α_{s} measurements by ATLAS and CMS

Oleg Kuprash¹ on behalf of the ATLAS and CMS Collaborations ¹Albert-Ludwigs-Universität Freiburg QCD@LHC, Freiburg (Germany) 7-11 October 2024

Content

- ATLAS Collaboration, "A precise determination of the strong-coupling constant from the recoil of Z bosons with the ATLAS experiment at $\sqrt{s} = 8$ TeV", STDM-2023-01, submitted to Nature Phys., arXiv:2309.12986 [Press Statement]
- CMS Collaboration, "Measurement of energy correlators inside jets and determination of the strong coupling $\alpha_{\rm S}(M_Z)$ ", <u>SMP-22-015</u>, <u>Phys. Rev. Lett. 133 (2024) 071903</u>, <u>arXiv:2402.13864</u> [Physics breafing]
- CMS Collaboration, "The strong coupling constant and its running from inclusive jet production at CMS", CMS-PAS-SMP-24-007

Part I

ATLAS Collaboration, "A precise determination of the strong-coupling constant from the recoil of Z bosons with the ATLAS experiment at $\sqrt{s} = 8$ TeV", STDM-2023-01, submitted to Nature Phys., arXiv:2309.12986 [Press Statement]

Measure $\alpha_{\rm S}(M_Z)$ from the $p_{\rm T}(Z)$ distribution

- Z bosons produced in hadron collisions recoil against QCD initial-state radiation
- The Sudakov factor is responsible for the existence of a peak in the Z-boson $p_{\rm T}$ distribution, at values of approximately 4 GeV
- The position of the peak is sensitive to $\alpha_S(M_Z)$
- Semi-inclusive observable
 - > At the phase space boundary
 - Characterized by two energy scales

$$\alpha_S^n \frac{M^2}{q_T^2} \ln^m \left(\frac{M^2}{q_T^2} \right)$$

Event selection

- Run-1 8 TeV data, 20.2 fb⁻¹ Eur. Phys. J. C 84 (2024) 315
- Three channels

➢ eeCC: two central electrons (6.2M events) $p_{\rm T}$ > 20 GeV, $|\eta|$ < 2.4</p>

- μμCC: two muons (7.8M events)
- $p_{\mathrm{T}} > 20~\mathrm{GeV}$, $|\eta| < 2.4$

➢ eeCF: central + forward electron (1.2M events)
Forward e: 2.5 < $|\eta|$ < 4.9, $p_{\rm T}$ > 20 GeV (25 GeV
for the central e)

• $80 < m_{ll} < 100 \, {\rm GeV}$

Cross section measurement

• Cross section of the Z boson production in the *full lepton phase space* is extracted using the angular coefficients method

Expected number of events in n-th reco bin:

$$egin{aligned} N_{ ext{exp}}^n(A, \sigma^{U+L}, eta, \gamma) &= \left\{ \sum_j \sigma_j^{U+L} imes L \ & imes \left[t_{8j}^n(eta) + \sum_{i=0}^7 A_{ij} imes t_{ij}^n(eta)
ight]
ight\} \ & imes \gamma^n + \sum_B^{ ext{bkgs}} T_B^n(eta), \end{aligned}$$

 $n = 1 \dots 22528$: reco bin nr. $j = 1 \dots 352$: truth bin nr. $i = 0 \dots 7$: index for spherical harmonic P_i A_{ij} : angular coefficients σ_j^{U+L} : unpolarised cross section t_{ij}^n : signal P_i polynomial MC templates T_B^n : background templates L: integrated luminosity β : Gaussian-constrained systematic NPs γ : Poisson-constrained statistical NPs (NP = nuisance parameter)

- 9 parameters of interest A_i ($i = 0 \dots 7$) and σ^{U+L} are measured in 352 ($p_T(Z)$, |y(Z)|) bins in a profile likelihood fit

– Likelihood defined in 22528 ($\cos heta$, ϕ , p_{T} , y) bins

Cross section measurement

• Cross section of the Z boson production in the *full lepton phase space* is extracted using the angular coefficients method

Expect
$$\frac{1}{N_{exp}^n}$$
 $\frac{d\sigma}{dp_T dy dm d\cos\theta d\phi} = \frac{3}{16\pi} \frac{d\sigma^{U+L}}{dp_T dy dm}$
 $\begin{cases} (1 + \cos^2\theta) + \frac{1}{2} A_0(1 - 3\cos^2\theta) + A_1 \sin 2\theta \cos\phi \\ + \frac{1}{2} A_2 \sin^2\theta \cos 2\phi + A_3 \sin\theta \cos\phi + A_4 \cos\theta \\ + A_5 \sin^2\theta \sin 2\phi + A_6 \sin 2\theta \sin\phi + A_7 \sin\theta \sin\phi \end{cases}$. The set of the expectation of the expecta

– Likelihood defined in 22528 ($\cos \theta$, ϕ , p_{T} , y) bins

- 9

Cross section measurement

• Cross section of the Z boson production in the *full lepton phase space* is extracted using the angular coefficients method

d σ	_ 3	$\mathrm{d}\sigma^{U+L}$
$\overline{\mathrm{d}p_{\mathrm{T}}\mathrm{d}y\mathrm{d}m\mathrm{d}\cos\theta\mathrm{d}\phi}$	$=\overline{16\pi}$	$\tau dp_T dy dm$
	{(1+	$+\cos^2\theta$) + $\frac{1}{2}A_0(1 - 3\cos^2\theta) + A_1\sin 2\theta \cos\phi$
	$+\frac{1}{2}A_{2}$	$A_2 \sin^2 \theta \cos 2\phi + A_3 \sin \theta \cos \phi + A_4 \cos \theta$
	+A5 8	$\sin^2\theta \sin 2\phi + A_6 \sin 2\theta \sin \phi + A_7 \sin \theta \sin \phi \bigg\}.$

- Advantageous method:
 - Model-independent ansatz: cross-section decomposed into 9 terms with various angular dependencies (due to spin-1 nature of the Z)
 - ➤ Measurement in the full phase space → avoid theoretical uncertainties related to phase space extrapolation (important for interpretations)
 - Smaller sensitivity to theoretical uncertainties than for the unfolded fiducial measurements
 - Trade systematics for statistics

Double-differential Drell-Yan measurement

- First doubly-differential measurement at the LHC of full lepton phase space DY cross section
- Statistically dominated measurement
- Negligible theory uncertainties:
 - Cross-sections are parameters of the fit, not the result of an extrapolation

Comparison of dilepton channels

- Results are compatible between eeCC, μμCC, eeCF regions
 - Important cross check of detector calibration

- Exquisite per-mille level precision in the central region
- Sub-percent uncertainties up to |y| < 3.6 thanks to dedicated forward electron calibration

Predictions vs measurement

- Measurement compared to • predictions employing N⁴LL_{approx} logarithmic accuracy resummed calculations at low $p_{\rm T}$
 - > Matched to $O(\alpha_S^3)$ from MCFM at high $p_{\rm T}$
- Excellent agreement between data ulletand predictions
 - Impressive progress understanding of the boson $p_{\rm T}$ modelling from experimental and theoretical points of view

35

p_{_} [GeV]

Extraction of α_S : methodology

PLB 845 (2023) 138125

- Theory expectation from DYTurbo at N⁴LL_{approx} and N³LO
- Use the region of $p_{\rm T}(Z) < 29~{\rm GeV}$
- At each value of α_S, use the corresponding N³LO MSHT20 PDF set (the only set available at N³LO)
 χ²(β_{exp}, β_{th}) =

$$\begin{split} &\sum_{i=1}^{N_{\text{data}}} \frac{\left(\sigma_i^{\exp} + \sum_j \Gamma_{ij}^{\exp} \beta_{j,\exp} - \sigma_i^{\text{th}} - \sum_k \Gamma_{ik}^{\text{th}} \beta_{k,\text{th}}\right)^2}{\Delta_i^2} \\ &+ \sum_j \beta_{j,\exp}^2 + \sum_k \beta_{k,\text{th}}^2 \,. \end{split} \quad \text{PDF profiling} \end{split}$$

 Γ_{ij}^{exp} encodes covariance matrix of the measured double-differential cross section Γ_{ik}^{th} covers nuisance parameters of the PDF Hessian uncertainties and of the non-perturbative form-factor β : Experimental and theoretical NP vectors

 $\alpha_{
m S}$ measurements by ATLAS and CMS

Fit result

• Postfit
$$\frac{\chi^2}{ndf} = \frac{82}{72}$$
 (*p* = 0.2)

- Figure shows the ratio between the measurement and post-fit prediction
- Blue band shows the the PDF uncertainty of the prediction, constrained in the fit
 - Pulls and constraints of the PDF uncertainties are below 1σ and 30%, respectively -> new minimum close to the original one

Uncertainties

- PDF Hessian uncertainties
- Scale variations: independent μ_R , μ_F and Q (resummation scale) variations
- Flavour model: use variable-flavour number scheme in the PDF evolution/ α_S running in the Sudakov region; charm and bottom threshold variations; include effect of the gluon splitting into massive $c\bar{c}$, $b\bar{b}$ pairs \rightarrow take envelope

Uncertainty of α_S in units of 10^{-3}

Experimental uncertainty	± 0.44	
PDF uncertainty	± 0.51	
Scale variation uncertainties	cale variation uncertainties ± 0.42	
Matching to fixed order	0	-0.08
Non-perturbative model	+0.12	-0.20
Flavour model	+0.40	-0.29
QED ISR	± 0.14	
N^4LL approximation	± 0.04	
Total	+0.91	-0.88

Final result

0.8%

 $\alpha_S(M_Z) = 0.1183 \pm 0.0009$

- The most precise determination of α_S
 As precise as PDG and Lattice world averages
- First $\alpha_S(m_Z)$ determination at N³LO + N⁴LL_{approx}
- Using $p_T(Z)$ cross section in the full phase space
- Clean experimental signature (leptons) with highest exp sensitivity
- α_S measured directly at m(Z) scale (as in LEP event shapes)

Cross-checks (a selection)

- Repeat fit using lower orders (also with MSHT20)
 - > α_S at higher orders is always within uncertainties of lower orders
 - good convergence of the perturbative series
- At order N⁴LL_{approx}+N³LO, only one N³LO PDF set available: MSHT20aN3LO
 - Study the dependence of the results on the choice of PDF set by fitting one order lower, i.e. N³LL + N³LO using NNLO PDFs
 - > Observed spread of ± 0.00102 using PDF profiling
- Simultaneous PDF + α_S fit using HERA DIS and ATLAS $p_T(Z)$ data at N³LL + N³LO yields the exp & PDF (total) uncertainty of ± 0.00064 (± 0.0010)

PDF set	$\alpha_{\rm s}(m_Z)$	PDF uncertainty	$g \; [GeV^2]$	$q \ [GeV^4]$
MSHT20 [37]	0.11839	0.00040	0.44	-0.07
NNPDF4.0 [84]	0.11779	0.00024	0.50	-0.08
CT18A [29]	0.11982	0.00050	0.36	-0.03
HERAPDF 2.0 [65]	0.11890	0.00027	0.40	-0.04

Part II CMS Collaboration, **"Measurement of energy correlators inside jets and determination of the strong coupling** $\alpha_{\rm S}(M_Z)$ " <u>SMP-22-015</u>, *Phys. Rev. Lett.* 133 (2024) 071903, arXiv:2402.13864 [Physics breafing]

Energy-energy correlators

- New jet substructure observables proposed to describe multiparticle energy correlations within jets Phys. Rev. D 102, 054012 (2020)
- Evolved from the event shape energy-energy correlator (EEC) extensively studied in e⁺e⁻ experiments
- Derived from energy flow operators; collinear- and infrared-safe
- Analytical predictions at NLO+NNLL_{approx} can be achieved

Energy-energy correlators: definition

• Two- and three-particles correlators (E2C, E3C) within jets

E2C: for each pair of particles (i, j) within a jet, fill the distribution of x_L

$$x_L = \Delta R_{ij} = \sqrt{\left(\Delta \eta_{i,j}\right)^2 + \left(\Delta \phi_{i,j}\right)^2}$$

- Jet with n particles contributes with n^2 entries, each having a weight $\frac{E_i E_j}{F^2}$

E3C: for each triplet of particles (i, j, k), fill the distribution of

 $x_L = \max\{\Delta R_{ij}, \Delta R_{jk}, \Delta R_{ik}\}$

- Jet with *n* particles contributes with n^3 entries, each with a weight $\frac{E_i E_j E_k}{F^3}$
- General properties:
 - > The E2C and E3C distributions are normalized to the number of jets in the event sample
 - E2C and E3C are insensitive to soft radiation

Energy-energy correlators

- Different x_L regions probe the dynamics of jet formation:
 - Perturbative (Quarks/Gluons)
 - Confinement (Transition)
 - Free hadron
- Time scale of splitting:

Event selection and unfolding

- 2016 pp data at $\sqrt{s} = 13$ TeV, 36.3 fb⁻¹
- At least two anti-k_T jets (R=0.4) with $p_{\rm T} > 97~{\rm GeV}$ and $|\eta| < 2.1$
 - Central jets for good reconstruction of jet constituents
- Two leading jets are back-to-back with $|\Delta \phi|>2$
- Only two leading jets are used for building E2C and E3C
- Iterative D'Agostini unfolding to particle level
 - Matching of particles to reconstructed objects
 - > Matching efficiency:
 - 80-84% for charged particles
 - 54-70% for photons
 - 20-35% for neutral particles
- Correlation between bins (each jet contributes multiple entries) are preserved, ~40% on average
 - > Data are split into two halves for computing E2C and E3C, for simplicity

Unfolded E2C distributions

- Nominal prediction by Pythia8.240 (CP5 tune) describes data well and is used for unfolding to particle level
- MC generators differ in parton shower and hadronization modelling, tuning of the parameters, and fixed-order matrix element calculation
- Difference between unfolded results when using response matrix from various MC generators is the largest source of uncertainty of the E2(3)C distributions

07.10.2024

Unfolded E3C distributions

Experimental systematics:

- Unfolding (see previous page)
- Energy scale of the jet
 constituents: 3% for γ, 1% (3%)
 for charged (neutral) particles
- Track reconstruction efficiency (3%)

Theory uncertainties (blue band):

- μ_F and μ_R variation by factors 0.5, 2
- PDF uncertainty
- Variation of the nonsingular term coefficient in Pythia PS splitting kernels by ±2
- Difference between CP5 and Monash tune

E3C/E2C ratio

- Most of E2C and E3C experimental systematic uncertainties cancel out in the ratio:
 - ▶ Exp. Syst.: $\sim 8\% \rightarrow \sim 3\%$
- Sensitivity to modelling of non-perturbative effects in MC is strongly reduced
- Very good agreement between all MC generators and data in the perturbative region

Extraction of $\alpha_{\rm S}$

- Only the perturbative region is used; $x_L < 0.234$ to avoid boundary effects of the jet clustering algorithm
- E3C/E2C $\propto \alpha_S \ln x_L$
 - \blacktriangleright Decreasing slope for larger $p_{\rm T}^{\rm jet}$ reflects the running of $\alpha_{\rm S}$
- Theory predictions at NLO + NNLO_{approx} JHEP05 (2024) 043
- Hadronisation and UE correction (5-40% on E2(3)C) extracted from Pythia and Herwig and applied to perturbative calculation
 - Largely cancels out in the E3C/E2C ratio (below 3%)

07.10.2024

 $lpha_{
m S}$ measurements by ATLAS and CMS

Extraction of α_S

$$\chi^2 = [\vec{v}_{\rm m}(\vec{\theta}) - \vec{v}_{\rm th}(\alpha_{\rm S},\vec{\theta})]^{\mathsf{T}} V_{\rm m}^{-1} [\vec{v}_{\rm m}(\vec{\theta}) - \vec{v}_{\rm th}(\alpha_{\rm S},\vec{\theta})] + \sum_i \theta_j^2$$

- For each value of α_s , the χ^2 is minimized vs NPs $\vec{\theta}$ encoding experimental and theory systematics
- V_m : covariance matrix of the unfolded data

 $\alpha_{S}(M_{Z}) = 0.1229^{+0.0014}_{-0.0014}(\text{stat})^{+0.0030}_{-0.0033}(\text{theo})^{+0.0023}_{-0.0036}(\text{exp})$ $\alpha_{S}(M_{Z}) = 0.1229^{+0.0040}_{-0.0050} (\frac{3\%}{4\%})$

- Most precise *α_S* determination using jet substructure observables
- The measurement is systematics dominated, with largest contributions from
 - Renormalization scale variation of the prediction (2.4%)
 - Energy scales of the jet constituents (2.3%)

Part III

CMS Collaboration, "The strong coupling constant and its running from inclusive jet production at CMS" CMS-PAS-SMP-24-007

α_S from inclusive jet data

 QCD analysis (simultaneous PDF and α_S fit) using measurements of inclusive jet production Fit using xFitter

\sqrt{s} [TeV]	\mathcal{L} [fb $^{-1}$]	N _{dp}	<i>p</i> _T [GeV]	y
2.76	0.0054	80	74–592	0.0-3.0
7	5.0	130	114–2116	0.0-2.5
8	20	165	74–1784	0.0-3.0
13	33.5	78	97-3103	0.0-2.0

- Using NNLO predictions from NNLOJET Phys. Rev. Lett. 118 (2017) 072002
- Final result:

 $\alpha_S(M_Z) = 0.1176^{+0.0014}_{-0.0016} \quad (1.2\%)$

- Most precise results based on jet cross section data
- Uncertainty dominated by theory systematics

07.10.2024

Test of α_S running

- α_S extracted in five mutually exclusive $\mu_R = p_T^{jet}$ regions
- Observed running of α_S is in agreement with the QCD five-loop five-flavour RGE

Summary

- Three most precise α_S results by ATLAS and CMS Collaborations; two of them based on novel methods:
 - > ATLAS: most precise $\alpha_{\rm S}({\rm M}_Z)$ measurement
 - Using Z boson recoil novel
 - Based on precision double-differential Drell-Yan cross section measurement in the full dilepton phase space
 - \succ CMS: most precise $\alpha_{\rm S}({\rm M}_Z)$ measurement based on jet substructure
 - Using new observables: energy-energy correlators of particles within jets novel
 - $\alpha_{\rm S}({\rm M}_Z)$ extracted from the ratio E3C/E2C
 - \succ CMS: most precise $\alpha_{\rm S}({\rm M}_Z)$ measurement from inclusve jet cross sections
 - QCD analysis of CMS inclusive jet data at 2.76, 7, 8, 13 TeV
 - Test of α_S running for energy scales between 100 and 1600 GeV