Jet substructure studies with ATLAS and CMS

Luka SELEM On behalf of the ATLAS and CMS collaborations

QCD@LHC conference Freiburg im Brisgau 07/10/2024

Why study jet substructure

Jet substructures to resolve boosted signatures

- From **jet mass** to more complex variables
- Jet tagging : Quark/gluon, W/Z, top, higgs
- Discriminate exotics models

Jet substructure to test and improve Monte Carlo prediction

- Parton shower, hadronisation models
- Improve MC parameter tuning

Study **non-perturbative** QCD and **jet fragmentation**

→ To be compared to heavy ions QGP

New results to be presented

The Lund jet plane

- for inclusive QCD jets: <u>JHEP 05 (2024) 116</u> (CMS)
- for top and W jets: <u>arXiv:2407.10879</u> (ATLAS)
- as a tool to reweight multi-prong jets: <u>CMS-DP-2023-046</u>(CMS)

Improving Monte Carlo prediction

- Top jet substructure in ttbar: <u>Phys. Rev. D 109 (2024) 112016</u> (ATLAS)
- Lund Subjet Multiplicity: <a>arXiv:2402.13052 (ATLAS)
- Unbinned substructure variables unfolding with OMNIFOLD: <u>arXiv:2405.20041</u> (ATLAS)

Study of jet fragmentation

- Track function = integrate hadrons correlations: <u>ATLAS-CONF-2024-012</u> (ATLAS)
- Dead cone effect in b-jets and D^o jets: <u>CMS-PAS-HIN-24-005</u>, <u>CMS-PAS-HIN-24-007</u> (CMS)

The Lund Jet Plane

CMS result for inclusive jet selection in Run 2

JHEP 05 (2024) 116

Measurement of the **primary Lund jet plane density** in proton-proton collisions at $\sqrt{s} = 13$ TeV

ATLAS result in ttbar events from Run 2

arXiv:2407.10879

Measurement of the Lund jet plane in hadronic decays of top quarks and W bosons with the ATLAS detector

CMS Performance Note based on Run 2 data

CMS-DP-2023-046

Lund Plane Reweighting for Jet Substructure Correction

Building the Lund Jet Plane

Properties of the Lund Jet Plane

Subsequent emissions move left to right

➔ Cambridge-Aachen angular ordering

Define emission average density

$$\label{eq:rho} \begin{split} \rho(k_{\rm T},\Delta R) \equiv & \frac{1}{N_{\rm jets}} \frac{{\rm d}^2 N_{\rm emissions}}{{\rm d}\ln(k_{\rm T}/{\rm GeV}) {\rm d}\ln(R/\Delta R)} \\ \\ & \text{Get a per-jet picture} \end{split}$$

Soft collinear region

 $earrow plateau evolving with running of <math>\alpha_s$

$$\rho(k_{\rm T}, \Delta R) \approx \frac{2}{\pi} C_{\rm R} \alpha_{\rm S}(k_{\rm T})$$

CR : color factor

Unfolded Lund Jet Plane

Iterative Bayesian Unfolding for inclusive QCD jets

→ More phase space available

$$\rho(k_{\rm T},\Delta R)\approx \frac{2}{\pi}C_{\rm R}\alpha_{\rm S}(k_{\rm T})$$

 α_s increases when k_T decrease (until non-perturbative effects enter)

Theory prediction of LJP

Soft collinear one-loop analytical prediction

→ Running of α_s well modelled

$$\rho(k_{\rm T},\Delta R)\approx \frac{2}{\pi}C_{\rm R}\alpha_{\rm S}(k_{\rm T})$$

Agreement with NLO + NLL + Non-Perturbative predictions

➔ First principle understanding of LJP

Benchmark choice for Monte-Carlo

CP5 best for multijet, found worst in LJP (jet substructure)

→ Complementarity!

 $ln(R/\Delta R)$

10-1

٨R

In(R/ΔR

10-1

ΔR

The Lund Jet Plane

CMS result for inclusive jet selection in Run 2 <u>JHEP 05 (2024) 116</u> Measurement of the **primary Lund jet plane density** in proton-proton collisions at $\sqrt{s} = 13$ TeV

ATLAS result in ttbar events from Run 2

arXiv:2407.10879

Measurement of the Lund jet plane in **hadronic decays of top quarks and W bosons** with the ATLAS detector

CMS Performance Note based on Run 2 data

CMS-DP-2023-046

Lund Plane Reweighting for Jet Substructure Correction

Selection of t tbar events

Jet definition			
Constituents	Weighted calorimeter topo clusters		
Clustering	Anti- $k_{\rm T} R = 1.0$		
Grooming	Trimming $R_{\rm trim} = 0.2, f_{\rm trim} = 0.05$		
	Event selection		
Trigger	Single lepton (e^{\pm}, μ^{\pm}) trigger		
W Lepton	= 1 passing lepton selection		
W Neutrino	$E_{\rm T}^{\rm miss} > 60 {\rm GeV}, E_{\rm T}^{\rm miss} + m_{\rm T}^W > 20 {\rm GeV}$		
b-tagged jet	≥ 1 and $\Delta R(\ell, j_{b1}) < 1.5$		
Large-R Jet	$p_{\rm T}^{jet} > 350 { m GeV}, y < 1.1 \text{ and } \Delta R(\ell, J) > 2.3$		
Large-R jet classification			
top-jet	$m_J > 140 \text{GeV}, 2^{nd} \text{ b-jet with } \Delta R(J, j_{b2}) < 1.0$		
W-jet	$60\mathrm{GeV} < m_J < 100\mathrm{GeV}$		
Backgrounds			
Irreducible tW , V +jets $t\bar{t}Z$, $t\bar{t}W$, $t\bar{t}H$, VV	MC simulations		
Fake leptons	Data-driven Matrix Method		

Per event, leading p_T Large-R jet classified (W or top) and used to reconstruct the Lund Jet Plane

Change of Lund Jet Plane definition

Large bins correlations across the plane

Unfolded Lund Jet Plane

Iterative Bayesian Unfolding to particle level

Uncertainties dominated by modelling systematics (ttbar and PS modelling) at ~10-40%

Ve - 12 ToV

Total Syst. Un

MC benchmarking

 $\chi^{\rm 2}$ agreement test between all MC and data across the Lund Jet Plane

- W-jets : all p-values < 1%

Top-jets: all > 1%, best isSHERPA2.2.10 (p-value ~ 33%)

Local p-values in sub-regions are systematically higher

Lost correlations between bins across the plane

Improve tuning of MC for ttbar events

The Lund Jet Plane

CMS result for inclusive jet selection in Run 2 JHEP 05 (2024) 116

Measurement of the **primary Lund jet plane density** in proton-proton collisions at $\sqrt{s} = 13$ TeV

ATLAS result in ttbar events from Run 2

arXiv:2407.10879

Measurement of the Lund jet plane in hadronic decays of top quarks and W bosons with the ATLAS detector

CMS Performance Note based on Run 2 data

CMS-DP-2023-046 Lund Plane Reweighting for **Jet Substructure Correction**

Calibrating multi-prong jets

Calibrate multi-prong jets from exotic signal

➔ Reweight Lund Jet Plane of subjets

Maps made with SM subjets

Used to reweight each splitting in subjets

Calibration of multiprong jets from exotic signals

Validation

Using semi-leptonic ttbar channel

- ightarrow Similar selection as ATLAS analysis
- Build reweighting LJP maps with W jets (2-prongs)
 - → Apply to top-jets (3-prong)

- **Improvement** extrapolates to higher number of prongs
 - Particulary visible in 3-prongs related variable

Main uncertainty from **matching** reco subjet to truth quark

➔ Increases with number of prongs

Improving Monte Carlo predictions

ATLAS result in ttbar events from Run2 Phys. Rev. D 109 (2024) 112016

Measurement of jet substructure in boosted tt events with the ATLAS detector using 140 fb⁻¹ of 13 TeV pp collisions

ATLAS result in dijet events from Run 2 arXiv:2402.13052

Measurements of Lund subjet multiplicities in 13 TeV proton-proton collisions with the ATLAS detector

ATLAS result in Z+jets events from Run 2 arXiv:2405.20041

A **simultaneous unbinned differential cross section** measurement of twenty-four Z+jets kinematic observables with the ATLAS detector

Studying Large-R jets from top quark decay

Goal: study in **boosted** regime the substructure of top jets in **ttbar events**

➔ Average jet pT ~ 500GeV

8 jet substructure variables variables from **"ghost associated" tracks** unfolded with **Iterative Bayesian Unfolding**

Goodness of modelling of variables

Two-body related variables (τ₂₁, D₂) well modelled Three-body variables (τ₃₂, τ₃, C₃) have MC overestimate
3-body structure
→ Closer to 0

Poor modelling of the p_T dispersion p_T^{d*}

LHA and ECF2 well modelled

20

Quantitative agreement : χ^2 test

				E	Better nom	r than ninal)				Py FS	R Do Thia C
		Nomi	nal	Pythie → Her	a Wig	Powha → Maa	eg Igraph	E Agre	Bad emen	Im t Agr	proved eement	
(Observable	PWG- χ^2/NDF	+PY8 <i>p</i> -value	$ PWG \chi^2/NDF$	+H7 <i>p</i> -value	AMC@N χ^2/NDF	LO+PY8 <i>p</i> -value	PWG+PY χ^2/NDF	8(FSR UP) <i>p</i> -value	PWG+PY8 χ^2 /NDF	B(FSR Down) <i>p</i> -value	
	$ au_{32}$	54/12	< 0.01	19/12	0.09	15/12	0.24	165/12	< 0.01	40/12	<0.01	h
	$ au_{21}$	14/14	0.41	7/14	0.92	16/14	0.32	42/14	< 0.01	8/14	0.91	· ح (
	$ au_3$	36/11	< 0.01	42/11	< 0.01	14/11	0.23	130/11	< 0.01	23/11	0.02	· ر
	ECF2	25/18	0.13	13/18	0.78	15/18	0.69	31/18	0.03	24/18	0.14	•
	D_2	20/16	0.20	17/16	0.39	20/16	0.20	37/16	< 0.01	15/16	0.49	
	<i>C</i> ₃	11/14	0.65	6/14	0.97	3/14	1.00	35/14	< 0.01	3/14	1.00	
	$p_{\mathrm{T}}^{\mathrm{d},*}$	27/12	< 0.01	10/12	0.58	11/12	0.53	56/12	< 0.01	24/12	0.02	
	LĤA	14/17	0.65	9/17	0.92	20/17	0.29	14/17	0.69	19/17	0.32	i h
1	D_2 vs. m^{top}	61/42	0.03	62/42	0.02	59/42	0.05	118/42	< 0.01	44/42	0.37	
1	D_2 vs. $p_{\rm T}^{\rm top}$	71/56	0.08	68/56	0.13	70/56	0.11	107/56	< 0.01	93/56	< 0.01	
1	$_{32}$ vs. m^{top}	153/42	< 0.01	72/42	< 0.01	56/42	0.07	413/42	< 0.01	77/42	< 0.01	ATLAS
1	r_{32} vs. $p_{\rm T}^{\rm top}$	153/50	< 0.01	103/50	< 0.01	57/50	0.23	360/50	< 0.01	114/50	< 0.01	is = 13 Te

D₂ and τ₃₂ in tension with data in 2D distributions
 → Modelling improvement to yield lower theoretical uncertainties in top-tagging

Pythia FSR Up disfavoured,
SR Down improves agreement
→ Data favours increasing α₅^{FSR}

3-body mismodelling

Sensitive to hadronisation model

Correlations with m^{top} and p_T^{top}

21

Improving Monte Carlo predictions

ATLAS result in ttbar events from Run2 <u>Phys. Rev. D 109 (2024) 112016</u>

Measurement of jet substructure in boosted tt events with the ATLAS detector using 140 fb⁻¹ of 13 TeV pp collisions

ATLAS result in dijet events from Run 2

arXiv:2402.13052

Measurements of **Lund subjet multiplicities** in 13 TeV proton-proton collisions with the ATLAS detector

ATLAS result in Z+jets events from Run 2 <u>arXiv:2402.13052</u> A **simultaneous unbinned differential cross section** measurement of twenty-four Z+jets kinematic observables with the ATLAS detector

Lund Subjet multiplicity at various kt cut-off

Average Lund multiplicity

Average multiplicity <N_{Lund} > against k_t cut-off in pT bins

→ HERWIG Angular Ordered best

Analytic prediction NLO+NNDL reweighted to include non-perturbative effects (NP)

- Agrees well with MC and data
- At low k_t cut-off , **increasing disagreement with p_T**: worse than MC

Improving Monte Carlo predictions

ATLAS result in dijet events from Run 2 <u>arXiv:2402.13052</u>

Measurements of Lund subjet multiplicities in 13 TeV proton-proton collisions with the ATLAS detector

ATLAS result in ttbar events from Run2 Phys. Rev. D 109 (2024) 112016

Measurement of jet substructure in boosted to events with the ATLAS detector using 140 fb⁻¹ of 13 TeV pp collisions

ATLAS result in Z+jets events from Run 2

arXiv:2405.20041

A **simultaneous unbinned differential cross section** measurement of twenty-four Z+jets kinematic observables with the ATLAS detector

Unbinned simultaneous unfolding

Flaws of Iterative Bayesian Unfolding:

- Define target observables
- Define binning
- 1D, eventually 2D or 3D (but statistically limited)
- → Mismodelling due to hidden variable

Goal here: unfold **simultaneously** 24 observables at event level in an **unbinned** way

➔ OMNIFOLD method

In Z+jets events With large hadronic recoil

Event selection				
Trigger	Single muon trigger			
Muon selection	2 opposite charge, $p_{\rm T} > 25 \text{GeV}, \eta < 2.5$			
Z candidate	$m_{\mu\mu} \in [81; 101] \text{GeV}$			
Transverse hadronic recoil	$p_{\rm T}^{\mu\mu} > 200 { m GeV}$			
Jet selection	Only the 2 leading $p_{\rm T}$ jets			
Jet definition				
Constituents	Charged tracks (except the 2 muons)			
Clustering	Anti- $k_{\rm T} R = 0.4$			
Backgrounds				
Top processes $(t\bar{t}, tW)$	Treated as an uncertainty			

The OMNIFOLD method

DNN classifier score used to reweight a distribution

- **Reweight successively** the distribution at detector level and particle level
- Each reweigting needs **a new trained DNN**

Unfolded dataset published

Unbinned unfolding:

- Free choice of binning*
- Combination of variables possible
- Sub-region selection

→ Flexibility !

First unfolded unbinned dataset published at the LHC

- OMNIFOLD = rather lightweight and ready-to-use unfolding tool
- Asymptotically reduces to IBU
- Template for future such unfolding !

* Up to certain best practices to maintain statistical power in the bins

Study of jet fragmentation

ATLAS result in dijet events from Run2 :

ATLAS-CONF-2024-012 Measurement of **Track Functions** in ATLAS Run 2 Data

CMS results in jets from low pile-up pp run before heavy ions (301 pb⁻¹)

CMS-PAS-HIN-24-005

Jet fragmentation function and groomed substructure of **bottom quark jets** in proton-proton collisions at 5.02 TeV

CMS-PAS-HIN-24-007

Exploring small-angle emissions in prompt D° jets in proton-proton collisions at \sqrt{s} = 5.02 TeV

Observable definition

Goal: Study non-perturbative QCD in jets

- Fragmentation function for partons in **single** hadron
- Lack correlations between hadrons in reverse process: **hadronisation**
- → Jet level observable: track function

$$r_q = \frac{p_{\rm T}^{\rm charged}}{p_{\rm T}^{\rm all}}$$

Study the **moments** of its distribution

- First moment ~ 2/3 (QCD approximate Isospin symmetry)
- Higher moments encode **correlations in hadronisation**

In dijet events

Jet definition				
Constituents	Particle Flow objects			
Clustering	Anti- $k_{\rm T} R = 0.4$			
	Event selection			
Trigger	Single jet trigger			
Jet kinematic	$p_{\rm T}^{jet} > 240 {\rm GeV} \text{ and } y < 2.1$			
Dijet balance	$p_{\mathrm{T}}^{leading} < 1.5 \times p_{\mathrm{T}}^{subleading}$			
Jet selection	Only the 2 leading jets			
Backgrounds				
Non purely $2 \rightarrow 2$ QCI top quark, vector bosor	D processes : Negligible			

Unfolded distribution

Iterative Bayesian Unfolding of \mathbf{r}_q , \mathbf{p}_T and $\mathbf{\eta}_{central vs forward}$

- Uncertainties at 5 to 12 %, dominated by tracking uncertainties
- Up to 6th moment extracted in bins of pT
 - Very slowly evolving with jet p_T

From moments

 $\mu_n = \mathbf{E}[(X - \mathbf{E}[X])^n]$

The cumulant representation

Track function have a **non-linear renormalisation group flow** as opposed to DGLAP regime of standard fragmentation function

Flow in the cumulant representation

Should converge to a fixed point

32

Study of jet fragmentation

ATLAS result in dijet events from Run2 :

ATLAS-CONF-2024-012 Measurement of **Track Functions** in ATLAS Run 2 Data

CMS results in jets from low pile-up pp run before heavy ions (301 pb⁻¹)

CMS-PAS-HIN-24-005

Jet fragmentation function and groomed substructure of **bottom quark jets** in proton-proton collisions at 5.02 TeV

CMS-PAS-HIN-24-007

Exploring small-angle emissions in prompt D° jets in proton-proton collisions at \sqrt{s} = 5.02 TeV

Motivation

Analysis method

More details in back-up

Dead-cone effect

In b-jets

Supression at low R
 = large ln(R/Rg)

In Dº-jets

- Supression at low θ = large ln(1/ θ)
- → Most visible with late- k_{T} grooming

Modelling of heavy quark jets

In b-jets

- Correct b-jet modelling by Pythia
- **Mismodelling in Herwig** itself better in inclusive

In D^o jets

- **Herwig** better in inclusive jets
- Similar Mismodelling in Herwig and
 Pythia for D^o jets

The Lund Jet Plane and other substructure variables studies can

- Test and improve state-of-the-art theoretical calculations
- Modelling of QCD in a wide range of energy scales from hadronisation to perturbative regime
- Provide **data-driven** tools for tagging or reweighting

CMS provides insight in the **dead-cone effect** in heavy quark fragmentation

ATLAS publishes the first particle-level dataset obtain with a **novel unbinned unfolding** method : **OMNIFOLD**

Thank you for your attention

QCD jets Lund plane: events selection & unfolding

JHEP 05 (2024) 116 (CMS)

Jet definition				
Constituents	Particle Flow objects			
Clustering Anti- $k_{\rm T} R = 0.4$ or 0				
Event selection				
Trigger	Single jet trigger			
Jet $ y $	< 1.7			
Jet $p_{\rm T}$ [GeV]	$p_{\mathrm{T}}^{jet} > 700$			
Backgrounds				
Non purely QCD processes top quark, vector bosons,	: Highly negligible			

Lund jet plane **unfolded** (Iterative Bayesian Unfolding) separately for R=0.4 and R=0.8 jets

Uncertainties dominated by parton shower and hadronisation modelling (2-7%)

From *detector level* to **particle level**

LJP Factorises effects : FSR

α_s^{FSR} variations decreases with decreasing k_T

- FSR Down = α_s^{FSR} increased favoured by data Consistent with ttbar!

AK8 jets $p_{\tau}^{\text{jet}} > 700 \text{ GeV}, |y_{\text{iet}}| < 1.7$ 0.9 Emission density $\rho(k_{\tau}, \Delta R)$ $0.333 < \ln(R/\Delta R) < 0.667$ 0.8 $< \Lambda B < 0.573$ Data HERWIG7 CH3 0.6E **PYTHIA8 CP5** 0.5E - - - - - - -PYTHIA8 CP5 (FSR up) PYTHIA8 CP5 (FSR down) 0.4 0.3 0.2 0.1 Pred./Data 0.8 3.5 0.5 25 In(k /GeV 10^{2} 10 k_T [GeV] Perturbative Hadronisation effect radiations

Impact of cut-off scale to start hadronisation

41

Event selection & unfolding of Lund subjet multiplicity

arXiv:2402.13052 (ATLAS)

Jet defin	ition	
Constituents	Particle Flow objects	
Clustering	Anti- $k_{\rm T} R = 0.4$	
Event sele	ection	
Trigger	Single jet trigger	
Jet kinematic	$p_{\rm T}^{jet} > 120 {\rm GeV} \text{ and } y < 2.1$	
Dijet balance	$p_{\rm T}^{leading} < 1.5 \times p_{\rm T}^{subleading}$	
Jet selection	Only the 2 leading jets	
Backgrou	unds	
Non purely $2 \rightarrow 2$ QCD processes :	Nogligible	
top quark. vector bosons	riegngible	

N_{Lund} and N_{Lund}^{Primary} at particle level with an **Iterative Bayesian Unfolding**

 \rightarrow In bins of p_T, $\eta_{central vs forward}$, and with varied k_t cut-off

Main uncertainties at 2% – 10 %

- Dominated by MC modelling
- Shrink with increasing cut-off

Studying Large-R jets from top quark decay

MC simulations

Data-driven Matrix Method

	Jet definition	
	All-hadronic channel	Semi-leptonic channel
Constituents	Weighted calorimeter topo clusters	R = 0.4 Particle Flow jets
Clustering	Anti- $k_{\rm T} R =$	1.0
Grooming	Trimming $R_{\rm trim} = 0.2$	$, f_{\rm trim} = 0.05$

Semi-leptonic channel

Goal: study in **boosted** regime the substructure of top jets

➔ Average jet pT ~ 500GeV

All-hadronic channel

 $t\bar{t}V, t\bar{t}H, VV$ Fake leptons

W

Substructure variables unfolding

Phys. Rev. D 109 (2024) 112016 (ATLAS)

8 substructure variables from "ghost associated" tracks unfolded to particle level using **Iterative Bayesian Unfolding** in both channels

Uncertainties at 5% in most bins, increases at tails of distributions

Main uncertainties are theoretical: FSR, parton shower and hadronisation modelling

ton-quark Mae

Hard Scattering Others Data Stat. Unc.

IESB

0.6 0.7 0.8 0.9 RC large-R jet

MC Stat Background

Parton Show

070809

Analysis method

B-jet fragmen	τατιοπ	CMS-PAS-HIN-24-00	
	Jet defini	tion	
Constituents Particle Flow objects			
Clustering		Anti- $k_{\rm T} R = 0.4$	
Grooming	Soft-drop $z_{\text{cut}} = 0.1, \beta = 0, k_{\text{T}} > 1 \text{GeV}$		
	Event sele	ction	
Trigger	single	e jet triggers at low $p_{\rm T}$	
<u>Inclusive Jet selection</u>	100 <	$p_{\rm T} < 120 {\rm GeV}, \eta < 2.0$	
b-jet	GNN tagger	at 52 $\%$ efficiency 99.9% purity	
	Backgrou	nds	
light+c jets		MC simulation	
double-b jets $(g \rightarrow bb)$	MC	template fit of $m_{\rm b \ had.}$	

B-hadron decay **clustered by a machine learning** classifier

Unfolded distributions

– Soft-drop grooming: R_g and z_g

$$z_{\rm b,ch} = \frac{p_{\rm T}^{\rm b,ch}}{p_{\rm T}^{\rm jet,ch}}$$

DACLUNI 24 000

D°-jet fragmentation

CMS-PAS-HIN-24-007

45

	Jet definition		
Constituents	Particle Flow objects		
Clustering	Anti- $k_{\rm T} R = 0.2$		
Grooming	Late- $k_{\rm T}$ with $k_{\rm T} > 1 \text{GeV}$ Soft-drop $z_{\rm cut} = 0.1, \beta = 0, k_{\rm T} > 1 \text{GeV}$		
	Event selection		
Trigger	single jet triggers at low $p_{\rm T}$		
Inclusive Jet selection	$100 < p_{\rm T} < 120 \text{GeV}, \eta < 1.6$		
D^0 meson candidate	2 oppositely charged tracks with $m^{\rm inv} = 1.86 \pm 0.2 {\rm GeV}, p_{\rm T}^{\rm inv} > 4 GeV, y^{\rm inv} < 1.2$		
D^0 jet	$\Delta R(jet, D^0) < 0.2$		
non-prompt rejection	Distance of Closest Approach $DCA/DCA_{\rm err} < 4$		
	Backgrounds		
Combinatorial background	Power law in m_{D^0} template fit		
non-promtp D^0 subtraction	MC template fit of DCA/DCA_{err}		

D^o Meson **decay tracks removed** from the grooming algorithm

2 Grooming angles unfolded $k_{\rm T} = \theta_{\rm g} p_{\rm T}^{\rm emission}$

- Late- k_T : sensitive to hard collinear emission ~ c \rightarrow cg splitting
- Soft-Drop: sensitive to larger angle emission
 ~ g→ cc splitting

Results in b-jets

Supression at low R
 = large ln(R/Rg)

Higher fraction of splitting momentum taken by b-quark

– Correct b-jet modelling by
 Pythia

- **Mismodelling in Herwig** (itself better in inclusive)

Results in D⁰ jets

→ Most visible with late- k_{τ} grooming