Electroweak Sudakov logarithms in event generators

Timea Vitos

Uppsala University, ELTE Budapest

QCD@LHC 2024, Freiburg, October 7-11

Today's talk

- 1. Introduction: electroweak Sudakov logarithms
- 2. Automated EW Sudakov logarithms in event generators
 - Sherpa
 - MadGraph5_aMC@NLO
 - OpenLoops
- 3. Adding parton shower

Today's talk

1. Introduction: electroweak Sudakov logarithms

- 2. Automated EW Sudakov logarithms in event generators
 - Sherpa
 - MadGraph5_aMC@NLO
 - OpenLoops
- 3. Adding parton shower

Electroweak corrections to the hard scattering

• In usual notation of mixed- (α_s, α) -NLO expansion:

$$LO = LO_1 + LO_2 + \dots + LO_k$$
$$NLO = \underbrace{NLO_1}_{NLO \ QCD} + \underbrace{NLO_2}_{NLO \ EW} + \dots + NLO_{k+1}$$

"The complete-NLO is the new standard"

Electroweak corrections to the hard scattering

- Large(r) EW corrections in physics modeling:
 - \rightarrow opening up of photon-induced channels

 \rightarrow uncancelled finite parts of weak vector boson virtual corrections (EW Sudakov logarithms)

 \rightarrow QED final-state radiation

The Denner-Pozzorini algorithm

 One-loop leading approximation of the NLO EW correction: worked out by Denner and Pozzorini [A. Denner, S. Pozzorini, arXiv:hep-ph/0010201]

$$\mathcal{O}(\mathsf{EWSL}) \sim \left(\alpha \log^k \left(\frac{s}{M_W^2} \right) \right) \times \mathcal{O}(\mathsf{LO})$$
 (2)

• EWSL are universal (process-independent):

double logarithms (DL):
$$\sim \alpha \log^2 \left(\frac{s}{M_W^2} \right)$$

single logarithms (SL): $\sim \alpha \log \left(\frac{s}{M_W^2} \right)$

• In the region where all

$$r_{kl} = (p_k + p_l)^2 \gg M_W^2 \tag{3}$$

[Resonances require some extra care!]

Arise as corrections to the Born-level matrix-element as

NLOPS+EWSL

Soft-collinear contributions

$$\delta^{\text{EWSL}} = \underbrace{\delta^{\text{LSC}}_{\text{DL}}}_{\text{DL}} + \underbrace{\delta^{\text{SSC}}_{\text{SL}}}_{\text{SL}} + \underbrace{\delta^{\text{C}}_{\text{SL}}}_{\text{SL}} + \underbrace{\delta^{\text{PR}}_{\text{SL}}}_{\text{SL}}$$

- Coming from exchange of virtual weak boson in soft-collinear limit between pairs of external legs
- Evaluating the scalar three-point function in the *eikonal approximation*, results in expressions including

$$L(|r_{kl}|, M^2) := \frac{\alpha}{4\pi} \log^2 \frac{|r_{kl}|}{M^2} = L(s, M^2) + 2\frac{\alpha}{4\pi} \log \frac{s}{M^2} \log \frac{|r_{kl}|}{s} + L(|r_{kl}|, s)$$
For the logarithms into DL (\rightarrow LSC) and SL (\rightarrow SSC) terms

Soft or collinear logarithms: δ^C

$$\delta^{\text{EWSL}} \quad = \quad \underbrace{\delta^{\text{LSC}}_{\text{DL}}}_{\text{DL}} + \underbrace{\delta^{\text{SSC}}_{\text{SL}}}_{\text{SL}} + \underbrace{\delta^{\text{C}}_{\text{SL}}}_{\text{SL}} + \underbrace{\delta^{\text{PR}}_{\text{SL}}}_{\text{SL}}$$

- All contributions in the virtual soft-collinear weak boson exchange which do not come from:
 - \rightarrow field renormalization and
 - \rightarrow collinear limit of the DL contribution
- \circ The SL contribution $\delta^{\,{
 m C}} = \delta^{
 m coll} + \delta^{
 m FRC}$

Parameter renormalization: $\delta^{ extsf{PR}}$

$$\delta^{\text{EWSL}} \quad = \quad \underbrace{\delta^{\text{LSC}}}_{\text{DL}} + \underbrace{\delta^{\text{SSC}}}_{\text{SL}} + \underbrace{\delta^{\text{C}}}_{\text{SL}} + \underbrace{\delta^{\text{PR}}}_{\text{SL}}$$

- Logarithms from UV divergences
- Arising from the renormalization of the dimensionless EW parameters $\{e,c_w,\overline{m}_t,\overline{m}_H\},$

$$\delta^{\mathrm{PR}}\mathcal{M}_{0} = \frac{\delta\mathcal{M}_{0}}{\delta e}\delta e + \frac{\delta\mathcal{M}_{0}}{\delta c_{w}}\delta c_{w} + \frac{\delta\mathcal{M}_{0}}{\delta\overline{m}_{t}}\delta\overline{m}_{t} + \frac{\delta\mathcal{M}_{0}}{\delta\overline{m}_{H}}\delta\overline{m}_{H}$$
(8)

evaluated at
$$\mu^2 = s$$
, $[\overline{m}_i := \frac{m_i}{M_W}]$

Today's talk

1. Introduction: electroweak Sudakov logarithms

2. Automated EW Sudakov logarithms in event generators

- Sherpa
- MadGraph5 aMC@NLO
- OpenLoops
- 3. Adding parton shower

Automating EW Sudakov logarithms

- Why would we want to have separate EW Sudakov implementations?
 - \rightarrow They are much faster to compute, since they are based on the Born kinematics
 - \rightarrow Easier transition to BSM physics

 \rightarrow Allows for a comparison between NLO EW and dominant part of these in the high-energy region

 Also process-specific implementation in ALPGEN (M. Chiesa et al. arXiv:1305.6837)

Focus here on the **automated implementations** of the one-loop approximation of the NLO EW corrections:

- \rightarrow Sherpa (E. Bothmann, D. Napoletano, arXiv:2006.14635)
- \rightarrow MadGraph5_aMC@NLO (D. Pagani, M. Zaro, arXiv:2110.03714)
- \rightarrow OpenLoops (J. M. Lindert, L. Mai, arXiv:2312.07927)

-Automated EW Sudakov logarithms in event generators

Today's talk

- 1. Introduction: electroweak Sudakov logarithms
- Automated EW Sudakov logarithms in event generators
 Sherpa
 - MadGraph5_aMC@NLO
 - OpenLoops
- 3. Adding parton shower

LAutomated EW Sudakov logarithms in event generators

Automation of EW Sudakov logarithms in Sherpa

(E. Bothmann, D. Napoletano, arXiv:2006.14635)

• Implementation of Denner-Pozzorini algorithm:

$$K_{\rm NLL}(\Phi) = 1 + \Delta^{\overline{\rm LSC}} + \Delta^{Z} + \Delta^{\rm SSC} + \Delta^{\overline{C}} + \Delta^{\rm Yuk} + \Delta^{\rm PR} \qquad (9)$$

in

(1)
$$d\sigma^{LO + NLL}(\Phi) = d\Phi B(\Phi) \times K_{NLL}(\Phi),$$

(2) $d\sigma^{LO + NLL (resum)}(\Phi) = d\Phi B(\Phi) \times e^{(1-K_{NLL}(\Phi))}$,

 Comparison to EW_{virt} approximation [S. Kallweit et al., arXiv:1511.08692]: inclusion of {Born + virtual + minimal set of counterterms}

LAutomated EW Sudakov logarithms in event generators

Automation of EW Sudakov logarithms in Sherpa

(E. Bothmann, D. Napoletano, arXiv:2006.14635)

• Showcase the $p_{T,W}$ distribution for

 $\textit{pp} \rightarrow \textit{WW}$

- $\circ\,$ Obtain the expected \sim -70% to -90% Sudakov suppression in the very tail
- Comparison to full NLO EW shows significant discrepancy: logarithmic enhancement in the high-p_T region from real emission MEs cancel the Sudakov effect

 \rightarrow imposing jet veto mitigates this cancellation

- $\circ~$ Comparison to $\text{EW}_{\rm virt}$ approximation: deviation of $\sim 10\%$ starts for $p_{T,W}\sim 2~$ TeV
- $\circ~$ Up to ~ 20 % difference between NLL and resummed Sudakov

-Automated EW Sudakov logarithms in event generators MadGraph5_aMC@NLO

Today's talk

- 1. Introduction: electroweak Sudakov logarithms
- 2. Automated EW Sudakov logarithms in event generators
 - Sherpa
 - MadGraph5_aMC@NLO
 - OpenLoops
- 3. Adding parton shower

0

└─Automated EW Sudakov logarithms in event generators └─MadGraph5_aMC@NLO

Automation of EW Sudakov logarithms in MG5_aMC@NLO

(D. Pagani, M. Zaro, arXiv:2110.03714)

For processes $2 \rightarrow n$, n > 2, the scalar three-point function in the high-energy limit obtains an imaginary part:

$$L(|r_{kl}|, M^2) \rightarrow L(|r_{kl}|, M^2) - 2i\pi\Theta(r_{kl})$$

inO(r_) Of

intO(r...) OF

(10)

• Explicit verification of the imaginary term for $2 \rightarrow 3/4$ processes: without imaginary term, explicit helicity-dependent amplitudes acquire strong *s*-dependence; the helicity-summed in some cases get sizeable effects

└─Automated EW Sudakov logarithms in event generators └─MadGraph5_aMC@NLO

Automation of EW Sudakov logarithms in MG5 aMC@NLO

(D. Pagani, M. Zaro, arXiv:2110.03714)

• Showcase results for $\sqrt{s} = 100$ TeV collisions:

 $pp \rightarrow l^+ l^-$

- For avoiding IR-sensitivity: the SDK_{weak} approach superior to SDK₀ approach
- Investigate effect of s ≫ r_{kl} ≫ M²_W terms (SSC^{s→r_{kl}}): here no significant impact

SDK₀: all EM (QED origin) terms turned off

SDK_{weak}: keeping in a more consistent way the pure-weak effect (keep QED in PR corrections)

└─Automated EW Sudakov logarithms in event generators └─MadGraph5_aMC@NLO

Automation of EW Sudakov logarithms in MG5 aMC@NLO

(D. Pagani, M. Zaro, arXiv:2110.03714)

• Showcase results for $\sqrt{s} = 100$ TeV collisions:

pp ightarrow ZZZ

- \circ No significant difference between the two approaches SDK_{weak} and SDK₀ : neutral final state is not as sensitive to the exact treatment of splitting of QED part
- Effect of s → r_{kl} is much larger (dashed vs solid lines): being a 2 → 3 process, more hierarchies in scales affect the angular-dependent logarithms
- Electroweak corrections can reach -200% of LO \rightarrow unphysical corrections call for resummation at very high energies

- Automated EW Sudakov logarithms in event generators

Today's talk

- 1. Introduction: electroweak Sudakov logarithms
- 2. Automated EW Sudakov logarithms in event generators
 - Sherpa
 - MadGraph5 aMC@NLO
 - OpenLoops
- 3. Adding parton shower

LAutomated EW Sudakov logarithms in event generators

Automation of EW Sudakov logarithms in OpenLoops

(J. M. Lindert, L. Mai, arXiv:2312.07927)

- o Include the imaginary term in the double logarithms
- Sudakov terms are computed with internal insertions

OpenLoops 2

$$\begin{array}{ccc} V \\ \hline q & q' \end{array} & \longrightarrow & \begin{array}{c} V \\ \hline q & q' \end{array} = ieI_q^V C_{\rm EW}^V \,, \end{array}$$

• Resonances:

are treated with double insertions of EW pseudo-counterterms on the external and the internal resonance state

• One possible topology is picked with the probability

$$P(k) = \left| \frac{\mu^2 - m^2 w^2 \Gamma^2}{(k^2 - m^2 + iw\Gamma m)^2 + \mu^2} \right|$$
(11)

for each heavy resonance with complex mass μ and momentum k

- Automated EW Sudakov logarithms in event generators

Automation of EW Sudakov logarithms in OpenLoops

(J. M. Lindert, L. Mai, arXiv:2312.07927)

• Showcase

$$pp
ightarrow e^+ e^- j$$

for invariant mass windows: 70 GeV $< m_{e^+e^-} <$ 120 GeV 200 GeV $< m_{e^+e^-} <$ 500 GeV

- In both cases, there is decent agreement between NLL'_{VMR}EW and the full NLO EW
- In high-energy range: agreement with Sudakov applied on external decay states
- In resonance window range: agreement with on-shell application of Sudakov, LORAND TODOMANTECHTM

Today's talk

- 1. Introduction: electroweak Sudakov logarithms
- 2. Automated EW Sudakov logarithms in event generators
 - Sherpa
 - MadGraph5_aMC@NLO
 - OpenLoops
- 3. Adding parton shower

NLO QCD+EWSL with parton shower

 Combining the automated NLO QCD+PS event generation to include the EW Sudakov approximation through reweighting of events

This has been done in

- \rightarrow Sherpa (E. Bothmann et al. arXiv:2111.13453)
- \rightarrow MadGraph5_aMC@NLO (D. Pagani, T. Vitos, M. Zaro, arXiv:2309.00452)

Overall similar strategy and methodology

Reweighting NLO events with EWSL in MG5_aMC@NLO

Reweighting NLO events with EWSL in $MG5_aMC@NLO$

Problem 1

 Sudakov logarithm expressions not valid in the soft/collinear regions!

Problem 2

• IR cancellation not secured anymore!

Proposed procedure:

- 1 Check all $r_{kl} = (p_k \pm p_l)^2$
- **2** If all $|r_{kl}| > c_{\mathbb{H} \to \mathbb{S}} M_W^2$: use (n+1)-body Sudakov
- If any $|r_{kl}| < c_{\mathbb{H} \to \mathbb{S}} M_W^2$: merge particles k, l
- **2** If reasonable merged process: use n-body Sudakov of the mapped kinematics, **else** use the (n+1)-body Sudakov and replace $|r_{kl}| \rightarrow M_W^2$
- **5** Vary $c_{\mathbb{H}\to\mathbb{S}}$ to assess "Sudakov-merging-scale" dependence

Results for $t\overline{t}H$: $p_T(j_1)$

Showcase

 $pp
ightarrow t \overline{t} H$

with hard cuts on final state particles

- Use SDK_{weak} approach: include QED final-state radiation without double-counting
- High-p_T range: additive approach converges to NLO_{QCD}+PS

Summary and outlook

Summary

 Automated one-loop EW Sudakov corrections are ready in the open-source Sherpa, MadGraph5_aMC@NLO, OpenLoops

Slightly different implementations but all in general agreement

Also automated NLO QCD+EWSL+PS accuracy in Sherpa and MadGraph5 aMC@NLO

Outlook

- More phenomenological studies with the parton shower combination
- Two-loop Sudakov corrections?
- Extend to BSM scenarios?
- Apply to SMEFT predictions?

Thank you for your attention!

