

Lattice QCD Calculation of Distribution Amplitude for Mesons

Min-Huan Chu Adam Mickiewicz University 10/10/2024

QCD@LHC 2024

• Motivation

• Numerical results

• Analysis of uncertainties

• Summary

Outline

Deep inelastic Scattering process

hadronic part of cross section

 $\frac{d\sigma}{d\Omega} \propto f(x)$

Motivation: Hadron structure

Quarks in hadrons

J. Friedman H. Kendall R. Taylor Nobel prize in 1990

DAs are important inputs in hard exclusive processes. Such as $\bar{B}^0 \to \pi^+ + l^- + \nu_l$

decay width

$$iM = \langle \pi^+ l^- \nu_l | \bar{B}^0 \rangle \sim \int [dk] \operatorname{Tr} \left[L(t) H(k_1, k_2, k_3) \Phi_{\bar{B}^0}(x_1) \Phi_{\pi^+}(x_2) \right]$$

At leading-order, DAs represent the coefficients of hadron state expands with Fock states.

$$|h\rangle = \sum_{n,\lambda_i} \int [dx] [dk_{\perp}] \psi_n(x_i, k_{\perp i}, \lambda_i) \prod_{fermions} \frac{u(x_i, k_{\perp i}, \lambda_i)}{\sqrt{x_i}} \prod_{gluons} \frac{\varepsilon(x_i, k_{\perp i}, \lambda_i)}{\sqrt{x_i}} dx_i$$

Among these, the simplest one is the pion DA:

$$\int rac{d\xi^-}{2\pi} e^{ixp^+\xi^-}ig\langle 0ig|ar\psi_1(0)n\cdot\gamma\gamma_5 Uig(0,\xi^-ig)\psi_2ig(\xi^-ig)ig|\pi(p)ig
angle=if_\pi\Phi_\pi(0)$$

1980s

Asymptotic LCDAs

G.P. Lepage et al., Phys.Lett.B 87 (1979) 359-365

Sum rules

V.L. Chernyak et al., Nucl. Phys. B 204 (1982) 477 V.M. Braun et al., Z.Phys.C 44 (1989) 157 Patricia Ball et al., JHEP 08 (2007) 025

Lattice calculation with OPE

G. Martinelli et al., Phys.Lett.B 196 (1987) 184-190 V.M. Braun et al., Phys.Rev.D 74 (2006) 074501 G.S. Bali et al., JHEP 08 (2019) 065

Motivation: Distribution amplitude

2020s

Quark models

H. Choi et al., Phys.Rev.D 75 (2007) 073016

Dyson-Schwinger equation

F. Gao et al., Phys.Rev.D 90 (2014) 1, 014011 C.D. Roberts et al., Prog.Part.Nucl.Phys. 120 (2021) 103883

Lattice calculation with LaMET

J. Zhang et al., Phys.Rev.D 95 (2017) 9, 094514 *R. Zhang et al., Phys.Rev.D* 102 (2020) 9, 094519 J. Hua et al., Phys.Rev.Lett. 127 (2021) 6, 062002 J. Hua et al., Phys.Rev.Lett. 129 (2022) 13, 132001

Numerical simulation in discretized 4D Euclidean space-time;

Lattice QCD action:

$$S_E^{\text{latt}} = -\sum_{\Box} \frac{6}{g^2} \operatorname{Retr}_N \left(U_{\Box,\mu\nu} \right) - \sum_{q} \bar{q} \left(D_{\mu}^{\text{lat}} \gamma_{\mu} + a m_q \right) q$$

gauge action

fermion action

Motivation: Lattice QCD

Correlation functions:

$$egin{aligned} &\langle \mathcal{O}(U,q,ar{q})
angle = rac{\int [\mathcal{D}\mathcal{U}] \prod_q \left[\mathcal{D}q_q
ight] \left[\mathcal{D}ar{q}_q
ight] e^{-S_E^{ ext{latt}}} \mathcal{O}\left(U,q,ar{q}
ight)}{\int [\mathcal{D}U] \prod_q \left[\mathcal{D}q_q
ight] \left[\mathcal{D}ar{q}_q
ight] e^{-S_E^{ ext{latt}}}} \ &= rac{\int [\mathcal{D}U] e^{-S_{ ext{glue}}^{ ext{latt}}}{\int [\mathcal{D}U] e^{-S_{ ext{glue}}^{ ext{latt}}} \prod_q \det \left(D_\mu^{ ext{latt}}\gamma_\mu + am_q + am_q + f_\mu^{ ext{latt}}\right)} \ &\int [\mathcal{D}U] e^{-S_{ ext{glue}}^{ ext{latt}}} \prod_q \det \left(D_\mu^{ ext{latt}}\gamma_\mu + am_q + am_q + f_\mu^{ ext{latt}}\right)} \ &\int [\mathcal{D}U] e^{-S_{ ext{glue}}^{ ext{latt}}} \prod_q \det \left(D_\mu^{ ext{latt}}\gamma_\mu + am_q + am_q + f_\mu^{ ext{latt}}\right)} \ &\int [\mathcal{D}U] e^{-S_{ ext{glue}}^{ ext{latt}}} \prod_q \det \left(D_\mu^{ ext{latt}}\gamma_\mu + am_q +$$

Monte Carlo sampling \rightarrow configurations \rightarrow observables

Where the statistical uncertainties come from

Equal time correlation

Due to the IR structure are only based on states, then the difference between $\psi(x)$ and $\tilde{\psi}(x)$ is only UV structure, which can be perturbatively determined.

Motivation: LaMET

Light-Cone distribution amplitude in LaMET

Equal time correlation on lattice (quasi-DA): $\tilde{h}(z, P^z, \mu, a) = \langle 0 | \bar{\psi}(0) \Gamma W(0, z) \psi(z) | P^z \rangle$

propagators $\rightarrow 2pt \rightarrow matrix$ elements

• Non-perturbative renormalization: $\tilde{h}(z, P^z, \mu, a) = Z(z, a)\tilde{h}_B(z, P^z, \mu, a)$

> Wilson line, RI/MOM, self renormalization, hybrid renormalization...

Motivation: LaMET

Fourier transformation:

$$\tilde{\psi}(x, P^z, \mu, a) = \int_{-\infty}^{\infty} \frac{dz}{2\pi} e^{-ixzP^z} \tilde{h}(z, P^z, \mu, a)$$

large z extrapolation...

Matching to the light-cone:

$$\tilde{\psi}(x, P^z, \mu) = \int_0^1 dy \ C(x, y, \mu, P^z) \ \psi(x, \mu)$$

continuum limit, infinite momentum limit...

• Motivation

• Numerical results

• Analysis of uncertainties

• Summary

Outline

Systems

Pseudo scalar meson: π and *K*

 $\int \frac{d\xi^{-}}{2\pi} e^{ixP^{+}\xi^{-}} \langle 0 | \bar{\psi}(0) \hbar\gamma_{5} U(0,\xi^{-}) \psi(\xi^{-}) | M(P^{+}) \rangle$ $= i f_M (P \cdot n) \phi_M(x)$

J. Hua et al., Phys.Rev.Lett. 129 (2022) 13, 132001

Vetor meson: K^* and ϕ $\int \frac{d\xi^{-}}{2\pi} e^{ixP^{+}\xi^{-}} \langle 0 | \bar{\psi}(0) \hbar U(0,\xi^{-})\psi(\xi^{-}) | V(P^{+}) \rangle$ $= f_V n \cdot \epsilon \phi_{V,L}(x)$

$$\int \frac{d\xi^{-}}{2\pi} e^{ixP^{+}\xi^{-}} \langle 0 | \bar{\psi}(0)\sigma^{+\mu_{\perp}}U(0,\xi^{-})\psi(\xi^{-}) | V(P^{+}) \rangle$$

= $f_{V}(\epsilon^{+}P^{\mu_{\perp}} - \epsilon^{\mu_{\perp}}P^{+})\phi_{V,T}(x)$

J. Hua et al., Phys.Rev.Lett. 127 (2021) 6, 062002

Numerical results: Introduction

Lattice setup (MILC ensembles)

Ensenble	Lattice spacing	Volume	Valence pion mass	Mom
a12m130	0.12 fm	$48^3 \times 64$		
a09m130	0.09 fm	$64^3 \times 96$	140 MeV	1.29 1.72 2.15
a06m130	0.06 fm	$96^3 \times 192$		

Numerical results: Renormalization

X. Ji et al., Nucl. Phys. B 964 (2021) 115311

hybrid scheme avoids nonperturbative effects at large z

K. Zhang et al., Phys.Rev.Lett. 129 (2022) 8, 082002

$$\tilde{h}(z, P^{z}, \mu, a) = \begin{cases} \frac{\tilde{h}_{B}(z, P^{z}, \mu, a)}{Z(z, a)}, |z| < z_{s} \\ \frac{\tilde{h}_{B}(z, P^{z}, \mu, a)e^{-\delta m \cdot z} Z_{hybrid}(z_{s}, a), |z| > z_{s} \end{cases}$$

Z(z, a): RI/MOM renormalization factor

$$Z_{hybrid}(z_s, a) = e^{\delta m z_s} / Z(z_s, a)$$

Hybrid renormalization (for vector meson DA)

 $z_s = 0.24$ fm, 0.36 fm treated as systematic uncertainty!

Numerical results: Renormalization

Self renormalization (for pseudo scalar meson DA)

Y. Huo et al., Nucl.Phys.B 969 (2021) 115443

- 1. It can match to continuum scheme at short distance;
- 2. It is universal across hadrons and fermion actions;
- avoids nonperturbative effects at large z; 3.

K. Zhang et al., Phys.Rev.Lett. 129 (2022) 8, 082002

$$\tilde{h}^{\mathrm{R}}(z) = \tilde{h}^{\mathrm{B}}(z,a)/Z^{\mathrm{self}}(z,a)$$

$$Z^{\text{self}}(z,a) = \exp\left\{\frac{kz}{a\ln[a\Lambda_{\text{QCD}}]} + m_0 z + f(z)a + \frac{3C_F}{b_0}\ln\left[\frac{\ln[1/(a\Lambda_{\text{QCD}})]}{\ln[\mu/\Lambda_{\text{QCD}}]}\right] + \ln\left[1 + \frac{d}{\ln(a\Lambda_{\text{QCD}})}\right]\right\}$$

comparison of lattice and perturbative

Numerical results: Extrapolation

quasi-DA $\tilde{h}^{R}(z)$ is within finite range $|z| \leq z_{max}$

while Fourier transformation needs dz $-\infty$

then extrapolation for z is needed:

$$\tilde{\phi}(x) \sim \phi(x) \sim x^{a}(1-x)^{b}$$
inverse Fourier transformation
$$\tilde{h}^{R}(\lambda = zP^{z}) = \left[\frac{c_{1}}{(i\lambda)^{a}} + e^{-i\lambda}\frac{c_{2}}{(-i\lambda)^{b}}\right]\frac{e^{-\lambda/\lambda_{0}}}{finite moment}$$
X. Ji et al., Nucl.Phys.B 964 (2021) 115311

tum

systematics: extrapolation region

Numerical results: quasi-DA

$$\tilde{f}(x) = \int_{-\infty}^{\infty} P^z dz \cos\left[\left(x - \frac{1}{2}\right)zP^z\right] e^{\frac{izP^z}{2}}\tilde{h}^R(z)$$

Matching in hybrid scheme

$$C_{hybrid}^{(1)} = C_{RI/MOM}^{(1)} + \int dy' \int \frac{P^z dz}{2\pi} \left[e^{i(1-y')z_s P_R^z} - e^{i(1-y')z P_R^z} \right] \tilde{q}^{(1)}(y')\theta(|z| > z_s)$$

Y. Liu et al., Phys.Rev.D 99 (2019) 9, 094036

Technical operation

1. extend the range for x: when $0 \le x \le 1$: $C(x, y) = C_{hybrid}(x, y)$; when $x \le 0$

or x>1: $C(x, y) = \delta(x - y)$

2. inverse matching by inv. matrix

Numerical results: matching

vector meson LCDAs in x space

NIWERSYTET

w Poznaniu

ADAMA MICKIEWICZA

the infinity momentum limit: $\phi(x, P_z) = \phi(x, P_z \to \infty) + \frac{c_2(x)}{P^2}$ is adopted

Numerical results: final results

Gegenbauer moments

16

$$\phi(x) = 6x(1-x) \left[1 + \sum_{n=1}^{\infty} a_n C_n^{3/2} (2x-1) \right]$$

first few moments

Numerical results: final results

pion and kaon LCDAs in x space

the infinity momentum limit: $\phi(x, P_z) = \phi(x, P_z \to \infty) + \frac{c_2(x)}{P_z^2}$ is adopted

comparison with others

	DSE	6x(1-x)	QCD sum rule	OPE
This work	close	not close	hard to say	close

Gegenbauer moments

$$\phi(x) = 6x(1-x) \left[1 + \sum_{n=1}^{\infty} a_n C_n^{3/2} (2x-1) \right]$$

first few moments

	a_1	a_2	a_3	a_4
π		0.258(70)(52)		0.122(4
K	-0.108(14)(51)	0.170(14)(44)	-0.043(06)(22)	0.073(0

V.M. Braun et al., Phys.Rev.D 74 (2006) 074501

Moments from this work is consist with OPE results in 2006, but disagrees with results in 2019

G.S. Bali et al., JHEP 08 (2019) 065

• Motivation

• Numerical results

• Analysis of uncertainties

• Summary

Outline

processes of DA calculation

Renormalization: renormalization scale and dividing point

Hybrid renormalization

$$\tilde{h}(z, P^{z}, \mu, a) = \begin{cases} \frac{\tilde{h}_{B}(z, P^{z}, \mu, a)}{Z(z, a)}, |z| < z_{s} \\ \tilde{h}_{B}(z, P^{z}, \mu, a)e^{-\delta m \cdot z}Z_{hybrid}(z_{s}, a), |z| > z_{s} \end{cases}$$

renormalization scale

Self renormalization

dividing point $\tilde{h}^{\mathrm{R}}(z) = \tilde{h}^{\mathrm{B}}(z, a) / Z^{\mathrm{self}}(z, z_s a)$ renormalization scale Short distance: $\phi_m^{\overline{\text{MS}},1-\text{loop}}(z,\mu) = \tilde{h}_m^{\text{B}}(z,a)/Z^{\text{self}}(z,a)$ apply in long distance $\tilde{h}_m^{\rm R}(z) \stackrel{\bigstar}{=} \frac{\tilde{h}_m^{\rm B}(z,a)}{Z^{\rm self}(z,a)}$

Analysis of uncertainties: systematics

Large λ extrapolation: polynomial decay terms and range for fittings.

$$\tilde{h}^{\mathrm{R}}(\lambda = zP^{z}) = \left[\frac{c_{1}}{(i\lambda)^{a}} + e^{-i\lambda}\frac{c_{2}}{(-i\lambda)^{b}}\right]e^{-\lambda/\lambda_{0}}$$
polynomial

Approaching to continuum limit: difference between fitting results and results at a=0.06 fm.

$$\tilde{\psi}(a) = \tilde{\psi}(a \to 0) + c_1 a + \mathcal{O}(a^2)$$

Approaching to infinite momentum limit: difference between fitting results and results at largest P^{z} .

$$\phi(x, P_z) = \phi(x, P_z \to \infty) + \frac{c_2(x)}{P_z^2}$$

Uniwersytet IM. Adama Mickiewicza W Poznaniu

Analysis of uncertainties: systematics

pion and kaon LCDA

value = central value(statistic)(renormalization)(large λ) (continuum limit)(infinite momentum limit)

x	π	K
0.05	0.81(14)(09)(03)(06)(02)	0.78(04)(07)(02)(07)(05)
0.10	0.94(10)(05)(02)(07)(02)	0.95(03)(05)(04)(06)(05)
0.15	1.02(06)(02)(02)(07)(04)	1.06(02)(03)(04)(07)(06)
0.20	1.09(05)(01)(02)(06)(05)	1.14(02)(02)(03)(07)(06)
0.25	1.13(04)(01)(01)(06)(04)	1.20(02)(01)(02)(07)(05)
0.30	1.16(05)(03)(01)(07)(04)	1.24(02)(01)(01)(07)(05)
0.35	1.19(06)(04)(01)(07)(04)	1.26(02)(01)(01)(07)(04)
0.40	1.20(07)(05)(01)(07)(04)	1.27(02)(02)(02)(07)(04)
0.45	1.21(07)(05)(02)(07)(04)	1.26(02)(03)(03)(08)(03)
0.50	1.22(07)(05)(03)(07)(04)	1.24(02)(03)(03)(08)(02)
0.55	1.21(07)(05)(02)(07)(04)	1.21(02)(04)(02)(08)(01)
0.60	1.20(07)(05)(01)(07)(04)	1.17(02)(04)(01)(09)(01)
0.65	1.19(06)(04)(01)(07)(04)	1.11(02)(04)(01)(10)(02)
0.70	1.16(05)(03)(01)(07)(04)	1.04(02)(04)(03)(10)(03)
0.75	1.13(04)(01)(01)(06)(04)	0.97(02)(03)(03)(11)(04)
0.80	1.09(05)(01)(02)(06)(05)	0.88(02)(02)(04)(12)(05)
0.85	1.02(06)(02)(03)(07)(04)	0.77(02)(01)(03)(13)(06)
0.90	0.94(10)(04)(02)(07)(02)	0.64(03)(01)(02)(13)(08)
0.95	0.81(14)(09)(03)(06)(02)	0.45(04)(01)(01)(12)(09)

uncertainties in plots

• Motivation

• Numerical results

• Analysis of uncertainties

Summary •

Outline

- Precise knowledge of meson LCDAs are important for understanding various exclusive processes.
- LaMET and Lattice QCD now allow us to do ab initio calculations of these meson DAs and make a comparison with experimental measurements.
- Improved renormalization schemes are adopted to avoid problems in RI/MOM.
- Several extrapolation strategies including large λ , continuum limit, and infinite momentum limit, have been proposed to increase the accuracy of results.

Uniwersytet im. Adama Mickiewicza w Poznaniu

Backup slides

dispersion relation

 $E^{2} = m^{2} + c_{2}(P^{z})^{2} + c_{3}(P^{z})^{4}a^{2}$

Numerical results: Introduction

one-state fit is more stable and conservative!

co. matching v.s. mo. matching

Numerical results: two techniques

 ${\mathcal X}$

processes of DA calculation

Propagators: smeared point source to wall sink. Average cases at different source locations.

nonlocal two point function

Wilson lines: according to the symmetry $\tilde{h}(z) = \tilde{h}^*(-z)$, one could perform average +z and -z to increase the statistics.

Renormalization: sample by sample.

Ground state fit for 2pt: bootstrap resampling is employed, and we do one fitting on each sample and keep central value as results. It remains correlations in data.

Large λ extrapolation, approaching continuum limit and infinite momentum limit: one fitting of asymptotic form on each example.

The statistic uncertainties come from bootstrap samples!

