

Rare Higgs Decay and Production Modes at LHC Alexei Raspereza

on behalf of the ATLAS and CMS Collaborations

QCD at LHC, Freiburg - 7/10/2024

Introduction

- In 12 years Higgs boson properties have been studied in great detail
 - so far good agreement with SM predictions
- Most of information is inferred from well established production and decay modes
- Many open questions remain
 - Does mass-coupling relation hold for earlier generations of fermions?
 - Can we probe sign of couplings?
 - Does Higgs couple to BSM particles?
 - ...
- Study of rare Higgs decays and production mechanisms is crucial for addressing these questions

Rare Higgs Decay Modes

Search for H→µµ decay

- Probe of Yukawa coupling to 2nd generation of fermions
- Small branching ratio in the SM (2 · 10⁻⁴) can be modified by BSM physics
- Clean signature and excellent mass resolution
- Major production mechanism targeted : ggH, VBF, VH, ttH
- Main backgrounds : Drell-Yan, top pairs and diboson events

Search for H→µµ (Run 2 results)

- Signatures of exploited production modes are targeted by dedicated multivariate (BDT) event categorization
- Signal extracted from parametric fit of $m_{\mu\mu}$ spectrum in all categories

- obs. (exp.) significance : 3.0σ (2.5σ) evidence for H→μμ decay!
- measured μ = 1.19±0.43

- obs. (exp.) significance : 2.0σ (1.7σ)
- measured μ = 1.2±0.6

Goal for Run2+Run3 combination : >5 σ observation

Search for H→cc decay

- $H \rightarrow cc$ decay probes Higgs coupling to charm quarks
- BR(H→cc) = 2.8%
 can be modified by BSM physics
- Charm-jet tagging is essential
- Inclusive search is impractical: signal is overwhelmed by QCD multijet background
- Most promising production mode:
 W(Z)H with W→lv, Z→ll,vv decays
- Major backgrounds: V+jets, VV, Top, V+H→bb

PartcleNet : advanced charm-jet tagger based on graph DNN (used in CMS to identify boosted H->cc decay)

dramatic improvement in performance w.r.t. previously used tagger

V(lep)H→bb/cc with ATLAS ATLAS-CONF-2024-010

Simultaneous re-analysis of VH(bb) and VH(cc) channels

- event categorization based on lepton multiplicity and flavour, event kinematics

 covers resolved and merged topologies
- orthogonal selection based on b/c-tagging
 - form Higgs candidate
 - define multiple SRs (Hbb, Hcc) and CRs
- complex statistical model
 - 97 CRs and 59 SRs (27 Hbb and 32 Hcc)
- main backgrounds: Top, V+jets, multijets, VV
 suppressed with BDT in SRs
 - shapes modeled with simulation
 - normalizations constrained in CRs
- simultaneous fit in all regions
 - SRs : BDT score for VH(\rightarrow cc)/VH(\rightarrow bb) signals
 - CRs : m(bb/cc), pT(V) or total yield

Higgs candidate jet 1

V(lep)H→bb/cc with ATLAS **ATLAS-CONF-2024-010**

Events / 0.25

 10^{2}

ATLAS Preliminary

0 lepton, 2 jets, C_C-tag

√s = 13 TeV. 140 fb⁻¹

 $p_{-}^{V} \geq 250 \; GeV$

SR

- Analysis validated with standard candles: VZ(cc) and VZ(bb)
- Dedicated BDT is trained with VZ as signal (BDT score is used for signal extraction in SRs)
- Simultaneous extraction of VZ(cc) and VZ(bb) : measurement compatible with SM predictions

Data

W+h W+mf

W+If

Top(bq/qq) Uncertainty

VZ, Z ightarrow bb (μ =0.91)

VH,H→bb

/H. H → cc

VZ, Z \rightarrow c \overline{c} (µ=0.97)

Diboson background

V(lep)H→bb/cc with ATLAS ATLAS-CONF-2024-010

Simultaneous measurement of VH(bb) and VH(cc)

$$\mu_{VH}^{bb} = 0.91_{-0.14}^{+0.16} = 0.91 \pm 0.10 \text{ (stat.)}_{-0.11}^{+0.12} \text{ (syst.)}$$

$$\mu_{VH}^{cc} = 1.0_{-5.2}^{+5.4} = 1.0_{-3.9}^{+4.0} \text{ (stat.)}_{-3.5}^{+3.6} \text{ (syst.)}.$$

 VH(cc) signal strength < 11.2 (10.4) at 95% CL strongest limit to date!

V(lep)H→bb/cc with ATLAS ATLAS-CONF-2024-010

• Signal strength modifiers parameterized via κ_{b} and κ_{c} , which alter BRs of H \rightarrow bb and H \rightarrow cc decays

$$\mu_{VH}^{cc} = \frac{\kappa_c^2}{1 + B_{hbb}^{SM}(\kappa_b^2 - 1) + B_{hcc}^{SM}(\kappa_c^2 - 1)} \qquad \qquad \mu_{VH}^{bb} = \frac{\kappa_b^2}{1 + B_{hbb}^{SM}(\kappa_b^2 - 1) + B_{hcc}^{SM}(\kappa_c^2 - 1)}$$

all other Higgs couplings are set to SM predictions

VH(→cc) in CMS PRL 131 (2023) 061801

- Event selection and categorization based on
 - number and flavour of leptons : target specific W/Z decays
 - pT(V) and event topology : resolved vs. boosted
 - cc-purity : score of dedicated cc-tagger (ParticleNet) in boosted category
- Major backgrounds
 - V+Jets and multijets : constrained in dedicated CRs
 - Top, VV and VH(bb) : constrained to SM predictions within uncertainties
- Dedicated BDT to establish VZ(cc) standard candle

$$\mu_{\rm VZ(cc)} = 1.01^{+0.23}_{-0.21}$$

Significance : 5.7σ

VH(→cc) in CMS

Separate BDT with VH(cc) as signal

- Signal extracted from distributions of – BDT score in resolved categories
 - m(cc) in boosted categories
- Measured signal strength

 $\mu_{\rm VZ(cc)} = 7.7^{+3.8}_{-3.5}$

translated into constraints on $|\kappa_c|$

PRL 131 (2023) 061801

Search for $H \rightarrow Z\gamma$

- Loop induced decay probe BSM physics in loops
- $B(H \rightarrow Z\gamma) = (1.6 \pm 0.1) \cdot 10^{-3}$ $B(Z \rightarrow ee + \mu\mu) = 6.8 \cdot 10^{-2}$

 Signature: Z→ee,µµ + γ with resonant m(ℓℓγ) peak around H mass Major backgrounds : Drell-Yan with FSR γ or jets

VBF H→Zγ candidate

Both ATLAS and CMS performed search with full Run 2 dataset

- Event categories targeting major production modes: ggH, VBF, VH
- Signal extracted from parametric fit of m(*ll*γ) spectrum in all categories

H→Zγ : ATLAS+CMS Combination

 Evidence of signal with significance of 3.4σ (1.6σ exp.) from ATLAS+CMS combination

PRL 132 (2024) 021803

• Measured μ = 2.2±0.7 x SM prediction measured B(H \rightarrow Z γ) = (3.4±1.1) · 10⁻³ (1.9 σ within SM prediction)

 Precision is statistics limited → clear prospect of scrutinizing excess using Run 3 data

Rare Higgs Production Modes

b(b)H production with CMS arXiv:2408.01344

- Yukawa coupling to b-quarks was established in H→bb decay. Can we probe this coupling in production?
- Contributions to inclusive b-quark associated Higgs production

 ggH with g→bb splitting ~ y,²
 - via direct bbH coupling $\sim y_{h}^{2}$
 - interference $\sim \mathbf{y}_{t} \cdot \mathbf{y}_{h}$
 - ZH, $Z \rightarrow bb$ (considered as bkgd)

- Analysis goals
 - measure cross section of b-quark associated production involving y_t and y_b couplings:
 - set constraints on y_b

JHEP 11 (2020) 036 JHEP 07 (2019) 054

b(b)H production with CMS arXiv:2408.01344

- Targeted final states:
 - $-H \rightarrow \tau \tau$ (eµ, et_h, µt_h, t_ht_h) and H \rightarrow WW (eµ)
 - selection requires at least one b-tagged jet
- Estimation of major backgrounds:
 - DY+b-jets : simulation calibrated with the Z→µµ+b-jets standard candle
 - misidentified leptons: extrapolated from sidebands with inverted lepton id
 - TT, VV and Higgs bkgds: simulation
- BDT multi-classifier - b-tag information Channel $e\tau_{h}$ $\tau_{\rm h}\tau_{\rm h}$ eμ $\mu \tau_{\rm h}$ DY+Higgs, TT, DY. TT. - kinematics of jets DY. TT. DY, TT, **BDT** Categories $bbH (\rightarrow WW)$ $j \rightarrow \tau_h$ misid., - kinematics of leptons $b\overline{b}H (\rightarrow \tau \tau)$ $b\overline{b}H (\rightarrow \tau\tau)$ $b\overline{b}H (\rightarrow \tau \tau)$ bbH ($\rightarrow \tau \tau$) missing ET
- Combined fit to BDT score distributions in all background and signal classes \rightarrow constrain backgrounds and extract signal

b(b)H production with CMS arXiv:2408.01344

- Measurement of σ(pp→bbH(y_b, y_t)) templates associated with y²_t, y²_b and y_t · y_b are all scaled with common rate modifier
- obs. (exp.) UL at 95% CL = 3.7 (6.1) x SM

scan of (k_{t} , k_{b}) with k_{T} freely floating

- combined with previous CMS analysis: STXS measurement in H→TT (EPJC 83 (2023) 562)
 - b-veto \rightarrow orthogonality to this analysis
 - more stringent constraint on k,
- constraints consistent with the SM at 95% CL

VBF WH with ATLAS arXiv:2402.00426

VBF WH production

- $\lambda_{_{\!\rm W7}}^{}\!>0 \rightarrow$ destructive interference : process rate is extremely low
- $\lambda_{_{WZ}} < 0 \rightarrow$ constructive interference : process rate is enhanced, considerable change in event kinematics

VBF WH with ATLAS

- Studied final state : W→Iv, H→bb decays + two VBF jets
- Two separate analyses targeting:
 - signal with λ_{WZ} = +1 (probe SM-like scenario)
 - signal with λ_{WZ} = -1 (probe BMS scenario)

both analyses exploit distinct signatures of VBF WH process

- Simple and robust cut-and-count approach : simultaneous fit of yields in multiple analysis regions
 - single signal region for $\lambda_{WZ} = -1$: SR⁻
 - two orthogonal regions for $\lambda_{WZ} = +1$: SR⁺(loose), SR⁺(tight)
 - multiple control regions to constrain normalization of major backgrounds: TTbar, W+top, W+Jets

arXiv:2402.00426

VBF WH with ATLAS arXiv:2402.00426

- High rate negative $\lambda_{_{\rm W7}}$ signal is well separable from background

- Positive $\boldsymbol{\lambda}_{_{WZ}}$ signal is more difficult to separate given its low rate

VBF WH with ATLAS

- No excess above background expectation
- Negative λ_{WZ} analysis rules out opposite sign scenario (>5 σ) for experimentally allowed values of κ_{W} and κ_{Z}
- Couplings of Higgs to W and Z bosons have same sign!

• Positive λ_{W7} analysis

arXiv:2402.00426

Summary

- Rare Higgs decays and productions play crucial role in exploration of Electroweak Symmetry Breaking and searches for BSM physics
- Highlights from LHC Run 2 presented in this talk
 - → 3σ evidence of H→µµ decay by CMS, 2σ observation by ATLAS
 - 3.4 σ evidence of H \rightarrow Z γ decay from combination of ATLAS and CMS searches
 - Constraints on charm Yukawa coupling derived from V(lep)H(cc) analyses ¹:
 1.1 < |κ_c| < 5.5 at 95% CL by CMS , |κ_c| < 4.2 at 95% CL by ATLAS
 - First probe of bottom Yukawa coupling in production by CMS : 0.3 < |κ_b| < 5.5 at 95% CL
 - Scenario of opposite sign Higgs couplings to W and Z bosons is excluded with significance exceeding 5σ in the study of VBF HW production by ATLAS
- Most of these analyses are statistics limited → bright prospect for further exploration of these channels with Run 3 data

¹⁾ Both ATLAS and CMS performed also searches for c+H($\rightarrow\gamma\gamma$) process with lower sensitivity to κ_c (arXiv:2407.15550, CMS-PAS-HIG-23-010)