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INTRODUCTION

- Massive progress in computation of two-loop amplitudes in the last decades.

- Computational complexity grows fast with additional internal, external masses and legs.
+ Can become accessible with numerical methods.

+ In this talk: Fully numerical approach to compute two-loop amplitudes.

- Universal numerical approach would permit to achieve high precision in relevant processes
for LHC.



INTRODUCTION

HOW?
Integrate numerically directly in momentum space: # of integrations per loop order is fixed.
1. Create finite amplitude integrands

- Major obstacle: removal of infrared and ultraviolet singularities at the integrand level.

2. Integrate numerically
- Finite amplitude integrands in D = 4 — integrate with Monte Carlo. Can combine
momentum and phase space integration.
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Create finite amplitude integrands

+ Universal = IR factorization
- Build framework for factorization at the integrand level: local factorization.

- Advantage: Small number of counterterms, well known integrals to compute analytically and
gauge invariance.



INTRODUCTION

Create finite amplitude integrands

+ Universal = IR factorization
- Build framework for factorization at the integrand level: local factorization.

- Advantage: Small number of counterterms, well known integrals to compute analytically and
gauge invariance.

Progress towards a general framework

- Worked out previously for two examples at two loops
ete™ 4. 4" (Anastasiou, Haindl, Sterman, Yang, and Zeng (2021))
qq — Vi...V, withV; € {y", W, 2} (Anastasiou and Sterman (2022))
- First demonstration of framework for two-loop processes with external gluons:
gg — N colorless particles.

- For example:

P < wt
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OUTLINE

- Infrared factorization

- What is the price to pay to make IR factorization local?

- Complexity of gluons: triple gluon vertex —s decomposition
- How does the decomposition of the triple gluon vertex help?
- Factorization at the integrand level

- More complicated gluonic processes



INFRARED FACTORIZATION

Wide-angle scattering amplitudes in gauge theories factorize to all orders:
(Ma (2020), Erdogan and Sterman (2015), Dixon, Magnea, and Sterman (2008), Catani (1998), and Sen (1983))

Amplitude = Hard - Soft - ] ] Jet;,

p2

- Soft and Jet functions S, J;: contain all IR singularities, are universal functions.

-+ Hard function H: is process-dependent and IR finite.



INFRARED FACTORIZATION

Wide-angle scattering amplitudes in gauge theories factorize to all orders:
(Ma (2020), Erdogan and Sterman (2015), Dixon, Magnea, and Sterman (2008), Catani (1998), and Sen (1983))

Amplitude = Hard - Soft - ] ] Jet;,

p2

- Soft and Jet functions S, J;: contain all IR singularities, are universal functions.
-+ Hard function H: is process-dependent and IR finite.
Expand up to two perturbative orders:
H® — p
H® = p@ _ 0y

Goal: Make this manifestly local in momentum space! Generate integrand for the hard function H
free of singularities point-by-point in the integrand.



MAKE INFRARED FACTORIZATION LOCAL

Naively at first two perturbative orders at the integrand level:
HD = D
'H(Z) — M(Q) _]:(1)M(1)

- Physical IR singularities factorize: subtracted by a universal one-loop form factor amplitude
times the IR finite Born amplitude.

Naive integrand construction has non-local cancellations A

" _ cannot be integrated numerically. v



WHAT IS THE PRICE TO PAY?

Factorization at the integrand level:
HP (R, 1) = M@ (R, [) = FDR)MD (1) — AMP) (K, 1),

- Additional counterterm AM. Serves a purpose locally but does not change integrated value
of the finite amplitude:

/dlDAM@)(k, l)=o.

- Careful about the routing of loop momentum k, [ in the diagrams — make gauge invariance
apply locally.



MULTI-HIGGS PRODUCTION THROUGH GLUON FUSION

- Grey disk: heavy quark loop, gluons attach everywhere.

+ Diagrams with triple gluon vertices are the origin of collinear singularities k || p1 and k || pa.
- Second line is IR finite.

- Interested in the first line of IR singular diagrams.



TRIPLE GLUON VERTEX

What is the issue with gluonic diagrams and handling their singularities?

Too many terms!

7€

MHILE&L:EM
a.a B.b

—

k1 ko

= —sfavc (k1 — R2) "™ — gefuca(Re — k3)*n®Y — gsfuan (R — k)P

- Each term exhibits a different behavior in collinear limits!
- As a single object the diagrams with a triple gluon vertex do not factorize in a local fashion.

-+ Analyze each contribution separately.



“SCALAR”-DECOMPOSITION
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Note: vertex of color-octet scalars and a gluon is
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Appears in triple gluon vertex times a metric 1



“SCALAR”-DECOMPOSITION
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Note: vertex of color-octet scalars and a gluon is

7,
Elkﬁ = —gsfac (k1 = k2)"
[ b
L
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Appears in triple gluon vertex times a metric 1

“Scalar”-decomposition

7, v.¢ 4 g
I |
I I
J1s = Elks + s + e .
aa B,b [ B,b ENONITITI SRR B,b [ s~ B,b

Note: Scalar lines are still gluons! Graphically only tells us which triple gluon vertex terms we
consider.



“SCALAR”-DECOMPOSITION

Why is this useful?

Original momentum flow of diagram: does not lead to factorization at the integrand level.
b2t ”
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IR-finite
Gluon must always have same momentum!
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Why is this useful?

Original momentum flow of diagram: does not lead to factorization at the integrand level.
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IR-finite
Gluon must always have same momentum! We can impose a different momentum routing for each
decomposed diagram:




“SCALAR” DECOMPOSITION OF IR SINGULAR DIAGRAMS

Apply “scalar” decomposition to all diagrams with triple-gluon vertices.
Analyze integrand — separates them in classes due to their behavior in the collinear limits.

P14y




“SCALAR” DECOMPOSITION OF IR SINGULAR DIAGRAMS

qQ

~

— M(Z)

n,IR-finite

v

_ (2)fact

- Mn,IR

physical singularities:
factorize locally

non-local
cancellations
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COLLINEAR GLUON = LONGITUDINAL

Analyze collinear limit

(2P R)a e k= 1 (2 —x) (k) v
R2(R+ p1)? R2(R+p1)2 X «




COLLINEAR GLUON = LONGITUDINAL

Analyze collinear limit

(2p1 + R)a .0 k=—xp1 1 (2—=x) o
= % —R)a V
R2(k + p1)2 R2(k+p1)2 X (=h)

The collinear gluon gets unphysical = longitudinal polarization!



WARD IDENTITY

In diagrams with longitudinal gluons the Ward identity applies.

Tree level Ward identity (partial fraction decomposition)

R

Ward identities lead to cancellation between diagrams in the collinear limits.



DIAGRAMS RELATED VIA GAUGE INVARIANCE: M {7t

Factorizable diagrams
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DIAGRAMS RELATED VIA GAUGE INVARIANCE: M {7t

Factorizable diagrams

P A "
s
(2)fact __ -
MnYlR a kTE @ :
N
p2Y s s

singularin k||py
With
- chosen routing of gluon momentum k through decomposition,

- consistent treatment for the quark momentum routing,

cancellations through Ward identity leads to local factorization:

s

R=— ~
MR == [ MO Upapa) + MV (L4 R, pr, pa)
\—v—l
[ Born amplitude
— —

external leg correction



FORM FACTOR COUNTERTERM

ALLIR limits (R || p1, R || p2, k ~ 0) factorize at the integrand level.
Removing IR singularities

IR singularities removed with a scalar-scalar form factor multiplied by an average over Born
amplitudes.

1
Fiu ) x 5 (M (1 pr,p2) + M (L4 k.1 p2)

O
= kTE:i:- x 3 (M p1,pa) + MU+ b, pa,p2))
o
P
iz N T x (Mg1>(1,p1,p2)+Mg1>(1+fe,p1,p2)) .
P

Has same behavior as factorizable diagrams Mfﬁ?ﬁ“ in all three IR limits.



HARD INTEGRAND FOR FACTORIZABLE DIAGRAMS

AlL IR singular behavior is removed locally by form factor times averaged Born amplitude.

1
HER = MEE = FOL () x 5 (M (L pr.pa) + M (L4 k. pa.p2))

scalar



HARD INTEGRAND FOR FACTORIZABLE DIAGRAMS

AlL IR singular behavior is removed locally by form factor times averaged Born amplitude.

1
HER = MEE = FOL () x 5 (M (L pr.pa) + M (L4 k. pa.p2))

scalar

By introducing a shift counterterm

1
AMEE = F O (1) x 5 (MP U+ koprp2) = MV (L pa,p2)
we can rewrite

HER = MEPE — FO (k) x MO (1, p1,p2) — AME

scalar



. hif
2. “Shift-integrable” diagrams Mﬁf "t




“SHIFT-INTEGRABLE” DIAGRAMS: M (e

Remaining IR singular diagrams from “scalar” decomposition:

P~

Blpl= A
+ kTE @T’ i
Pzﬁg‘rl— o~

- Diagrams are IR finite after integration.

- Have IR singularities at the integrand level.

20



HARD INTEGRAND FOR SHIFT INTEGRABLE DIAGRAMS

In the collinear limit k || py the sum of all shift-integrable diagrams behave as:

lim (M) o = (k+p1)* M) 4 (k+p1,p2 — k)
k=—xpy ’

n,ap

Longitudinally polarized gluon enters quark loop everywhere.

21



HARD INTEGRAND FOR SHIFT INTEGRABLE DIAGRAMS

In the collinear limit k || py the sum of all shift-integrable diagrams behave as:

. /”_ q:
lim (Mﬁ);h‘“) o Y (R p) M) (R4 p1,pa — kD)
k=—xpy ’

n,ap

Longitudinally polarized gluon enters quark loop everywhere.
QED Ward identity applies

k4| L

—q + === q

1+ Tk+171
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HARD INTEGRAND FOR SHIFT INTEGRABLE DIAGRAMS

In the collinear limit k || py the sum of all shift-integrable diagrams behave as:

lim (Mg?ﬁ:mft) e

= (k+p1)* M) (R +p1,p2 — kD)
k=—xpq ’

et N
p2—k qn

Longitudinally polarized gluon enters quark loop everywhere.
QED Ward identity applies

I+k+p

k4| L l
% N @lmm
—q + —q = g - 4
\A@Tk'#pl
1¥q tk

+p

+ Non-local cancellation: vanishes after integration over L.
- Remove this difference locally with counterterm before integration: shift counterterm

A MR oc (R + p1)* M) 5 (R + pr, p2 — k, D).

n,ap

- Counterterm integrates to zero: /dl“Alj\/tg,zl)RSh‘ﬂ =0.

21



SUMMARY AND FULLY FINITE AMPLITUDE

Local IR subtraction of amplitude

“Scalar” decomposition + specific loop momentum routing:
Removed all IR singularities locally with one form factor counterterm and shift counterterms:

HP (R, 1) = MEP (R, 1) — FE(R) x MED (1) — AMP (R, 1)

scalar

This is a general construction for an arbitrary number of external electroweak bosons in gluon
fusion.

Fully finite amplitude

Remove UV singularities with local counterterms (local R-operator). Admits numerical integration
inD=4.

22



Towards a general framework




TOWARDS A GENERAL FRAMEWORK

Next step towards general framework: NNLO for initial state gluons
Additional challenge when there is a hard loop (1) inside a jet (k):

1. Hard loop as self energy correction: Power-like divergences.
Solution: Tensor reduction to reduce to logarithmic divergences.

2.

23



TOWARDS A GENERAL FRAMEWORK

Next step towards general framework: NNLO for initial state gluons
Additional challenge when there is a hard loop (1) inside a jet (k):

1. Hard loop as self energy correction: Power-like divergences.
Solution: Tensor reduction to reduce to logarithmic divergences.

2. Hard loop as vertex correction: Collinear gluons are not longitudinally polarized.

=, la X V4 (—R)a x V5
~~

“Loop polarization”

l can be a hard momentum pointing into any direction — cannot apply Ward identity.
Solution: Symmetrization over [; <« —[,, partial Tensor reduction etc.

Requirement: not spoil other limits when solving one issue!

23



TOWARDS A GENERAL FRAMEWORK

Example: Loop polarization

C U™ e(p)P(L—R)?

V()P =

First naive idea to remove [*: Tensor reduction
With the integral identity:
R S A TR
(@mP B(l-p1)? 2/ (2m)P 2(l-p1)?’
we can modify the vertex correction as:

Cpt e(p1)”?
af 1
V(l)mod = 22(—p1)2

24



TOWARDS A GENERAL FRAMEWORK

Example: Loop polarization

cl® c(p)P (- R)? =y, € XPT e(pr)? |k
(L= p1)2(l = R)? (- p1)? ot

V()P =

First naive idea to remove (*: Tensor reduction
With the integral identity:
d°l 1 1l ps
@m)P B(l-p1)? 2/ 2m)P2(-p1)?’

we can modify the vertex correction as:

& B
V(l)o‘ﬁ _ Cp? E(Pl)B =xpy C pf e(p1)
mod T 9 12([ — py)2 5 2(1—p1)?

Spoil the limit [ — pq!
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TOWARDS A GENERAL FRAMEWORK

Example: Loop polarization

C® e(pr)?

aB
VO™ = Bz

INSTEAD: Rewrite (¢ as:

2l - p2 2l - p1
= T+ 2 + 1
2p1-p2 ' 2p1 - pa I
1. p§: has correct polarization in k || p1 — no modification needed.

2. 2l - py: can be rewritten as 2 - p; = [2 — (I — p1)?2. Reduces bubble to tadpole —s remove
since integrate to zero.

3. [9: Symmetrize over [} < —l,:

cly 6(D1)B symmetrize 1 c(y -1 )6([71)6
B(l=p1)? 2 B(=p1)?

=0,

symmetrize
_—

because 2, (I — p1)? 2, (L= p1)?

25



TOWARDS A GENERAL FRAMEWORK

Example: Loop polarization

Cl™ e(p1)? 1=p, Cxp¥e(p1)?
2l —=p1)? 2l —=p1)?

V(P =

After modification:

vt = CLP2peP)? om, Cxpie(p)”
"4 Py p2 B(1— p1)? 2(L—p1)?

— || p1 limit still intact and loop polarization removed.

26



TOWARDS A GENERAL FRAMEWORK

v Similar methods have been applied for e e~ and g annihilation at two loops in previous
papers. Full local factorization achieved. (Anastasiou, Haindl, Sterman, Yang, and Zeng (2021))
(Anastasiou and Sterman (2022))

C Progress: initial state gluons at NNLO

v All self energy correction are solved:

C Achieving full local factorization in all collinear limits: resolve shift mismatches.



CONCLUSION AND

Conclusion
- Learned how to decompose triple gluon vertex such that local factorization becomes possible.

- Established local factorization for loop induced colorless production at two loops with
external gluons.

- Solved how to project loop polarizations onto longitudinal polarizations before integration at
NNLO.

How to connect to phenomenology?
- Numerical integration via Monte Carlo: new problem — threshold singularities.
- Combine with real radiation to full cross section.
- Recent publication: 2-loop Ny contribution to pp — V1 VaVs with V; € {v*, W, w—,z}

(Kermanschah and Vicini (2024))
Next steps

+ Tackle factorization in all limits for NNLO gluon fusion processes.

-+ Expand framework to colorful final states.

28



Thanks for listening!
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