

BSM Higgs Searches (Incl. exotic Higgs Decays)

JiaJian TEOH, on behalf of ATLAS and CMS Collaborations

QCD@LHC 2024 University of Freiburg 7 October 2024

Current state of the art

Multitude of measurements so far have confirmed that the properties of h_{125} are compatible with the SM predictions.

However, several puzzles remain unanswered...

Main production and decay processes were observed and measured with ~10% precision

Coupling modifiers are probed at a uncertainty level of ~10-40%

Nature 607 (2022) 60-68

138 fb⁻¹ (13 TeV)

±1 SD (stat)

±1 SD (syst)

CMS

Observed

±1 SD (stat ⊕ syst)

±2 SDs (stat ⊕ syst)

•

Higgs and major open questions of SM

The matter-antimatter asymmetry problem

- Are there anomalies in Higgs boson selfcoupling which would implies stronger early-Universe phase transition?
- Are there CP violating Higgs decays?
- Are there multiple Higgs sectors?

What is the origin of the large difference in fermion mass?

- Are there modified Higgs boson couplings to known particles?
- Is $h_{125} \rightarrow \mu^+ \tau^-$ possible?

Hierarchy/Fine tuning problem

- Is the Higgs boson an elementary/composite particle?
- Are there anomalies in the interaction of Higgs boson with *W* and *Z*?
- Any new particles close to the Higgs mass?

What is dark matter?

- Can the Higgs boson provide a portal to dark matter or a dark sector?
- Is the Higgs boson lifetime consistent with the Standard Model?
- Are there new decay modes of the Higgs boson ?

Precision measurement of Higg boson's properties or direct searches for BSM Higgs and rare decay modes of h_{125} boson could help us to answer these questions.

Theoretical frameworks

- Most BSM scenarios presume the existence of SUSY with extended Higgs sector, e.g:
 - Two Higgs Doublet Model (2HDM) and its variation
 - e.g: MSSM, hMSSM
 - 5 Higgs Bosons: *h*,*H*,*A*,*H*⁺,*H*⁻
 - **7** free parameters: 5 Higgs masses, α , tan β
 - Widely used as a benchmark for BSM Higgs searches.
 - 2HDM+Singlet and its variation
 - e.g: Complex singlet + SUSY conditions → NMSSM
 - 7 Higgs Bosons: five of 2HDM, with 2 additional neutral bosons (1 CP-even and 1 CP-odd)
 - One of the scalars could be a dark matter candidate.

BSM Higgs boson searches landscapes

$t\bar{t}H/A \rightarrow t\bar{t} t\bar{t}$

- In type-II 2HDM, $t\bar{t}H$ production mode is enhanced at low $tan\beta$
- Multivariate (MVA) techniques to separate the signal from the SM backgrounds
 - SM BDT + BSM mass-parameterised BDT/Graph Neural Network

	JHEP 07 (2023) 203		arXiv.2408.17164				
	Same sign dilepton	Multilepton	1-lepton	Opposite sign dilepton			
Main event selection criteria	Single and dilepton triggers		Single lepton trigger				
	\geq 6 jets		\geq 7 jets	\geq 5 jets			
	\geq 2 b-jets						
	Z mass veto						
Main bkg	$t\bar{t}t\bar{t}, t\bar{t}V, t\bar{t}$ +jets, V+jets						

$tar{t}H/A ightarrow tar{t} \; tar{t}$ (continued)

- Dominant uncertainty: modelling of the SM tttt and tt+jets
- Simultaneous fit using the MVA output distribution in the CRs and SRs to extract the μ_s
- No significant excess of signal event is observed

- ATLAS: $\tau_{had} \tau_{had}$ and $\tau_{lep} \tau_{had}$ channels, 139 fb⁻¹ of data.
 - CMS: $\tau_{had}\tau_{had}$, $\tau_{lep}\tau_{had}$ and $e\mu$ channels, 35.9 fb⁻¹ of data
- Two main categories:
 - *b*-tag : b associated signal
 - *b*-veto: ggF signal
- Main backgrounds:
 - multijet, W+jets and $t\bar{t}$ events, jet $\rightarrow \tau_{had}$ misidentication
- Total transverse mass, m_T^{tot} as final discriminant
- Main syst. uncert.: τ_{had} ID efficiency and mis-ID of τ_{had}

$H/A ightarrow au^+ au^-$ (continued)

- slight excess around $m_A = 400 \text{ GeV}$,
 - contributed by the *b*-tag category of the $\tau_{had}\tau_{had}$ channel and the *b*-veto category of the $\tau_{lep}\tau_{had}$, local significance = 2.2 σ (ggF), 2.7 σ (b-associated production)
 - \circ global significance = 1.9 σ

Resonant $X \rightarrow H_{125}H_{125}$

- CMS: combination of $HH \rightarrow b\overline{b}b\overline{b} / \gamma\gamma b\overline{b} / b\overline{b}\tau^+\tau^-/WW^*WW^* / b\overline{b} WW^*$
- Boosted/resolved (or both) topologies
- only consider ggF
- ensure orthogonality, e.g:
 - between 4b and $bb\tau^+\tau^-$ by vetoing events in $bb\tau^+\tau^-$ with >1 large-R *b*-tagged jet.
 - between *bb*τ⁺τ[−] and bbWW, by vetoing events in bbWW with ≥ 1 $τ^+_{had}$

Resonant $X \rightarrow hh$ (continued)

- ATLAS: combination of $X \to HH \to b\overline{b}b\overline{b} / \gamma\gamma b\overline{b} / b\overline{b}\tau^+\tau^-$ channels
- Largest excess at m_x = 1.1TeV, with a local(global) significance of 3.3σ(2.1σ).

$H^+ \rightarrow \tau^+ \nu$

- Analyses channels:
 - $\tau_{had}^+ + jets, \quad \tau_{had}^+ + e/\mu,$ no τ_{had}^+ + lepton (CMS)

0

Events

Ø

- Main bkg:
 - multijet, V+jets and $t\bar{t}$ Ο events, jet $\rightarrow \tau_{had}$ misidentication
 - Main syst. uncert.: jet energy scale, Ο ID efficiency and mis-ID of τ_{had}
 - BDT score (m_T) distribution is used as the final discriminant and in the fit in ATLAS (CMS).

$H^+ ightarrow au^+ u$ (continued)

- Conducted over a wide mass range of 80–2000 GeV
- The results agree with the background expectation of the Standard Model

Current State of MSSM Higgs Searches

Many full Run-2 results have been (or to be) released.

Searches for additional scalars and exotic decays of the H_{125}

- The Higgs boson has a particularly narrow width (4.1 MeV)
 - branching fraction to BSM particles via exotic decays could be sizeable
- Most recent combination from ATLAS (CMS):
 - $B(H \rightarrow undetected) < 12\% (16\%)$

- Many BSM theories predict that *H* can act as a portal between dark and SM sectors
- Measuring the $B(H \rightarrow invisible)$, can lead to constraints on the dark sector
- Both ATLAS and CMS searched for invisible Higgs decays in different production modes
- Observed (expected) upper limit at 95% CL. of the $B(H \rightarrow invisible)$:
 - ATLAS: 0.107 (0.077); CMS: 0.15 (0.08)

$H_{125} ightarrow in u$ (continued)

- Model-dependent Higgs portal interpretation where limits are set on the WIMP–nucleon scattering cross-section
 - highlighting the complementarity of DM searches at the LHC and direct-detection experiments

$H_{125} \rightarrow aa \rightarrow \gamma\gamma\gamma\gamma$

- *a* are axion-like particle (ALP)
- Sensitivity to models <u>JHEP 12</u> (2017) 044 that could explain the $\mu(g - 2)$ discrepancy.
- Both prompt and (for the 1st time) long-lived $a \rightarrow \gamma \gamma$ decays
 - via displaced vertex within the tracking system
- Final discriminant is the ALP mass m^{reco}_a
- No significant excess over the SM backgrounds is observed in the data.

Current Status of 2HDM+S with $H_{125} \rightarrow aa$

Rare Decays $H_{125} \rightarrow \text{meson} + \gamma$

- No evidence yet for Yukawa couplings to the 1st and 2nd generations of fermions.
 - distinct experimental signature offers an alternative way to probe the quark Yukawa couplings
- Processes like $H \to K^* \gamma$ and H
 - $\rightarrow D^* \gamma$ can probe flavourviolating Yukawa couplings to light quarks

- ** i and j refer to the flavour of the quark, and $i \neq j$
- The observed data are compatible with the expected backgrounds.

ATL-PHYS-PUB-2023-004

Summary of the 95% confidence-level upper limits on Higgs boson branching fractions for decays to a meson and a photon, including the SM expected branching fractions. SM Higgs boson production is assumed.

List of BSM Higgs Searches (with small excess)

- None of these small excess are significant enough to establish new physics yet.
- Awareness of these results is useful, as they can motivate future searches with the Run 3 dataset and help to set priorities

ATL-PHYS-PUB-2024-008

De com de com d	Production	Mara [C -V]	Significance	Significance	L [fb ⁻¹]
Decay channel	mode	Mass [Gev]	local	global	
$H \rightarrow \tau \tau$	b-associated	400	2.7σ	n.a.	139
$H \rightarrow \tau \tau$	ggF	400	2.2σ	n.a.	139
$H \rightarrow \mu \mu$	b-associated	480	2.3σ	0.6σ	36
$H \rightarrow t\bar{t}$	ggF	800	2.3σ	n.a.	140
$H \rightarrow t\bar{t}/t\bar{q}$	qq and qg	900	2.8σ	n.a.	139
$H \to ZZ \to 4\ell/2\ell 2\nu$	ggF	240	2.0σ	0.5σ	139
$H \to ZZ \to 4\ell/2\ell 2\nu$	VBF	620	2.4σ	0.9σ	139
$H \rightarrow \gamma \gamma$	ggF	684	3.3σ	1.3σ	139
$H \rightarrow \gamma \gamma$	ggF	95.4	1.7σ	n.a.	140
$H \rightarrow Z(\ell \ell) \gamma$	ggF	420	2.3σ	n.a.	140
$H \rightarrow Z(q\bar{q})\gamma$	ggF	3640	2.5σ	n.a.	139
$A \rightarrow Zh_{125}(b\bar{b})$	ggF	500	2.1σ	1.1σ	139
$A \rightarrow Zh_{125}(b\bar{b})$	b-associated	500	1.6σ	n.a.	139
$A \rightarrow ZH \rightarrow \ell \ell b \bar{b}$	ggF	610 (A), 290 (H)	3.1σ	1.3σ	139
$A \rightarrow ZH \rightarrow \ell \ell b \bar{b}$	b-associated	440 (A), 220 (H)	3.1σ	1.3σ	139
$A \to ZH \to \ell \ell WW$	ggF	440 (A), 310 (H)	2.9σ	0.8σ	139
$A \rightarrow ZH \rightarrow \ell \ell t \bar{t}$	ggF	650 (A), 450 (H)	2.9σ	2.4σ	140
$A \rightarrow ZH \rightarrow Zh_{125}(b\bar{b})h_{125}(b\bar{b})$	VH	420 (A), 320 (H)	3.8σ	2.8σ	139
$H^+ \rightarrow cb$	$t\bar{t}$ decay	130	3.0σ	2.5σ	139
$H^+ \rightarrow Wa(\mu\mu)$	$t\bar{t}$ decay	120–160 (H ⁺), 27 (a)	2.4σ	n.a.	139
$H^+ \rightarrow WZ$	VBF	375	2.8σ	1.6σ	139
$H^{++} \rightarrow WW$	VBF	450	3.2σ	2.5σ	139
$H \rightarrow h_{125}h_{125} \rightarrow 4b$	ggF	1100	2.3σ	0.4σ	126–139
$H \rightarrow h_{125}h_{125} \rightarrow 4b$	VBF	550	1.5σ	n.a.	126
$H \rightarrow h_{125}h_{125} \rightarrow b\bar{b}\tau\tau$	ggF	1000	3.1σ	2.0σ	139
$H \rightarrow h_{125}h_{125}$ combination	ggF	1100	3.3σ	2.1σ	126–139
$X \to Sh_{125} \to b\bar{b}\gamma\gamma$	ggF	575 (<i>X</i>), 200 (<i>S</i>)	3.5σ	2.0σ	140
$h_{125} \rightarrow Z_d Z_d \rightarrow 4\ell$	ggF	28	2.5σ	n.a.	139
$h_{125} \rightarrow ZZ_d \rightarrow 4\ell$	ggF	39	2.0σ	n.a.	139
$h_{125} \rightarrow aa \rightarrow b\bar{b}\mu\mu$	ggF, VBF, VH	52	3.3σ	1.7σ	139
$h_{125} \rightarrow aa \rightarrow 4\gamma$	ggF	10–25	1.5σ	n.a.	140
$h_{125} \rightarrow e\tau$ and $h_{125} \rightarrow \mu\tau$	ggF, VBF, VH	125	2.1σ	n.a.	138

Uncovered signatures and outlook

- Many signatures remain uncovered and are topics for future investigations, e.g.
 - $\bigcirc \quad H^+ \to Wh_{125} , H^+ \to W\gamma , H^+ \to \chi\chi^+$
 - $\circ \quad H \to W H^+ \quad , \ H \to SS \quad , \ H \to \chi \chi$
 - rare multi-body decays of the h_{125} to axion-like particles, $h_{125} \rightarrow a\mu\mu/aa\mu\mu$
 - explore production modes other than ggF in exotic h_{125} decays
- Limitations of current searches:
 - O data, data, more data
 - larger MC samples size (maintaining data:MC ~ 1:1)
 → need faster simulation
 - better MC modelling (see talks by Miha Impact of QCD and PDF uncertainties on BSM searches)
 - constraining systematic uncertainties using data
- Innovative ML and special techniques:
 - for better physics object reconstruction (e.g. τ_{had} and merged b-jets, displaced-jet) FTAG-2023-01, CERN-CMS-BTV-22-001-PAS
 - to estimate or reject the background and improve the analysis sensitivity
 - to collect data at a rate much higher than possible with standard triggers, e.g: Trigger-level analysis (ATLAS), Scouting dataset (CMS)
 - specialized triggers to enhance the efficiency for rare processes
 - online/offline flavour tagging

Summary

- Very broad BSM Higgs boson physics program at ATLAS and CMS
 - all yielded null results, thereby constraining the phase space of possible models.
 - sensitivity limited by the available data and the analysis tools used.
- More data and continued efforts are needed:
 - to extend the coverage,
 - to further study the presence of small excesses in a few searches, and
 - to work on uncovered signatures
- Run 2 physics harvest close to the end, focus now on Run 3, there is much more to come!

Additional Slides

$H_{125} \to aa \to b\overline{b}b\overline{b}$

- $Z \rightarrow \ell \ell$ and $W \rightarrow \ell \nu$ channels with SR: 3 or 4 b-tagged jets.
- Main bkg: $t\bar{t}$ +jets, V+jets
- Main syst. uncert.: B-tagging efficiency and mis-tagging of c- and LF-jets
- BDT discriminants trained separately for *ZH* and *WH* channels and the BDT score distribution is used in the fit.

W/Z

 \sim

 $a \rightarrow b\overline{b}$ is the dominant decay mode above $b\overline{b}$ threshold.

$H_{125} ightarrow aa ightarrow b\overline{b}b\overline{b}$ (continued)

- Similarly, ATLAS result with 36fb⁻¹ Run2 data:
 - Both resolved <u>JHEP 10</u>

 (2018) 031 and boosted
 regime <u>Phys. Rev. D 102</u>
 (2020) 112006
- No evidence for the targeted decay mode is observed.

 $H_{125} \rightarrow aa \rightarrow \gamma\gamma\gamma\gamma$ Eur. Phys. J. C 84 (2024) 742

- Upper limits on B($H \rightarrow aa \rightarrow 4\gamma$) at 95% CL as a function of the axion mass and for different ALPphoton couplings, from $Ca\gamma\gamma = 1$ and $Ca\gamma\gamma = 10^{-5}$
- The limits on long-lived ALPs in anomalous Higgs boson decays are the first obtained by any experiment

$H/A \rightarrow \tau^+ \tau^-$

- No significant excess over expected SM bkgd.
- ATLAS: Small excess near m_A=400 GeV
 - local significances are $2.7\sigma(2.2\sigma)$ for *b*-associated production (ggF production)
 - \odot global significance = 1.9 σ

$H/A \rightarrow t\bar{t}$ JHEP 08 (2024) 013 SATLAS

- Promising search for heavy H/A in 2HDM at low tan β
- Consider the interference between signal with the gg-induced $t\bar{t}$ production.
- Target two orthogonal 1- and 2-lepton channels.
- Main bkg:
 - \circ $t\bar{t}$, V+jets, single-top
- Main syst. uncert.:
 - $t\bar{t}$ modelling, jet-energy and -mass scales and b-tagging
- Final discriminant is the reconstructed $t\bar{t}$ invariant mass binned in $|\cos(\theta^*)|$
- Data were consistent with SM background.
- Most significant deviation is at 800 GeV with a local significance of 2.3σ .

$H_{125} \rightarrow aa \rightarrow b\overline{b}\mu^+\mu^-$

- Rare but clean a → µ⁺µ⁻decay is balanced by the more probable a→ bb̄ decay
- Sensitive to scenarios where there are enhanced lepton couplings <u>JHEP 06 (2015) 25</u>
- Main bkg:
 - DY di-muon+ jets, $t\bar{t}$
- BDT to enhance search sensitivity
- Main syst. uncert.:
 - B-tagging and BDT selection efficiency, MC stats.
- Final Discriminant: $m_{\mu\mu}$
- No significant excess in the data over the SM backgrounds is observed
 - \circ a local (global) significance of 3.3 σ (1.7 σ)

Eur. Phys. J. C 84 (2024) 493

Data scouting and Data Parking arXiv:2403.16134

- Data **scouting** trades complete event information for higher event rates, while keeping the data bandwidth within limits.
- Data **parking** involves storing a large amount of raw detector data collected by algorithms with low trigger thresholds to be processed when sufficient computational power is available to handle such data.
- Opens possibilities for searches in new regions of phase space.
- Scouting in Run 2 explored simple objects: low-mass dimuon, low energy di-jet

Advancement in flavour tagging

- Rapid evolution in jet flavour tagging both in resolved and boosted topologies
 BDTs → DNNs → GNN, transformer networks...
- Impressive gain in performance \rightarrow increase analysis sensitivity

Observed and expected 95% CL upper limits for *mA* versus the MSSM parameter tan θ in the h_{125} benchmark scenario, as proposed in arxiv:1808.07542