

SMEFT in the Higgs Sector Higher Loop Contributions

Marco Vitti (Karlsruhe Institute of Technology, TTP and IAP)

QCD@LHC, Freiburg, 7 Oct 2024

Work in collaboration with E. Balzani, G. Degrassi, S. Di Noi, R. Gröber, G. Heinrich, J. Lang

SMEFT Framework

Effects due to heavy New Physics can be parametrized by supplementing the SM Lagrangian with higher-dimensional operators that:

- Respect the symmetries of the SM: $SU(3) \times SU(2) \times U(1)$ and Lorentz
- **Are built from SM fields**
- Are suppressed by powers of a NP scale Λ

$$
\mathcal{L}_{\text{SMEFT}} = \mathcal{L}_{\text{SM}} + \sum_{D=5}^{\infty} \frac{1}{\Lambda^{D-4}} \mathcal{C}_i^{(D)} \mathcal{O}_i^{(D)}
$$

The Lagrangian is built without knowing the underlying UV theory (Bottom-up approach)

- **The Wilson Coefficients can probe classes of UV models all at once**
- This talk: SMEFT at D=6 \rightarrow Operators defined in the Warsaw basis [Grzadkowski et al. 1008.4884]

Light-Quark Yukawa Couplings at the LHC

Projected bounds on coupling modifiers $\kappa_q = y_q/y_q^{SM}$ at <code>HL-LHC</code> $\,$ [de Blas et al. - 1905.03764]

 $\kappa_u < 560$; $\kappa_d < 260$; $\kappa_s < 13$; $\kappa_c < 1.2$

Alternative: sensitivity from specific processes

- Higgs decays (mainly charm) - Higgs+jet \rightarrow diff. distributions [Bishara et al. - 1606.09253; Soreq et al. - 1606.09621; Bonner, Logan - 1608.04376] [Bodwin et al. - 1306.5770; Kagan et al – 1406.1722; König, Neubert – 1505.03870; Alte et al. - 1609.06310]

See talk by A. Raspiareza

- Other approaches [Aguilar-Saavedra et al. - 2008.12538, Falkowski et al. - 2011.09551; Vignaroli – 2205.09449; Yu - 1609.06592]
- HH production [Alasfar, Corral Lopez, Gröber 1909.05279; Alasfar et al. 2207.04157]

Off-shell Higgs production with H → ZZ → 4l decay [Balzani, Gröber, MV - 2304.09772] Evidence at LHC [CMS - 2202.06923; ATLAS - 2304.01532] See also [Zhou - 1505.06369]

Light-Quark Yukawas in SMEFT

D=6

■ We are interested in modifications of the Yukawa sector via D=6 operators

$$
\textsf{SM}\quad \left|\ \mathcal{L}_y=-y_{ij}^u\bar{Q}_L^i\tilde{\phi}u_R^j-y_{ij}^d\bar{Q}_L^i\phi d_R^j+\text{ h.c.}\ \right|
$$

$$
\Delta \mathcal{L}_y = \frac{\phi^{\dagger} \phi}{\Lambda^2} \left((C_{u\phi})_{ij} \bar{Q}_L^i \tilde{\phi} u_R^j + (C_{d\phi})_{ij} \bar{Q}_L^i \phi d_R^j + \text{ h.c.} \right)
$$

After EWSB and rotation to mass basis, Lagrangian for Higgs coupling to quarks is

$$
\mathcal{L} \supset g_{hq_i\bar{q}_j} \bar{q}_j q_i h + g_{hhq_i\bar{q}_j} \bar{q}_j q_i h^2 + g_{hhhq_i\bar{q}_j} \bar{q}_j q_i h^3
$$
\n
$$
g_{hq_i\bar{q}_j} = \frac{m_q}{v} \delta_{ij} \left[-\frac{1}{\sqrt{2}} \frac{v^2}{\Lambda^2} (\tilde{C}_{q\phi})_{ij}, \right] g_{hhq_i\bar{q}_j} = \frac{3}{-\frac{3}{2\sqrt{2}} \Lambda^2} (\tilde{C}_{q\phi})_{ij}, \quad g_{hhhq_i\bar{q}_j} = \frac{1}{-\frac{1}{2\sqrt{2}} \Lambda^2} (\tilde{C}_{q\phi})_{ij}
$$

If we assume flavor-diagonal couplings $\rightarrow \;\; g_{hq\overline{q}}=\kappa_{q} \frac{m_{q}}{n_{q}}$

Enhancing Light Yukawas in *pp→ZZ*

- Negligible effects in ggF \rightarrow treated as SM
- Largest modifications in qq-channel
- **NP** in coupling with PDFs
	- \rightarrow focus only on first generation

Off-Shell Higgs Production

 $|\tilde{C}_{d\phi}/(1 \text{ TeV}^2) = 0.45| |\tilde{C}_{u\phi}/(1 \text{ TeV}^2) = 0.21|$

Kinematic Discriminants

[Campbell et al. - 1311.3589; CMS – 2202.06923; Haisch, Koole – 2111.12589, ...]

$$
D_s^d = \log_{10}\left(\frac{P_{d\bar{d}}^{sig}}{P_{q\bar{q}}^{back} + P_{gg}^{back}}\right)
$$

$$
P_{ij}(v) = \frac{1}{\sigma_{ij \to 4\ell}} \int dx_1 dx_2 \delta(x_1 x_2 E_{CMS}^2 - m_{4\ell}^2) f_i(x_1) f_j(x_2) \hat{\sigma}_{ij}(x_1, x_2, v)
$$

- For D_s^d > 2 selects basically only events from signal process
- Not possible to distinguish between $d\bar{d} \rightarrow h^*$ and $u\bar{u} \rightarrow h^*$

[Balzani, Gröber, MV - 2304.09772]

Comparison with Previous Studies

Shape analysis on D_s^d distributions – off-shell region defined by $m_{\mathrm{ZZ}} \! > \! 250 \, \mathrm{GeV}$

Consider only the $ZZ \rightarrow 4$ final state

[Balzani, Gröber, MV - 2304.09772]

Higgs Probes of Trilinear Coupling

HH production has the best sensitivity See talk by N. P. Readioff

σ σ t, b t, b σ σ

 $V(h) = \frac{m_H^2}{2}h^2 + \lambda_3 v h^3 + \frac{\lambda_4}{4}h^4$

Single-Higgs measurements are helpful, too

[McCullough - 1312.3322; Gorbahn, Haisch – 1607.03773; Degrassi, Giardino, Maltoni, Pagani – 1607.04251; Bizon, Gorbahn, Haisch, Zanderighi – 1610.05771; Maltoni, Pagani, Shivaji, Zhao – 1709.08649; Di Vita, Grojean, Panico, Riembau, Vantalon – 1704.01953; Degrassi, Vitti - 1912.06429]

In this case, λ_3 enters via loop contributions

Trilinear coupling in $H \rightarrow Z\gamma$

[Degrassi, Vitti - 1912.06429]

Recent evidence in [ATLAS, CMS - 2309,03501]

The trilinear coupling enters at two loops

Amplitude obtained from a Taylor expansion in the external momenta

$$
\frac{q_1^2}{4m^2}, \frac{q_2^2}{4m^2}, \frac{q_1 \cdot q_2}{4m^2} \ll 1 \qquad m = m_H, m_t, m_W, m_Z
$$

After the expansion
$$
q_1^2 = 0
$$
, $q_2^2 = m_Z^2$, $q_1 \cdot q_2 = (m_H^2 - m_Z^2)/2$

Sensitivity comparable to other single-Higgs processes

[Degrassi, Giardino, Maltoni, Pagani – 1607.04251]

Trilinear coupling in $H \rightarrow Z\gamma$

[Degrassi, Vitti - 1912.06429]

Recent evidence in [ATLAS, CMS - 2309.03501]

The trilinear coupling enters at two loops

Amplitude obtained from a Taylor expansion in the external momenta

$$
\frac{q_1^2}{4m^2}, \frac{q_2^2}{4m^2}, \frac{q_1 \cdot q_2}{4m^2} \ll 1 \qquad m = m_H, m_t, m_W, m_Z
$$

After the expansion
$$
q_1^2 = 0
$$
, $q_2^2 = m_Z^2$, $q_1 \cdot q_2 = (m_H^2 - m_Z^2)/2$

Connection to SMEFT: calculation using

$$
V^{NP} = \sum_{n=1}^{N} c_{2n} (\Phi^{\dagger} \Phi)^n, \qquad \Phi = \begin{pmatrix} \phi^+ \\ \frac{1}{\sqrt{2}} (v + h + i\phi_2) \end{pmatrix}
$$

When truncating at $n \leq 3$ recover SMEFT with only $\mathcal{O}_{\phi} = (\Phi^{\dagger} \Phi)^3$ switched on

4-top operators in the SMEFT

Loosely constrained, difficult to access directly

Constraints possible from

Top-quark data

[Zhang – 1708.05928 D'Hondt, Mariotti, Mimasu, Moortgat, Zhang – 1807.02130 Hartland, Maltoni, Nocera, Rojo, Slade, Vryonidou, Zhang – 1901.05965 Brivio, Bruggisser, Maltoni, Moutafis, Plehn, Vryonidou, Westhoff, Zhang - 1910.0366 Ellis, Madigan, Mimasu, Sanz You – 2012.02779 SMEFiT Collaboration – 2105.00006 Degrande, Rosenfeld, Vasquez - 2402.06528 Celada, Giani, ter Hoeve, Mantani, Rojo, Rossia, Thomas, Vryonidou - 2404.12809]

EWPOs

[Dawson, Giardino – 2201.09887; de Blas, Chala, Santiago - 1507.00757]

$$
\mathcal{L}_{4t} = \frac{\mathcal{C}_{QQ}^{(1)}}{\Lambda^2} \left(\bar{Q}_L \gamma_\mu Q_L \right) \left(\bar{Q}_L \gamma^\mu Q_L \right) \n+ \frac{\mathcal{C}_{QQ}^{(3)}}{\Lambda^2} \left(\bar{Q}_L \tau^I \gamma_\mu Q_L \right) \left(\bar{Q}_L \tau^I \gamma^\mu Q_L \right) \n+ \frac{\mathcal{C}_{QL}^{(1)}}{\Lambda^2} \left(\bar{Q}_L \gamma_\mu Q_L \right) \left(\bar{t}_R \gamma^\mu t_R \right) \n+ \frac{\mathcal{C}_{QL}^{(8)}}{\Lambda^2} \left(\bar{Q}_L T^A \gamma_\mu Q_L \right) \left(\bar{t}_R T^A \gamma^\mu t_R \right) \n+ \frac{\mathcal{C}_{tt}}{\Lambda^2} \left(\bar{t}_R \gamma_\mu t_R \right) \left(\bar{t}_R \gamma^\mu t_R \right) .
$$

Single-Higgs Processes and 4-top Operators

Competitive bounds from single-Higgs production and decay [Alasfar, de Blas, Gröber - 2202.02333]

 $\{qq \to H; t\bar{t}H; H \to \gamma\gamma; H \to qq; H \to b\bar{b}\}$

 \Box \mathcal{O}_ϕ included in the fit \rightarrow bounds on Higgs trilinear coupling become less stringent

HH production discussed in [Heinrich, Lang - 2311.15004; 2409.19578]

In both cases the 4-top operators can enter at two loops

4-top Operators in *gg→H* g are g are q_{λ} 000 $-h$ $-h$ $-h$ g_{QQ} $g_{Q\ Q}$ g allered

4-top operators involve chiral projectors \Rightarrow treatment of γ ⁵ required in Dim Reg

 $\gamma^5 = i\gamma^0\gamma^1\gamma^2\gamma^3 \Rightarrow$ Intrisically 4-dimensional object

In $D\neq 4$, the following properties cannot be satisfied at the same time

■ Anticommutativity $\Rightarrow \{\gamma^5, \gamma^\mu\} = 0$

Cyclicity of Trace

$$
\mathbf{Tr}[\gamma^{\mu}\gamma^{\nu}\gamma^{\rho}\gamma^{\sigma}\gamma^{5}] = 4i \ \varepsilon^{\mu\nu\rho\sigma}
$$

Vast(!) literature of approaches to address this. We considered two cases

Continuation Schemes for γ^5

Naive Dim Reg (NDR)

[Chanowitz, Furman, Hinchliffe ('79)] ['t Hooft, Veltman ('72);

Extend $\{\gamma^5, \gamma^\mu\} = 0$ to $D \neq 4$

Computationally convenient

Cyclicity of trace lost

Breitenlohner, Maison, 't Hooft, Veltman (BMHV)

Breitenlohner, Maison ('79)]

Split the Dirac algebra

$$
\begin{split} \gamma^{(D)}_{\mu} &= \gamma^{(4)}_{\mu} + \gamma^{(D-4)}_{\mu}, \\ \{\gamma^{(4)}_{\mu}, \gamma_{5}\} &= 0, \quad [\gamma^{(D-4)}_{\mu}, \gamma_{5}] = 0 \end{split}
$$

Algebraically consistent

Breaking of chiral WIs

[Larin - 9302240 Bélusca-Maı̈to, Ilakovac, Kühler, Mador-Božinović, Stöckinger, Weißwange - 2303.09120 Cornella, Feruglio, Vecchi - 2205.10381]

Physical observables will be independent of the γ^5 scheme, but intermediate expressions will differ by $\mathcal{O}(\varepsilon)$ contributions

Scheme-Dependent Contributions

[Di Noi, Gröber, Heinrich, Lang, MV - 2310.18221]

Scheme-dependent pole in the gluon-top vertex modification

Scheme-Dependent Contributions

[Di Noi, Gröber, Heinrich, Lang, MV - 2310.18221]

Scheme-dependent pole in the gluon-top vertex modification

$$
g \text{ sequence}
$$
\n
$$
g \text{ where } g \text{ is a nonline}
$$
\n
$$
K_{tG} = \begin{cases}\n\frac{\sqrt{2}m_t g_s}{16\pi^2 v} & \text{(NDR)} \\
0 & \text{(BMHV)}\n\end{cases}
$$
\n
$$
K_{tG} = \begin{cases}\n\frac{\sqrt{2}m_t g_s}{16\pi^2 v} & \text{(NDR)} \\
0 & \text{(BMHV)}\n\end{cases}
$$
\n
$$
16\pi^2 \mu \frac{dC_{\phi G}}{d\mu} = -4\sqrt{2}g_{h\bar{t}t}g_s \left(\frac{C_{tG}}{C_{tG}} + K_{tG} \left(\frac{C_{Qt}^{(1)} - \frac{1}{6}C_{Qt}^{(8)}}{6Q_{tG}}\right)\right)
$$
\n
$$
g \text{ The Minkting, Manobar, Trott} = 1308.2627; 1310.4838; 1312.2014
$$

Scheme-Dependent Parameters

 \blacksquare Observed in $b \rightarrow s \, \gamma \, (g)$ in the context of Weak EFT

[Ciuchini, Franco, Reina, Silvestrini – 9311357; Ciuchini, Franco, Martinelli, Reina, Silvestrini – 9307364; Buras, Misiak, Munz, Pokorski – 9311345 Herrlich, Nierste - 9412375]

Obtain scheme-independent predictions via a finite renormalization of the parameters

$$
\mathcal{C}_{tG}^{\text{NDR}} = \mathcal{C}_{tG}^{\text{BMHV}} - \left(\mathcal{C}_{Qt}^{(1)} - \frac{1}{6}\mathcal{C}_{Qt}^{(8)}\right) \frac{\sqrt{2}g_{h\bar{t}t}g_s}{16\pi^2},
$$
\n
$$
g_{h\bar{t}t}^{\text{NDR}} = g_{h\bar{t}t}^{\text{BMHV}} - g_{h\bar{t}t} \left(\mathcal{C}_{Qt}^{(1)} + \frac{4}{3}\mathcal{C}_{Qt}^{(8)}\right) \frac{(m_h^2 - 6m_t^2)}{16\pi^2\Lambda^2},
$$
\n
$$
m_t^{\text{NDR}} = m_t^{\text{BMHV}} + \left(\mathcal{C}_{Qt}^{(1)} + \frac{4}{3}\mathcal{C}_{Qt}^{(8)}\right) \frac{m_t^3}{8\pi^2\Lambda^2}.
$$

Confirmed by matching onto UV toy models in the two schemes

Possibility to map predictions between schemes while remaining in the bottom-up approach

Loop- and Tree-Generated Operators

What does "higher loop" mean in SMEFT?

In the SM, the definition is clear (just look at the Feynman diagram)

- In the SMEFT NP degrees of freedom are integrated out
- If the underlying UV theory is weakly coupled and renormalizable, there are classes of SMEFT operators that can be only generated from loop diagrams in the UV [Arzt, Einhorn, Wudka – 9405214]

The WC of these loop-generated operators will include a suppression due to a loop factor [Buchalla, Heinrich, Müller-Salditt, Pandler - 2204.11808]

5–7: Fermion Bilinears (ψ^2)

[Isidori, Wilsch, Wyler - 2303.16922]

Scheme-Dependent Parameters

IF \mathcal{O}_{tG} is loop-generated, the shift is of the same order of magnitude of the 4-top contribution

$$
\begin{split} &\frac{\mathcal{C}_{tG}^{\text{NDR}}}{16\pi^2} = \mathcal{C}_{\frac{tG}{16\pi^2}}^{\text{BMHV}} - \left(\mathcal{C}_{Qt}^{(1)} - \frac{1}{6}\mathcal{C}_{Qt}^{(8)}\right) \frac{\sqrt{2}g_{h\bar{t}t}g_s}{16\pi^2},\\ &g_{h\bar{t}t}^{\text{NDR}} = g_{h\bar{t}t}^{\text{BMHV}} - g_{h\bar{t}t} \left(\mathcal{C}_{Qt}^{(1)} + \frac{4}{3}\mathcal{C}_{Qt}^{(8)}\right) \frac{(m_h^2 - 6m_t^2)}{16\pi^2\Lambda^2},\\ &m_t^{\text{NDR}} = m_t^{\text{BMHV}} + \left(\mathcal{C}_{Qt}^{(1)} + \frac{4}{3}\mathcal{C}_{Qt}^{(8)}\right) \frac{m_t^3}{8\pi^2\Lambda^2}. \end{split}
$$

Shifts for other parameters are higher-order in the loop counting

Summary

■ Light-Yukawa probes discussed within the SMEFT framework

- Highlighted the potential of loop effects in Higgs processes to put competitive/complementary constraints on
	- Higgs self-coupling
	- 4-top operators
- Higher-loop contributions require additional care in the the choice of calculational schemes employed
- Importance of being inclusive when choosing the set of operators, also because constraints on WCs may be scheme-dependent

Thank you for your attention!

Finite mixing @ 1 Loop for 4-top operators

Effect of γ^5 -scheme on gg → HH

(NDR used for all contributions) (4-top contribution computed in BMHV)

Light Yukawas - Phenomenological Analysis

Shape analysis on D_s^d distributions – off-shell region defined by $m_{\mathrm{ZZ}} \! > \! 250 \, \mathrm{GeV}$

Consider only the $ZZ \rightarrow 4$ final state

Efficiency factors obtained from MadGraph based on experimental cuts ($p_T > 10 \,\text{GeV}$, $|\eta| < 2.5$)

Consistency of EFT Analysis

Sensitivity is not affected (much) by the choice of invariant mass range

