				$m_{ au au}$	Invariant n	ass of the two $\tau_{had-vis}$	_	1	1
m _{jj}	Invariant mass of the two leading jets	~	_	_	$\Delta R(\ell_2, \tau_1)$	Separation	in <i>R</i> between the second lepton and first $\tau_{had-vis}$	_	1	-
m_{all}	Invariant mass of all selected objects in the event	—	_	V	$\Delta R(\ell_1, \tau \tau)$	Separation	in <i>R</i> between the first lepton and the	_	\checkmark	1
$m_{\rm T}^{\prime\prime}(\ell_i, E_{\rm T}^{\rm mas})$	Transverse mass of the <i>i</i> th lepton and the $E_{\rm T}^{\rm mass}$	_	_	i = 1, 2		di- $ au_{had-vis}$ s	ystem			
$\Delta \eta(\ell_1, \ell_2)$	Separation in η between the first and second leptons	_	-	V	$m_{\ell_2 au_1}$	Invariant n	ass of the second lepton and first $ au_{\text{had-vis}}$	_	1	-
$\Delta R(\ell_i,\ell_j)$	Separation in R between the <i>i</i> th and <i>j</i> th leptons	_	i, j = 1, 2	i, j = 1, 2	$m_{\ell \tau \tau}$	Invariant n	ass of the lepton and two $ au_{had-vis}$	_	-	\checkmark
			i, j = 1, 3		$p_{\rm T}(\ell + \text{close-jet})$	Vector sun	of the $p_{\rm T}$ of the lepton and its closest jet	-	-	1
			i, j = 2, 3		$p_{\mathrm{T}}(\tau_1 + \tau_2)$	Vector sun	of the $p_{\rm T}$ of the two $\tau_{\rm had-vis}$	-	1	
$\Delta R(\ell_i, \text{close-jet})$	Separation in R between the <i>i</i> th lepton and its closest jet	_	i = 1, 2, 3	i = 1, 2	Variable		Description	 γγ+	$-\ell \gamma \gamma + \tau_{\rm I}$	nad
min. $\Delta R(\ell, \mathbf{j})$	Minimum separation in <i>R</i> between any lepton and any jet	_	_	1	$n_{\rm T}(\gamma\gamma)$		$n_{\rm T}$ of the diphoton system	/		
L_{T}	Scalar sum of the $p_{\rm T}$ of all leptons and the $E_{\rm T}^{\rm miss}$	_	1	1	$p_{\mathrm{T}}(\gamma)$ $p_{\mathrm{T}}(\ell)$		$p_{\rm T}$ of the lepton		-	
H_{T}	Scalar sum of the $p_{\rm T}$ of all jets	_	1	1	$p_{\mathrm{T}}(\tau)$.)	$p_{\rm T}$ of the $\tau_{\rm rel}$	v		
ST	Scalar sum of the $p_{\rm T}$ of all objects in the event	1	1	_	PT(thad-	/15)	p_1 of the $r_{had-vis}$	ntum (•	
ΣO_{ℓ}	Sum of all lepton charges	_	_	1	$L_{\rm T}$		Magnitude of the E^{miss}	ituiii 🗸	v (
N_{iet}	Number of iets in the event	_	_	1	$\varphi(E_{\rm T})$		ϕ direction of the $E_{\rm T}$	_	~	
N _{h-iet}	Number of <i>b</i> -iets in the event	1	_	_	$\eta(\ell E_{\rm T}^{\rm miss})$)	η of the lepton- $E_{\rm T}^{\rm mas}$ system	~	-	
$p_{\rm T}(i_1)$	$p_{\rm T}$ of the leading jet	1	_	_	$\eta(\gamma_1)$		η of the leading photon	_	v	
$p_{\rm T}(ii)$	$p_{\rm T}$ of the leading dijet system	1	_	_	N _{central-je}	ts	Number of jets with $ \eta < 2.5$		\checkmark	
E_{π}^{miss}	Magnitude of the missing transverse momentum	1	1	1	$\Delta R(\ell, E)$	(Γ^{mss})	ΔR between the lepton and the $E_{\rm T}^{\rm mas}$	1	-	
$\Delta \phi(E_{\pi}^{\text{miss}} i.)$	ϕ angle between the E_{π}^{miss} and the leading jet	✓	-	-	$\Delta R(\gamma\gamma, \gamma)$	$\ell E_{\mathrm{T}}^{\mathrm{miss}}$)	ΔR between the diphoton system and the	1	-	
-+(-1, ,J])	+ and to be the of the 2T and the folding jet	•					lepton- $E_{\rm T}^{\rm miss}$ system			
					$\Delta \phi(\ell/ au_{ m has})$	$_{\rm ad-vis}, \gamma\gamma)$	Separation in ϕ between the lepton	✓	✓	
							or $\tau_{had-vis}$ and the diphoton system			

BDT inputs

 $\Delta \phi(\gamma_1,\gamma\gamma)$

min. $\Delta \phi(E_{\mathrm{T}}^{\mathrm{miss}}, \mathbf{j}, \ell)$

 $\Delta \phi(E_{\mathrm{T}}^{\mathrm{miss}},\gamma\gamma)$

Separation in ϕ between the leading

Minimum ϕ angle between any pair of the $E_{\rm T}^{\rm miss}$, the lepton, and any jet Separation in ϕ between the $E_{\rm T}^{\rm miss}$ and the

photon and the diphoton system

diphoton system

1

1

1

1

Systematic	Relative impact of systematic uncertainties [%]						
uncertainty source	ML channels	$\gamma\gamma$ +ML channels	Combination				
Total	22	14	19				
MC statistics	5	<1	3				
Experimental	5	<1	3				
Detector response	4		3				
Jets and $E_{\rm T}^{\rm miss}$	3		2				
Flavour tagging	1		<1				
Background estimate	<1	<1	<1				
Theoretical	13	14	13				
Signal	10	12	11				
Backgrounds	4	2	3				
Top quark	1	—	<1				
Vector boson	3	_	2				
Single Higgs boson	1	2	1				
Other	<1	_	<1				

Systematic Uncertainties

HH→Multilepton (CMS)

JHEP 07 (2023) 095 (Multilepton)

Distributions in a few observables used as inputs to the BDT classifiers in the 2ℓ ss and 3ℓ categories

q(b/c)

8 ത്ത്ത

Input features into GloParT

$ \frac{ \mathbf{x}_{i} _{i}}{ \mathbf{x}_{i} _{i}} = \mathbf{x}_{i} _{i} \mathbf{x}_{i} _{i}} = \mathbf{x}_{i} _{i} \mathbf{x}_{i} _{i}} = \mathbf{x}_{i} _{i}} = \mathbf{x}_{i} _{i}} = \frac{ \mathbf{x}_{i} _{i}}{ \mathbf{x}_{i} _{i}}} = \frac{ \mathbf{x}_{i} _{i}}{ \mathbf{x}_{i} _{i}} = \frac{ \mathbf{x}_{i} _{i}}}{ \mathbf{x}_{i} _{i}} = \frac{ \mathbf{x}_{i} _{i}}{ \mathbf{x}_{i} _{i}}} = \frac{ \mathbf{x}_{i} _{i}}{ \mathbf{x} $	Variable	Definition	:					-
$ \begin{aligned} \log p_1 & \log prithe of the particle p_1 & \log prithe of the particle energy & \log prithe particle and the jet axis & Market particle and the jet axis & Market$		charged PF candidates	-	Ira	ining ie	et class	ses for GloPar I	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$\log p_{\mathrm{T}}$	logarithm of the particle $p_{\rm T}$	-					-
$ \begin{array}{c} \Delta y(yt) \\ \Delta y(yt) $	log E	logarithm of the particle energy						
$ \begin{aligned} & \Delta p(\mathbf{s}) & disclose the particle and the jet axis \\ \mathbf{y} & disclose the particle pendorphily \\ g & clear change of the particle pendorphily \\ g & clear change of the particle pendorphily \\ g & clear change of the particle pendorphily \\ g & clear change of the particle pendorphily \\ g & clear change of the particle pendorphily \\ g & clear change of the particle pendorphily \\ g & clear change of the particle pendorphily \\ g & clear change of the particle pendorphily \\ g & clear change of the particle pendorphily \\ g & clear change of the particle pendorphily \\ g & clear change of the particle pendorphily \\ g & clear change of the particle pendorphily \\ g & clear change of the particle pendorphily \\ g & clear change of the particle pendorphily (g & difference in a simulation of the track to during the many function of the track change of the track change of the track change of the particle pendorphily of the track change o$	$\Delta \eta$ (jet)	difference in pseudorapidity between the particle and the jet axis	Process	Final state/	boowy flowour	# of classes		
$ \begin{vmatrix} f \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\$	$\Delta \phi(\text{jet})$	difference in azimuthal angle between the particle and the jet axis	FIUCESS	prongness			a	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \eta $	absolute value of the particle pseudorapidity		0000		3		
istic to the particle is identified as a muon (ull-hadron) true if the particle is identified as a charged hadron true if the particle is identified as a charged hadron true if the particle is identified as a charged hadron true if the particle is identified as a charged hadron true if the particle is identified as a charged hadron true if the particle is identified as a charged hadron true if the particle is identified as a charged hadron true if the particle is identified as a charged hadron true if the particle is identified as a charged hadron true if the particle is identified as a charged hadron true if the particle is identified as a charged hadron true if the particle is identified as a charged hadron true if the particle is identified as a charged hadron true if the particle is identified as a charged hadron true if the particle is identified as a charged hadron true if the particle is identified as a charged hadron true if the particle is identified as a charged hadron true if the particle is identified as a charged hadron true if the particle is identified as a charged hadron true if the particle is the particle of the track momentum particle of the track momentum particle of the track momentum particle of the track and the jet axis divided by the magnitude of the track momentum frame of the track and the jet axis divided by the magnitude of the track momentum frame of the particle is the particle as the particle of the track momentum frame of the track and the jet axis divided by the magnitude of the track momentum frame of the track and the jet axis the particle of the track momentum frame of the track and the jet axis the particle of the track momentum frame of the track and the jet axis divide to the track moment	9	electric charge of the particle	H→VV	ЧЧЧЧ	0c/1c/2c	5	II grant q II	m
$ \begin{array}{c} \text{isElectron} & \text{true if the particle is identified as an electron \\ \text{isSchargenitiation} & \text{true if the particle is identified as an electron \\ \text{isSchargenitiation} & true if the particle is identified as an electron \\ \text{postance is interval in the particle is identified as an electron \\ \text{postance is interval in the particle is identified as an electron \\ \text{postance is interval in the particle is identified as an electron \\ \text{postance is interval in the particle is identified as an electron \\ \text{postance is interval in the particle is identified as an electron \\ \text{postance is interval in the particle is identified as an electron \\ \text{postance is interval in the particle is identified as an electron \\ \text{postance is interval in the particle is identified as an electron \\ \text{postance is interval in the particle is identified as an electron \\ \text{postance is interval in the particle is identified as an electron \\ \text{postance is interval in the particle is identified as an electron \\ \text{postance is interval in the particle is identified as an electron \\ \text{postance is interval in the particle is identified as an electron \\ \text{postance is interval in the particle is identified as an electron \\ \text{postance is interval in the particle is identified as an electron \\ \text{postance is interval in the particle is identified as an electron \\ \text{postance is interval in the particle is identified as an electron \\ \text{postance is interval in the particle is identified as an electron \\ \text{postance is interval in the particle is identified as an electron is particle in the particle is identified as an electron is particle in the syn of the particle is identified as an electron is anothelectron is identified as an ele$	isMuon	true if the particle is identified as a muon	(full-hadronic)	qqq		3	and a star	m
$ \begin{array}{c} 1 \text{distargedition} & true if the particle is identified as a charged hadron py varies (particle is identified as a charged hadron py varies (particle is identified as a charged hadron py varies (particle is identified as a charged hadron py varies (particle is identified as a charged hadron py varies (particle is identified as a charged hadron py varies (particle is identified as a charged hadron py varies (particle is identified as a charged hadron py varies (particle is identified as a charged hadron py varies (particle is identified as a charged hadron py varies (particle is identified as a charged hadron py varies (particle is identified as a charged hadron particle is (particle is identified as a charged hadron particle is (particle $	isElectron	true if the particle is identified as an electron		evqq		2	- q	
$ \frac{p \vee kasociation (unit)}{partition (unit)} flag of the track check to missing hits on the primary vertices (partition) for the track check to missing hits on the primary vertices (partition) for the track check to missing hits on the primary vertices (partition) for the track check to missing hits on the primary vertices (partition) for the track check to missing hits on the primary vertices (partition) for the track (partition) for the track (partition) for the track (partition) for the princip sector (partition) for the princip sector (partition) for track (partition) for track (partition) for track (partition) for the princip sector (partition) for the princip se$	isChargedHadron	true if the particle is identified as a charged hadron				0	q	
Lost interaction of the long of the track related to missing hits on the pixel layers of freedom quality flag of the track due of the tracked to the number of degrees of freedom quality flag of the track of the t	pvAssociationQuality	flag related to the association of the track to the primary vertices	$H \rightarrow W/W$	µvqq		2	$H \longrightarrow \frac{1}{a} H$	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	lostInnerHits	quality flag of the track related to missing hits on the pixel layers	(aomi lontonia)	Tevqq	0c/1c	2		ann
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	χ^2/dof	χ^2 value of the trajectory fit normalized to the number of degrees of freedom	(semi-iepionic)	τυναα		2	t t	(τ_{d})
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	qualityMask	quality flag of the track				0		(170)
$ \begin{array}{c} d_{1}/a_{n} & \text{significance of the longitudinal impact parameter of the track of the track momentum perpendicular to the jet axis (wided by the magnitude of the track momentum perpendicular to the jet axis, divided by the magnitude of the track momentum perpendicular to the jet axis, divided by the magnitude of the track momentum perpendicular to the jet axis, divided by the magnitude of the track momentum perpendicular to the jet axis, divided by the magnitude of the track momentum P_{\text{poster}} into track momentum perpendicular to the jet axis, divided by the magnitude of the track momentum P_{\text{poster}} into track momentum perpendicular to the jet axis, divided by the magnitude of the track momentum P_{\text{poster}} into track momentum perpendicular to the jet axis divided by the magnitude of the track momentum P_{\text{poster}} into track momentum perpendicular to the jet axis divided by the magnitude of the track momentum P_{\text{poster}} into track momentum perpendicular to the jet axis divided by the magnitude of the track momentum P_{\text{poster}} into track momentum perpendicular to the jet axis divided by the magnitude of the track momentum P_{\text{poster}} into track momentum perpendicular to the jet axis divided by the magnitude of the track momentum P_{\text{poster}} into track momentum perpendicular to the jet axis divided by the magnitude of the track momentum P_{\text{poster}} into track momentum perpendicular to the jet axis divided by the magnitude of the track momentum P_{\text{poster}} into track momentum perpendicular to the jet axis divided by the magnitude of the track momentum P_{\text{poster}} into $	d_z	longitudinal impact parameter of the track		τ _h vqq		2		
$\begin{array}{c c c c c c } \hline d_{3y}/d_{q_{1}} & & & & & & & & & & & & & & & & & & $	d_z/σ_{d_z}	significance of the longitudinal impact parameter			bb	1		
$ \begin{array}{c} d_{xy}/q_{xy} \\ h_{el} \\ h_{el}$	d_{xy}	transverse impact parameter of the track			сс	1	$H \rightarrow q$	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$d_{xy}/\sigma_{d_{xy}}$	significance of the transverse impact parameter	H→qq					
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\eta_{\rm rel}$	pseudorapidity of the track relative to the jet axis			55	1	- 9	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$p_{\text{T.rel}}$ ratio	track momentum perpendicular to the jet axis, divided by the magnitude of the track momentum			qq (q=u/d)	1	μ (τ_{ℓ})	
$ \begin{array}{c} d_{gp} & \text{signed 3D impact parameter of the track } \\ d_{3D}/\sigma_{3D} & \text{signed 3D impact parameter significance of the track } \\ d_{3D}/\sigma_{3D} & \text{signed 3D impact parameter significance of the track } \\ d_{3D}/\sigma_{3D} & \text{signed 3D impact parameter significance of the track } \\ \hline \mathbf{VackOlistance} & \mathbf{Vactual PF candidates} \\ \hline \mathbf{VackOlistance} & \mathbf{Vac} & \mathbf{Vac} \\ \hline \mathbf{Vac} & \mathbf{Vac} & \mathbf{Vac} \\ \hline \mathbf{VackOlistance} & \mathbf{Vac} & \mathbf{Vac} \\ \hline \mathbf{VackOlistance} & \mathbf{Vac} & \mathbf{Vac} \\ \hline \mathbf{VackOlistance} & \mathbf{Vac} & \mathbf{Vac} \\ \hline \mathbf{Vac} & \mathbf{Vac} \\ \hline \mathbf$	$p_{\rm par,rel}$ ratio	track momentum parallel to the jet axis divided by the magnitude of the track momentum		TeTh		1	Π	
$\frac{d_{g0}}{d_{g0}}$ trackDistancesigned 3D impact parameter significance of the track and the jet axis at their point of closest approach $H \rightarrow tr$ L_{106} I $L_{rackDistance}$ I I I I I $L_{rackDistance}$ I I I I I $L_{rackDistance}$ I I I I I $I_{rackDistance}$ I I I I I I I $I_{rackDistance}$ I <td>d_{3D}</td> <td>signed 3D impact parameter of the track</td> <td></td> <td></td> <td></td> <td></td> <td>τ_h</td> <td></td>	d _{3D}	signed 3D impact parameter of the track					τ_h	
trackDistancedistance between the track and the jet axis at their point of closest approachTurkTurkINeutral PF candidatest $\rightarrow bW$ bqqthe offic2logs F_1 logarithm of the particle's prlogarithm of the particle's energybqbq2 $\Delta f(jet)$ difference in pseudorapidity between the particle and the jet axisbqbq1 $\Delta f(jet)$ difference in azimuthal angle between the particle and the jet axisbbv1 $\Delta f(jet)$ difference in azimuthal angle between the particle and the jet axisbg/t1 $\Delta f(jet)$ difference in azimuthal angle between the particle and the jet axisbg/t1 $\Delta f(jet)$ difference in azimuthal angle between the particle and the jet axisbg/t1 $\Delta f(jet)$ for the particle's identified as a neutral hadronbg/t1 $Degr JT_{1}$ logarithm of the SV p_T for the size apolon1 $Degr JT_{1}$ logarithm of the SV p_T for the jet axisbb $\Delta f(jet)$ difference in azimuthal angle between the SV and the jet axisbb1 $\Delta f(jet)$ difference in azimuthal angle between the SV and the jet axisfor the jet axis $\Delta f(jet)$ difference in azimuthal angle between the SV and the jet axisfor the jet axis $\Delta f(jet)$ difference in azimuthal angle between the SV and the jet axisfor the jet axis $\Delta f(jet)$ difference in azimutha angle between the SV and the jet axisfor the jet axis $\Delta f(jet)$ difference in azimuthal angle between the SV and the	$d_{\rm 3D}^{-}/\sigma_{\rm 3D}^{-}$	signed 3D impact parameter significance of the track	Η→ττ	tμth		1	"	
$ \begin{array}{ c c c c c c } \hline \begin{tabular}{ c c c c c c } \hline \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	trackDistance	distance between the track and the jet axis at their point of closest approach		$\tau_h \tau_h$		1		
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		Neutral PF candidates	t→bW	bqq		2	$t \qquad q = t$	1
log Elogarithm of the particle's energyitit $\Delta \eta$ (jet)difference in pseudorapidity between the particle and the jet axis bev 1 $\Delta \psi$ (jet)absolute value of the particle pseudorapidity bev 1 $ \eta $ absolute value of the particle is identified as a neutral hadron bv 1For SVs within the jet cone bpt	$\log p_{\mathrm{T}}$	logarithm of the particle's $p_{\rm T}$	(hadronic)	ba	1b + 0c/1c	2	1 q 1	m
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	log E	logarithm of the particle's energy	(nadronic)	bd		2	$\rightarrow h$	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$\Delta \eta$ (jet)	difference in pseudorapidity between the particle and the jet axis		bev		1		(-1)
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$\Delta \phi(\text{jet})$	difference in azimuthal angle between the particle and the jet axis		bμv		1	t e t	$(\iota_{\ell} \upsilon)$
isPhotontrue if the particle is identified as a photonisPhotonis	$ \eta $	absolute value of the particle pseudorapidity	t→bW	htev	1b	1		~~~~
isNeutralHadrontrue if the particle is identified as a neutral hadronIFor SVs within the jet coneIlog prlogarithm of the SV p_T Ilog prlogarithm of the SV p_T I $\Delta \eta$ (jet)difference in pseudorapidity between the SV and the jet axisb1 $\Delta \phi$ (jet)difference in azimuthal angle between the SV and the jet axisC1 $\Delta \phi$ (jet)difference in azimuthal angle between the SV and the jet axis c 1 M_{racks} number of tracks associated with the SV c 1 N_{racks} number of tracks associated with the SV q q d_{D} χ^2/dof χ^2 value of the SV fit normalized to the number of degrees of freedomothers (light)1 d_{2D} signed 2D impact parameter of the SV q q q q d_{2D} signed 3D impact parameter of the SV q q q q d_{2D} q q q q q q d_{2D} q q q q q q d_{2D} q q q q q q q q d_{2D} q <td>isPhoton</td> <td>true if the particle is identified as a photon</td> <td>(leptonic)</td> <td></td> <td>10</td> <td></td> <td>$\rightarrow b$</td> <td></td>	isPhoton	true if the particle is identified as a photon	(leptonic)		10		$\rightarrow b$	
For SVs within the jet cone1log prlog arithm of the SV p_T log arithm of the SV p_T b1 m_{SV} invariant mass of the tracks associated with the SV bb 1 bb 1 $\Delta \eta$ (jet)difference in pseudorapidity between the SV and the jet axis bb 1 bb 1 $\Delta \phi$ (jet)difference in azimuthal angle between the SV and the jet axis c 1 g \overline{q} ($\overline{b}/\overline{c}$) \overline{q} ($\overline{b}/\overline{c}$) N_{tracks} number of tracks associated with the SV χ^2 value of the SV fit normalized to the number of degrees of freedom \overline{q} ($\overline{b}/\overline{c}$) \overline{q} \overline{q} \overline{q} d_{2D} signed 2D impact parameter significance of the SV d_{2D}/σ_{2D} signed 3D impact parameter of the SV \overline{q} \overline{q} \overline{q} \overline{q} d_{2D} signed 3D impact parameter of the SV \overline{q} \overline{q} \overline{q} \overline{q} \overline{q} d_{2D} signed 3D impact parameter of the SV \overline{q} \overline{q} \overline{q} \overline{q} \overline{q} d_{2D} signed 3D impact parameter of the SV \overline{q} <td>isNeutralHadron</td> <td>true if the particle is identified as a neutral hadron</td> <td>:</td> <td>DT_μV</td> <td></td> <td>1</td> <td></td> <td></td>	isNeutralHadron	true if the particle is identified as a neutral hadron	:	DT _μ V		1		
logarithm of the SV p_T logarithm of the SV p_T b1 g $q(b/c)$		For SVs within the jet cone		bτ _h v		1		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\log p_{\rm T}$	logarithm of the SV $p_{\rm T}$			b	1	g q(b/c)	q(b/c
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$m_{\rm SV}$	invariant mass of the tracks associated with the SV			bb	1	$\overline{a}(\overline{b}/\overline{a})$ -	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\Delta \eta$ (jet)	difference in pseudorapidity between the SV and the jet axis					$\mathbf{q}(bic)$	
$ \eta $ absolute value of the SV pseudorapidity N_{tracks} number of tracks associated with the SV χ^2/dof χ^2 value of the SV fit normalized to the number of degrees of freedom d_{2D} signed 2D impact parameter (i.e., in the transverse plane) of the SV d_{2D}/σ_{2D} signed 3D impact parameter of the SV d_{3D} signed 3D impact parameter of the SV d_{-}/σ signed 3D impact parameter of the SV	$\Delta \varphi(\text{jet})$	amerence in azimutnai angle between the 5v and the jet axis	QCD		С	1	<i>a g a</i>	
$\begin{array}{ccc} & & & & & & & & & & & & & & & & & &$	$ \eta $	absolute value of the SV pseudorapidity			сс	1	4 00000 8 8	8 00000 8
$\begin{array}{c} \chi^{-} \mu u_{J} \\ d_{2D} \\ d_{2D} \\ d_{2D} \\ d_{2D} \\ d_{3D} $	Ntracks	number of tracks associated with the SV v^2 value of the SV v^2 value of the SV v^2 value of the SV fit maximalized to the number of decrease of freedom			others (light)	1	10000000	2000 8
$\begin{array}{ll} a_{2D} & \text{signed 2D impact parameter (i.e., in the transverse plane) of the SV} \\ a_{2D}/\sigma_{2D} & \text{signed 2D impact parameter significance of the SV} \\ a_{3D} & \text{signed 3D impact parameter of the SV} \\ a_{3D} & \text{signed 2D impact parameter of the SV} \end{array}$	χ / μοj d	χ^{-} value of the 5V in normalized to the number of degrees of freedom			oulois (light)		9	00 0
d_{2D}/v_{2D} signed 2D impact parameter significance of the SV d_{3D} signed 3D impact parameter of the SV d_{2D}/v_{2D} signed 2D impact parameter of the SV	u_{2D}	signed 2D impact parameter (i.e., in the transverse plane) of the 5V						
u_{3D} signed 3D impact parameter of the SV	u_{2D}/v_{2D}	signed 2D impact parameter of the SV						
	d_{-}/σ_{-}	signed 3D impact parameter significance of the SV						

HH→bbVV (CMS)

Observed and expected 95% CL combined upper limits on the crosssection for the SM and seven BSM HEFT benchmarks

> Observed/expected 95% CL limits on $_{10^2}$ HH production cross-sections of (top) inclusive ggF and VBF processes $_{10^1}$ as a function of K_{λ} and (b) the VBF process as a function of K_{2V}

κ_{λ}					K _{2V}				
Measurement	68%	CL	95% CL		68%	CL	95% CL		
	Obs.	Exp.	Obs.	Exp.	Obs.	Exp.	Obs.	Exp.	
κ_{λ} floating, $\kappa_{2V} = 1$	$3.8^{+2.1}_{-3.6}$	$1.0^{+4.7}_{-1.5}$	[-1.2, 7.2]	[-1.6, 7.2]	_	_	_	_	
κ_{2V} floating, $\kappa_{\lambda} = 1$	_	—	_	_	$1.02^{+0.22}_{-0.23}$	$1.00^{+0.40}_{-0.36}$	[0.6, 1.5]	[0.4, 1.6]	
$\kappa_{\lambda}, \kappa_{2V}$ floating	$4.3^{+1.9}_{-4.0}$	$1.0^{+4.8}_{-1.5}$	[-1.2, 7.5]	[-1.7, 7.4]	$0.92^{+0.27}_{-0.25}$	$1.00^{+0.41}_{-0.38}$	[0.4, 1.4]	[0.3, 1.6]	

HH Combination (CMS)

Observed and expected 95% CL combined upper limits on the signal strength

Combined expected and observed 95% CL upper limits on the HH production cross-section for different values of κ_{λ} (left) and κ_{2V} (right), assuming the SM values for the modifiers of Higgs boson couplings to top quarks and vector bosons

• κ_{λ} can affect single Higgs processes via NLO electroweak corrections

- Generic fit: couplings (K_{λ} , K_t , K_b , K_{τ} , K_V) are all floating in the fit
- Dominated by HH while H provide strong constraints to other couplings.

Channel	Integrated luminosity [fb ⁻¹]	Ref.
$HH \rightarrow b\bar{b}\gamma\gamma$	139	[17]
$HH \rightarrow b \bar{b} \tau^+ \tau^-$	139	[18]
$HH \rightarrow b\bar{b}b\bar{b}$	126	[19]
$H \rightarrow \gamma \gamma$	139	[58]
$H \to ZZ^* \to 4\ell$	139	[59]
$H \rightarrow \tau^+ \tau^-$	139	[60]
$H \rightarrow WW^* \rightarrow e \nu \mu \nu \text{ (ggF,VBF)}$	139	[<mark>61</mark>]
$H \rightarrow b \bar{b}$ (VH)	139	[62]
$H \rightarrow b\bar{b}$ (VBF)	126	[63]
$H \rightarrow b \bar{b} ~(t \bar{t} H)$	139	[<mark>64</mark>]

Single H and HH Constraints (ATLAS)

	Best Fit	Obs 95% CL	Exp 95% CL
κ_{λ} only	3.0	[-0.4, 6.3]	[-1.9, 7.6]
Generic fit	2.3	[-1.4, 6.1]	[-2.2, 7.7]

Single H and HH Constraints (CMS)

The HL-LHC: ATLAS prospects

<u>ATL-PHYS-PUB-2022-053, ATL-PHYS-PUB-2022-001,</u> <u>ATL-PHYS-PUB-2021-044</u>

62

The HL-LHC: ATLAS prospects

<u>ATL-PHYS-PUB-2022-053, ATL-PHYS-PUB-2022-001,</u> <u>ATL-PHYS-PUB-2021-044</u>

If you're reading this, you've reached the final slide!