Multijet and multi-differential dijet measurements with ATLAS and CMS

Argyro Ziaka On behalf of ATLAS and CMS collaborations

University of Ioannina

QCD@LHC 2024

Monday 7th October 2024

Outline

Motivation

ATLAS measurements

- (Azimuthal Asymmetry)Transverse Energy-Energy Correlations ¹
- Jet cross section ratios²

CMS measurements

- Azimuthal correlations $(R_{\Delta\phi})^3$
- Multi-differential dijet cross sections⁴

Summary & Conclusions

¹JHEP 07 (2023) 85

² arXiv:2405.20206, submitted to PRD

³EPJC 84, 842 (2024)

⁴ arXiv:2312.16669, submitted to EPJC

Jet measurements

- Study of QCD (precision measurements)
- Extraction of $\alpha_s(m_Z)$, running of $\alpha_s(Q)$
- Tune Monte Carlo event generators
- Constrain Parton Distribution Functions

In this presentation

Run 2 analyses are discussed

Jet measurements

- Study of QCD (precision measurements)
- Extraction of $\alpha_s(m_Z)$, running of $\alpha_s(Q)$
- Tune Monte Carlo event generators
- Constrain Parton Distribution Functions

Multijet cross section ratios

- Determination of the strong coupling constant $\alpha_S(m_Z)$
- $\bullet~$ Investigation of $\alpha_{\rm S}$ running in TeV scale

Jet measurements

- Study of QCD (precision measurements)
- Extraction of α_S(m_Z), running of α_S(Q)
- Tune Monte Carlo event generators
- Constrain Parton Distribution Functions

Multijet cross section ratios

- Determination of the strong coupling constant $\alpha_S(m_Z)$
- Investigation of α_S running in TeV scale

In ratios (R) with

• Denominator: topologies with at least 2-jets ($\sim lpha_s^2$ @LO)

Jet measurements

- Study of QCD (precision measurements)
- Extraction of α_S(m_Z), running of α_S(Q)
- Tune Monte Carlo event generators
- Constrain Parton Distribution Functions

Multijet cross section ratios

- Determination of the strong coupling constant $\alpha_S(m_Z)$
- Investigation of α_S running in TeV scale

In ratios (R) with

- Denominator: topologies with at least 2-jets ($\sim lpha_s^2$ @LO)
- Numerator: topologies with at least 3-jets ($\sim lpha_s^3$ @LO)

Jet measurements

- Study of QCD (precision measurements)
- Extraction of $\alpha_s(m_Z)$, running of $\alpha_s(Q)$
- Tune Monte Carlo event generators
- Constrain Parton Distribution Functions

Multijet cross section ratios

- Determination of the strong coupling constant $\alpha_S(m_Z)$
- Investigation of α_S running in TeV scale

In ratios (R) with

- Denominator: topologies with at least 2-jets ($\sim lpha_s^2$ @LO)
- Numerator: topologies with at least 3-jets ($\sim lpha_s^3$ @LO)

Benefits

- ✓ Cancellation of systematic effects e.g. luminosity
- ✔ Reduction of theoretical uncertainties *e.g.* non-perturbative

• Transverse Energy-Energy Correlations (TEEC)

$$\frac{1}{\sigma}\frac{d\Sigma}{d\cos\phi} = \frac{1}{N}\sum_{A=1}^{N}\sum_{ij}\frac{E_{T_i}^A E_{T_j}^A}{(\sum_k E_{T_k}^A)^2}\delta(\cos\phi - \cos\phi_{ij})$$

- Normalised to σ
- Weighted by $E_T = \frac{E}{\cosh y}$
- *i*, *j*, *k*: indices over all jets
- ϕ_{ij} : angle in transverse plane

- N multijet events
- $\delta(x)$: Dirac function $\rightarrow \phi = \phi_{ij}$

ATLAS - TEEC: Samples and event selection

- Associated azimuthal (A)symmetries of (A)TEEC
- $\bullet\,$ Cancel uncertainties symmetric in $\cos\phi$
- Difference between $\cos \phi > 0$ and $\cos \phi < 0$ of TEEC:

$$\frac{1}{\sigma} \frac{d\Sigma^{asym}}{d\cos\phi} = \frac{1}{\sigma} \left. \frac{d\Sigma}{d\cos\phi} \right|_{\phi} - \frac{1}{\sigma} \left. \frac{d\Sigma}{d\cos\phi} \right|_{\pi-\phi}$$

 $\bullet\,$ TEEC and ATEEC sensitive to gluon radiation and $\alpha_{\rm S}$

ATLAS - TEEC: Samples and event selection

- Associated azimuthal (A)symmetries of (A)TEEC
- $\bullet\,$ Cancel uncertainties symmetric in $\cos\phi$
- Difference between $\cos \phi > 0$ and $\cos \phi < 0$ of TEEC:

$$\frac{1}{\sigma} \frac{d\Sigma^{asym}}{d\cos\phi} = \frac{1}{\sigma} \left. \frac{d\Sigma}{d\cos\phi} \right|_{\phi} - \frac{1}{\sigma} \left. \frac{d\Sigma}{d\cos\phi} \right|_{\pi-\phi}$$

 $\bullet\,$ TEEC and ATEEC sensitive to gluon radiation and $\alpha_{\rm S}$


```
Full Run 2 (2015-2018) 

\rightarrow \sqrt{s} = 13 \text{ TeV}, \ \mathcal{L}_{int} = 139 \text{ fb}^{-1}
```

Jet reconstruction (FASTJET)

- Jet algorithm: anti-k_T
- Jet size: R=0.4

Event selection

- Select high-p_T jets:
 - Single-jet trigger minimum threshold: $p_T = 460 \text{ GeV}$
- Phase-space selection:
 - $p_T > 60 \text{ GeV}$
 - -|y| < 2.4
 - $H_{T2} = p_{T1} + p_{T2} > 1$ TeV for 2 leading jets, in bins of H_{T2}

ATLAS - TEEC: Unfolding and Systematic uncertainties

- Unfolding using iterative algorithm based on Baeysian theorem
- Parametrise probability of gen jet in bin *i* → rec in bin *j* : *M_{ij}* transfer matrix (from MC)
- Inverse problem: $\mathcal{R}_i = \sum_{j=1}^{N} \frac{\varepsilon_j}{\mathcal{P}_i} M_{ij} T_j$, $\mathcal{E}_j(\mathcal{P}_i)$: efficiency(purity) corrections
- $\mathcal{R}_i(T_j)$: content of detector(particle) level distribution in bin i(j)

ATLAS - TEEC: Unfolding and Systematic uncertainties

- Unfolding using iterative algorithm based on Baeysian theorem
- Parametrise probability of gen jet in bin $i \rightarrow \text{rec}$ in bin $j: M_{ij}$ transfer matrix (from MC)
- Inverse problem: $\mathcal{R}_i = \sum_{j=1}^{N} \frac{\mathcal{E}_j}{\mathcal{P}_i} M_{ij} T_j$, $\mathcal{E}_j(\mathcal{P}_i)$: efficiency(purity) corrections
- $\mathcal{R}_i(T_j)$: content of detector(particle) level distribution in bin i(j)

ATLAS - (A)TEEC: Experimental results

- $\bullet \ \ {\rm Two \ peaks:} \ \ {\rm cos} \ \phi = -1, \ 1$
- Central plateau: wide-angle radiation
- Kink: dependence on R
- Best description: SHERPA and HERWIG7

ATLAS - (A)TEEC: Experimental results

- Steeply falling distributions by several orders of magnitude
- Best description by SHERPA and HERWIG7

- Two peaks: $\cos \phi = -1, 1$
- Central plateau: wide-angle radiation
- Kink: dependence on R
- Best description: SHERPA and HERWIG7

Argyro Ziaka (University of Ioannina)

8/29

Argyro Ziaka (University of Ioannina)

ATLAS - Cross section ratios: Observable (2/2)

Measurement

- Differential cross sections of multijet events
- Ratios between different inclusive jet-multiplicity bins e.g.

$$(R_{32} = \frac{3-jet}{2-jet}, R_{42} = \frac{4-jet}{2-jet}, R_{43} = \frac{4-jet}{3-jet}, R_{54} = \frac{5-jet}{4-jet})$$

ATLAS - Cross section ratios: Observable (2/2)

Measurement

- Differential cross sections of multijet events
- Ratios between different inclusive jet-multiplicity bins e.g.

$$(R_{32} = \frac{3-jet}{2-jet}, R_{42} = \frac{4-jet}{2-jet}, R_{43} = \frac{4-jet}{3-jet}, R_{54} = \frac{5-jet}{4-jet})$$

Variables sensitive to energy scale

- H_{T2} = p_{T,1} + p_{T,2}, if 3rd jet exists: varying p_{T,3} thresholds to understand resummation effects
- $p_T^{N_{incl}}$: inclusive jet p_T in bins of multiplicity

ATLAS - Cross section ratios: Observable (2/2)

Measurement

- Differential cross sections of multijet events
- Ratios between different inclusive jet-multiplicity bins e.g.

$$(R_{32} = \frac{3-jet}{2-jet}, R_{42} = \frac{4-jet}{2-jet}, R_{43} = \frac{4-jet}{3-jet}, R_{54} = \frac{5-jet}{4-jet})$$

Variables sensitive to energy scale

- H_{T2} = p_{T,1} + p_{T,2}, if 3rd jet exists: varying p_{T,3} thresholds to understand resummation effects
- $p_T^{N_{incl}}$: inclusive jet p_T in bins of multiplicity

Variables sensitive to topology:

- Leading jets in the event:
 - Δy_{jj} : absolute value of rapidity difference
 - *m*_{jj}: invariant mass
- All selected jets in the event:
 - $\Delta y_{jj,max}$: absolute value of rapidity difference
 - *m_{jj,max}*: maximum dijet invariant mass

ATLAS - Cross section ratios: Samples and event selection

Data

Full Run 2 (2015-2018) $\rightarrow \sqrt{s} = 13 \text{ TeV}, \ \mathcal{L}_{int} = 139 \text{ fb}^{-1}$

Jet reconstruction (FASTJET)

- Jet algorithm: anti-k_T
- Jet size: R=0.4

ATLAS - Cross section ratios: Samples and event selection

Data

Full Run 2 (2015-2018) $\rightarrow \sqrt{s} = 13 \text{ TeV}, \ \mathcal{L}_{int} = 139 \text{ fb}^{-1}$

Jet reconstruction (FASTJET)

- Jet algorithm: anti-k_T
- Jet size: R=0.4

Event selection

- Kinematic selection criteria to eliminate PU interactions:
 - $p_T > 60 \text{ GeV}$
 - -|y| < 4.5
- Phase-space selection:

-
$$N_{jets} \ge 2$$

- $H_{T2} = p_{T1} + p_{T2} \ge 250 \text{ GeV}$
for leading ℓ_{1} sub-leading jets

ATLAS - Cross section ratios: Precision study

- Jet energy scale calibration:
 - Dominant systematic uncertainty source
- Precision improvements:
 - ➔ Jet flavor response dependence
 - Single hadron response extrapolation to jets
- Significant reduction of JES

11 / 29

- Parton that initiated jet determines its internal dynamics
- Jet flavor response: uncertainty of actual spectra from data and relationship with JES
- Gluon-initiated jets (left): differences up to 4% with PYTHIA
- Quark-initiated jets (right): differences up to 1.8% with PYTHIA

- Baryon energy fraction for PYTHIA: shown to illustrate the size of possible differences due to jet flavor
- For SHERPA with cluster hadronisation: lower energy fraction by baryons than Pythia

- Baryon energy fraction for PYTHIA: shown to illustrate the size of possible differences due to jet flavor
- For SHERPA with cluster hadronisation: lower energy fraction by baryons than Pythia

- Larger baryon energy fractions →lower response
- Most baryons: (anti-)protons and (anti-)neutrons

- \bullet Jet flavor response previously taken by plain comparison between $\mathrm{Pythia8}$ and $\mathrm{HerWiG}{++}$
- Split into three separate uncertainty components by comparing different aspects of MC generator setups:
 - Flavor generator/shower: PYTHIA8 vs. SHERPA 2.2.5 w/ Lund string hadronisation
 - Flavor hadronisation: SHERPA 2.2.11 w/ AHADIC cluster-based hadronization vs. SHERPA 2.2.5 w/ Lund string hadronisation
 - Flavor shower: $\rm HERWIG~7.1~w/$ angle-ordered PS vs. $\rm HERWIG~7.1~w/$ dipole PS
- Uncertainties derived separately for five different jet flavors (*u* or *d*, and *s*, *c*, *b* and *g*) and applied according to jet label in simulated event samples
- Subdominant effect of final uncertainty compared to the initial leading contribution of jet flavor response

ATLAS - Cross section ratios: Unfolding and Exp. uncert.

- Statistical uncertainties arise from finite MC and Data sample size
- Treated during unfolding:
 - Replicas of measured spectra are created containing Poisson-distributed fluctuations around nominal distributions
 - 2 Response Matrix is varied using these pseudo-experiments
 - ${f 3}$ Replicas unfolded with varied RM ightarrow replicas of unfolded spectra
 - Statistical uncertainty: standard deviation of replicas

- 2D Unfolding (ROOUNFOLD): observable bins and exclusive N_{jets}
- 3D for varied *p*_{T,3} : *H*_{T2}, *N*_{jets}, *p*_{T,3}
- Recombination of exclusive \rightarrow inclusive N_{jets} distributions

Tot:	1-4.5%	Stat: < 1	%
Cond:	<2%	JES: 1-3.	5%
Mode	l: <1%	JER <1%	, D

▶ JHEP 01(2010) 039

- High Energy Jets (HEJ) framework
 - Leading logarithmic QCD corrections in \hat{s}/p_T^2 , all orders of α_S and SM processes
 - Resummation of logarithmic correction and matching to fixed-order accuracy: $pp \rightarrow 2j, 3j, 4j, 5j, 6j$ at tree-level

$$- \mu_r = \mu_f = \hat{H}_T/2$$

- **PDF set:** NNPDF3.1NLO, $\alpha_S(m_Z) = 0.118$

CMS - $R_{\Delta_{\phi}}$: Observable (1/2)

Definition inspired by D_0 's R_{Δ_R} observable

Argyro Ziaka (University of Ioannina) Multijet and multi-differential dijet QCD

18 / 29

CMS - $R_{\Delta_{\phi}}$: Observable (1/2)

Jets with neighbours within azimuthal separation: $2\pi/3 < \Delta \phi < 7\pi/8$ and $p_T > 100$ GeV ($\sim \alpha_s^3$ @LO)

$$\mathbf{R}_{\Delta\phi} = \frac{\sum_{i=1}^{N_{jet}(\mathbf{p}_{T})} N_{nbr}^{(i)}(\Delta\phi, \mathbf{p}_{Tmin}^{nbr})}{N_{jet}(\mathbf{p}_{T})}$$

Number of jets in a jet p_T bin ($\sim lpha_s^2$ @LO)

Definition inspired by D_0 's R_{Δ_R} observable

Argyro Ziaka (University of Ioannina)

Multijet and multi-differential dijet

QCD@LHC 2024

18 / 29

CMS - $R_{\Delta\phi}$: Samples and event selection

Data

Full Run 2 (2016-2018)
$$\rightarrow \sqrt{s} = 13 \text{ TeV}$$
,
 $\mathcal{L}_{int} = 134 \text{ fb}^{-1}$

Jet reconstruction (FASTJET)

- Jet algorithm: anti-k_T
- Jet size: R=0.7
CMS - $R_{\Delta\phi}$: Samples and event selection

CMS - $R_{\Delta\phi}$: Experimental uncertainties

Equivalent observable definition

$$\mathbf{R}_{\Delta\phi} = \frac{\sum_{i=1}^{N_{jet}(\mathbf{p}_{T})} N_{nbr}^{(i)}(\Delta\phi, \boldsymbol{p}_{Tmin}^{nbr})}{N_{jet}(\mathbf{p}_{T})} = \frac{\sum_{n} nN(\mathbf{p}_{T}, n)}{\sum_{n} N(\mathbf{p}_{T}, n)}$$

- where \boldsymbol{n} is the number of neighbours and \mathbf{p}_{T} is jet's transverse momentum.

CMS - $R_{\Delta\phi}$: Experimental uncertainties

- where \boldsymbol{n} is the number of neighbours and \mathbf{p}_{T} is jet's transverse momentum.
- \bigcirc 2D unfolding of $N(p_T, n)$ distribution.
- ✓ Migrations among p_T and among n bins.
- Account for non-trivial numeratordenominator correlations.

Stat.:	$0.18-10.49\ \%$
JES:	0.65-5.00~%
JER:	0.04-0.77~%
Other:	< 1%

All uncertainties remain below 1% up to 1.5 TeV

CMS - $R_{\Delta\phi}$: Fixed-order pQCD

Theoretical predictions

- Fixed-order predictions pQCD NLO
- NLOJET++ (up to 3 jets NLO)
- **fastNLO** framework
- $\mu_R = \mu_F = \hat{H}_T/2$ with $\hat{H}_T = \sum_{i \in \text{partons}} p_{T,i}$
- Separate calculation for numerator and denominator

CMS - $R_{\Delta\phi}$: Fixed-order pQCD

Theoretical predictions

- Fixed-order predictions pQCD NLO
- NLOJET++ (up to 3 jets NLO)
- fastNLO framework

•
$$\mu_R = \mu_F = \hat{H}_T/2$$
 with
 $\hat{H}_T = \sum_{i \in \text{partons}} p_{T,i}$

• Separate calculation for numerator and denominator

Theoretical predictions for $R_{\Delta\phi}$

- Corrected for NP and EW
- Data-Theory agreement (within uncertainties)
- Uncertainties:
 - PDF: 1-2%
 - Scale: 2-8%

A NNLO predictions not yet available for $\mathbf{R}_{\Delta\phi}$!

CMS - Dijet cross sections: Observable (2/2)

Double-differential (2D)

• Inclusive double-differential dijet cross-section as function of maximum rapidity and the invariant mass of the two leading jets:

$$\frac{d^2\sigma}{dy_{max}dm_{1,2}} = \frac{1}{\mathcal{L}_{int}} \frac{N_{eff}}{(2\Delta |y|_{max})\Delta m_{1,2}}$$

$$m_{1,2} = \sqrt{(E_1 + E_2)^2 - (\vec{p}_1 + \vec{p}_2)^2}, |y|_{max} = max(|y_1|, |y_2|)$$

CMS - Dijet cross sections: Observable (2/2)

Double-differential (2D)

• Inclusive double-differential dijet cross-section as function of maximum rapidity and the invariant mass of the two leading jets:

$$\frac{d^{2}\sigma}{dy_{max}dm_{1,2}} = \frac{1}{\mathcal{L}_{int}} \frac{N_{eff}}{(2\Delta \left|y\right|_{max})\Delta m_{1,2}}$$

•
$$m_{1,2} = \sqrt{(E_1 + E_2)^2 - (\vec{p_1} + \vec{p_2})^2}, |y|_{max} = max(|y_1|, |y_2|)$$

Triple-differential (3D)

 Inclusive triple-differential dijet crosssection as a function of y*, y_b and the invariant mass or average p_T of the two leading jets:

$$\frac{d^{3}\sigma}{dy^{*}dy_{b}dx} = \frac{1}{\mathcal{L}_{int}} \frac{N_{eff}}{\Delta y^{*}\Delta y_{b}\Delta x}$$

$$\mathbf{y}^{*} = \frac{1}{2} |y_{1} - y_{2}|, \ y_{b} = \frac{1}{2} |y_{1} + y_{2}|$$

$$\mathbf{x} = m_{1,2} \text{ or } \langle p_{T} \rangle_{1,2} = \frac{1}{2} (p_{T,1} + p_{T,2})$$

CMS - Dijet cross sections: Samples and event selection

Samples

Data: 2016 $\rightarrow \sqrt{s} = 13 \text{ TeV}, \ \mathcal{L}_{int} = 36.3 \text{ fb}^{-1}$

Jet reconstruction (FASTJET)

- Jet algorithm: anti-k_T
- Jet sizes: R=0.4 and R=0.8

CMS - Dijet cross sections: Samples and event selection

Samples

Data: 2016 $\rightarrow \sqrt{s} = 13 \text{ TeV}, \ \mathcal{L}_{int} = 36.3 \text{ fb}^{-1}$

Jet reconstruction (FASTJET)

- Jet algorithm: anti-k_T
- Jet sizes: R=0.4 and R=0.8

Event selection

- Double-differential:
 - $p_{T,1} \ge 100 \text{ GeV}$, $p_{T,2} \ge 50 \text{ GeV}$ - $|y_1| < 2.5$, $|y_2| < 2.5$
- Triple-differential:
 - $p_{T,1} \geq 100 \; ext{GeV}$, $p_{T,2} \geq 50 \; ext{GeV}$
 - $|y_1| < 3.0$, $|y_2| < 3.0$

A Events from one measurement are not necessarily included in the phase space of the other!

CMS - Dijet cross sections: Unfolding

- Detector level \rightarrow Particle level spectrum
- Least-square minimisation: χ² = (Ax + b − y)^TV_y⁻¹(Ax + b − y) (same method for R_{Δφ})

CMS - Dijet cross sections: Unfolding

- Detector level \rightarrow Particle level spectrum
- Least-square minimisation: $\chi^2 = (Ax + b y)^T V_y^{-1} (Ax + b y)$ (same method for $R_{\Delta\phi}$)

CMS - Dijet cross sections: Fixed order pQCD

Argyro Ziaka (University of Ioannina)

26 / 29

CMS - Dijet cross sections: Fixed order pQCD

- Impact of measurement on PDFs
- Using HERA parametrisation
- Higher energy range of dijet mass → included in fit
- R = 0.8 (better Data-Theory agreement)
- Shown here: gluon PDF
- Reduced uncertainties especially in high x region

CMS - Dijet cross sections: Fixed order pQCD

- Impact of measurement on PDFs
- Using HERA parametrisation
- Higher energy range of dijet mass → included in fit
- R = 0.8 (better Data-Theory agreement)
- Shown here: gluon PDF
- Reduced uncertainties especially in high x region
- Extraction of αs:

2D: $\alpha_s(m_Z) = 0.1179 \pm 0.0019$ (tot.) **3D:** $\alpha_s(m_Z) = 0.1181 \pm 0.0022$ (tot.)

Summary & Conclusions

• (A)TEEC¹:

ATLAS

- ✓ Precise determination of $\alpha_S(m_Z)$ and running of $\alpha_S(Q)$ in TeV scale
- Jet cross section ratios²:
 - ✓Improvement of JES uncertainty
 - ✓ Is eligible for determination of $\alpha_s(m_Z)$

¹JHEP 07 (2023) 85 ²arXiv:2405.20206, submitted to PRD ³EPJC 84, 842 (2024) ⁴ arXiv:2312.16669, submitted to EPJC

Summary & Conclusions

- (A)TEEC¹:
 - ✓ Precise determination of $\alpha_S(m_Z)$ and running of $\alpha_S(Q)$ in TeV scale
- Jet cross section ratios²:
 - ✓Improvement of JES uncertainty
 - ✓ Is eligible for determination of $\alpha_S(m_Z)$
- Azimuthal correlations $(R_{\Delta\phi})^{3}$:

✓ Small experimental uncertainties→appealing for $\alpha_S(m_Z)$ determination using NNLO

✓Investigation of $\alpha_{S}(Q)$ running in the TeV region, expanding the range of the running

• Multi-differential dijet cross sections⁴:

 \checkmark Improved determination of PDFs compared to fits from ${\rm HERA}$ data alone

✓ Precise determination of $\alpha_S(m_Z)$ value

- ¹JHEP 07 (2023) 85
- ²arXiv:2405.20206, submitted to PRD
- ³EPJC 84, 842 (2024)
- ⁴ arXiv:2312.16669, submitted to EPJC

THANK YOU FOR YOUR ATTENTION

BACK UP

(A)TEEC: Systematic uncertainties

- Jet Energy Scale(JES): restores energy of rec. jets by scaling p_T , energy, mass
- Jet Energy Resolution (JER): differences in response in Data and MC by imperfect simulation → smearing energy of jets in MC: c = R^{data}_{in situ}/R^{MC}_{in situ}
- Jet Angular Resolution (JAR): smearing ϕ by resolution in MC (p_T constant)
- **Unfolding:** mismodelling of data by simulation, difference between unfolded and generator level MC distribution
- Modelling: difference between unfolded cross sections of MC samples

(A)TEEC: Patricle level measurement

(A)TEEC: Theoretical uncertainties

• Scale: calculated by considering independent variations of μ_f and μ_r

- **PDF:** obtained by considering the set of eigenvectors/replicas provided by each PDF gtoup
- **Non-perturbative:** extracted from the envelope of the differences from different MC predictions
- α_s variation: effect of varying $\alpha_s(m_z)=0.117-0.119$

(A)TEEC: Fixed-order pQCD

Argyro Ziaka (University of Ioannina)

Multijet and multi-differential dijet

34 / 29

(A)TEEC: Data Ratio to fitted Theory

Cross section ratios: Precision study

Parton Shower model in HERWIG models does not affect the distribution much

Cross section ratios: JES

Cross section ratios: Comparison to MC

Argyro Ziaka (University of Ioannina)

Cross section ratios: Fixed-order pQCD

$R_{\Delta\phi}$: Experimental uncertainties

- Statistical: from the covariance matrix *after* unfolding
- JES: Jet Energy Scale uncertainty sources

 $\rightarrow \mathrm{p_{T}} = \mathrm{p_{T}}(1 \pm \text{unc. source})$

- JER: Jet Energy Resolution smearing process applied to MC samples
 - Other: Prefiring corrections, PU profile reweighting, MC modeling
- Statistical: from the covariance matrix after unfolding
- Correlations are considered in statistical uncertainty
- Diagonal elements: unity by construction (a bin is fully correlated with itself)
- Off-diagonal elements: bin-to-bin (anti-correlations)

$R_{\Delta\phi}$: NP corrections

NP correction factors:

 $\sigma^{\mathsf{PS+MPI+HAD}}$ C^{NP} σ^{PS}

- Parametrisation of C^{NP} with simple polynomial function $a + b \cdot p_T^c$
- Envelope from the predictions of the different MC event generators.
- Corrections of fixed-order pQCD predictions (parton level) for non-perturbative (NP) effects of multiple parton interactions (MPI) and hadronization (HAD)
- Applied on theory to be compatible with particle-level measurement

1.05

$R_{\Delta\phi}$: ElectroWeak corrections

Full NLO corrections to 3-jet production and R_{32} at the LHC

M. Reyer, M. Schönherr, S. Schumann $(\operatorname{arXiv:1902.01763}) \to \mathcal{O}(\alpha_s^n \alpha^m)$, with n + m = 2 and n + m = 4.

Combination of QCD and EW corrections Pure NLO EW corrections for n-jet:

$$\sigma_{nj}^{\text{NLO EW}} = \sigma_{nj}^{\text{LO}} + \sigma_{nj}^{\Delta \text{NLO}_1}$$

 $\Delta NLO_1:$ virtual and real EW corrections.

Combination to QCD process:

1 Additive: $\sigma_{nj}^{\text{NLO QCD}+\text{EW}}$

$$\sigma_{\textit{nj}}^{\rm LO} + \sigma_{\textit{nj}}^{\rm \Delta \rm NLO_0} + \sigma_{\textit{nj}}^{\rm \Delta \rm NLO_1}$$

 Δ NLO₀: virtual and real QCD corrections. Multiplicative: $\sigma_{nj}^{\text{NLO QCD} \times \text{EW}}$

$$\sigma_{\textit{nj}}^{\text{LO}}\left(1+\frac{\sigma_{\textit{nj}}^{\text{dNLO}_{0}}}{\sigma_{\textit{nj}}^{\text{LO}}}\right)\left(1+\frac{\sigma_{\textit{nj}}^{\text{dNLO}_{1}}}{\sigma_{\textit{nj}}^{\text{LO}}}\right)$$

EW corrections for $R_{\Delta\phi} < 5\%$ and EW correction uncertainties < 0.6%.

42 / 29

CMS - $R_{\Delta\phi}$: Fixed-order pQCD

- 4 NLO PDF sets (LHAPDF)
- PDF uncertainties: 68% CL Hessian/MC methods
- Scale uncertainties: difference between prediction for varying $\frac{1}{2} \leq \mu_R, \mu_F \leq 2$

- Particle-level Data with Theory corrected for NPs and EW
- Slight change in α_s value from theory \rightarrow significantly different prediction
- Thus, $R_{\Delta\phi}$ sensitive to α_S

$R_{\Delta\phi}$: Determination of $\alpha_s(m_z)$

- Extracted α_s(m_z) are compatible among each other within uncertainties.
- Scale uncertainties (theoretical) by far the dominant: 4 10 %.

Least square minimisation

$$\chi^2 = \sum_{ii}^{N} (D_i - T_i) C_{ij}^{-1} (D_j - T_j)$$

- N: number of measurements
- Di: experimental data
- T_i: theoretical predictions
- Cij: covariance matrix

• Covariance matrix composition:

$$C_{ij} = C_{uncor} + C_{exp} + C_{theo}$$

 C_{uncor} : numerical precision of FO predictions

- $\textbf{\textit{C}}_{exp}~~:~ all$ the experimental uncertainties
- $C_{
 m theo}$: all the theoretical uncertainties

PDF set	$\alpha_s(m_z)$	Exp	NP	PDF	EW	Scale	Total	χ^2/n_{dof}
ABMP16	0.1197	0.0008	0.0007	0.0007	0.0002	+0.0043 -0.0042	+0.0045 -0.0044	16/16
СТ18	0.1159	0.0013	0.0009	0.0014	0.0002	+0.0099 -0.0067	$^{+0.0101}_{-0.0070}$	19/16
MSHT20	0.1166	0.0013	0.0008	0.0010	0.0003	+0.0112 -0.0063	$^{+0.0114}_{-0.0066}$	17/16
NNPDF3.1	0.1177	0.0013	0.0011	0.0010	0.0003	$^{+0.0114}_{-0.0068}$	$^{+0.0116}_{-0.0071}$	20/16

45 / 29

Djet cross sections: Experimental uncertainties

JES: 3→23%

 $\textbf{JER:} < 1 \rightarrow 7\%$

Luminosity: 1.2%

Unfolding: $\sim 1\%$ in forward region: 3-6%

Stat: $< 1 \rightarrow 31\%$ (larger in high m_{jj} bins)

Total: $4 \rightarrow 41\%$ (quadratic sum of contribution from all uncertainty sources)

Dijet cross sections: NP and EW corrections

- Parametrise following $a/x^b + c$ to mitigate fluctuations
- Large correction values in lowest $m_{1,2}$ bins (up to 20%)

• FW effects become

- Larger EW factors for high $m_{1,2}$ values and central $|y|_{max}$ regions (Up to 15%)
- Forward $|y|_{max}$ regions: negative EW factors
Dijet cross sections: Fixed-order pQCD

Theoretical predictions

- Up to NNLO in pQCD with NNLOJET (interfaced to FASTNLO via APPLFAST)
- $\mu_R = \mu_F = m_{1,2}$
- PDF set: CT18 NNLO
- Band from NNLO corrections mostly lies within the NLO, showing good perturbative convergence.

Dijet cross sections: Fixed order pQCD

- Fixed-order pQCD predictions at NNLO corrected with NP and EW
- Shown here: Data and CT18

Dijet cross sections: Data - Theory comparison (2D)

Dijet cross sections: Data - Theory comparison (3D)

Argyro Ziaka (University of Ioannina)

Dijet cross sections: HERA fits

Argyro Ziaka (University of Ioannina)

52 / 29