Two-loop virtual contributions to qq̄→ttH production, numerically

Vitaly Magerya (ITP KIT / CERN)

With B. Agarwal, G. Heinrich, S.P. Jones, M. Kerner, S.Y. Klein, J. Lang, A. Olsson

QCD@LHC 2024, Freiburg, October 8

ttH production at the LHC

At the tree level:

First observation at LHC reported in 2018. [ATLAS '17, '17, '18, '20, '23; CMS '18, '18, '20, '20, '22] Measurements based on data from LHC Run 2 (2015–2018):

	$\sigma_{t \overline{t} H}/\sigma_{t \overline{t} H, SM}$			L	\boldsymbol{H} decay channels
ATLAS '18	1.32	$^{+0.18}_{-0.18}$ (stat)	^{+0.21} _{-0.19} (syst)	$79.8{\rm fb}^{-1}$	γγ, bb, WW, ZZ
ATLAS '20	1.43	^{+0.33} _{-0.31} (stat)	+0.21 -0.15(syst)	$139{\rm fb}^{-1}$	γγ
CMS '20	1.38	^{+0.29} _{-0.27} (stat)	$^{+0.21}_{-0.11}$ (syst)	$137{\rm fb}^{-1}$	γγ
CMS '20	0.92	+0.19 -0.19(stat)	$^{+0.17}_{-0.13}$ (syst)	$137{\rm fb}^{-1}$	WW , $\tau\tau$, ZZ

HL-LHC will have $\mathscr{L} \sim 3000\,\mathrm{fb}^{-1}$, reducing statistical uncertainty by 4-5x. To reduce systematic uncertainty: NNLO calculation is needed.

Parts of an NNLO calculation

Big missing part for NNLO: two-loop virtual amplitudes.

Theory results for ttH production

NLO:

* NLO QCD

[Beenakker, Dittmaier, Krämer, Plümper, Spira, Zerwas '01]

[Reina, Dawson '01]

[Reina, Dawson, Wackeroth '01]

[Beenakker, Dittmaier, Krämer, Plümper, Spira, Zerwas '02]

[Dawson, Orr, Reina, Wackeroth '02]

[Dawson, Jackson, Orr, Reina, Wackeroth '03]

[Frederix, Frixione, Hirschi, Maltoni, Pittau, Torrielli '11]

[Garzelli, Kardos, Papadopoulos, Trocsanyi '11]

[Hartanto, Jager, Reina, Wackeroth '15]

[Frixione, Hirschi, Pagani, Shao, and Zaro '14]

[Zhang, Ma, Zhang, Chen, Guo '14]

[Frixione, Hirschi, Pagani, Shao, and Zaro '15]

[Denner, Feger '15]

[Stremmer, Worek '21]

[Denner, Lang, Pellen '20]

[Bevilacqua, Bi, Hartanto, Kraus, Lupattelli, Worek '22]

NLO QCD, parton shower

* NLO EW

* NLO QCD+EW, NWA

NLO QCD, off-shell

Theory results for ttH production, II

NLO, contd.:

* NLO+NLL QCD

[Kulesza, Motyka, Stebel, Theeuwes '15]

[Ju, Yang '19]

* NLO+NNLL QCD

[Broggio, Ferroglia, Pecjak, Signer, Yang '16]

[Broggio, Ferroglia, Pecjak, Yang '16]

[Kulesza, Motyka, Stebel, Theeuwes '17]

[Kulesza, Motyka, Schwartländer, Stebel, Theeuwes '20]

* NLO QCD+SMEFT

[Maltoni, Vryonidou, Zhang '16]

* NLO QCD+EW, off-shell

[Denner, Lang, Pellen, Uccirati '16]

* NLO+NNLL QCD+EW

[Broggio, Ferroglia, Frederix, Pagani, Pecjak, Tsinikos '19]

 $*~t \rightarrow H$ fragmentation functions at $\mathscr{O}(y_t^2 \alpha_s)$

NLO QCD to $\mathcal{O}(\varepsilon^2)$

[Brancaccio, Czakon, Generet, Krämer '21]

[Buccioni, Kreer, Liu, Tancredi '23]

Theory results for ttH production, III

NNLO:

- * NNLO QCD, flavour off-diagonal, q_T subtraction [Catani, Fabre, Grazzini, Kallweit '21]
- * NNLO QCD total cross-section, soft Higgs

```
[Catani, Devoto, Grazzini, Kallweit, Mazzitelli, Savoini '22]
```

- * Two-loop QCD virtual amplitude, IR poles [Chen, Ma, Wang, Yang, Ye'22]
- st Leading N_c two-loop QCD master integrals, n_l -part

```
[Cordero, Figueiredo, Kraus, Page, Reina '23]
```

 \star Two-loop QCD virtual amplitude, high-energy boosted limit

[Wang, Xia, Yang, Ye '24]

* Two-loop QCD virtual amplitude, $q\bar{q}$ channel, n_l - and n_h -parts

[Agarwal, Heinrich, Jones, Kerner, Klein, Lang, V.M., Olsson '24; this talk!]

The amplitude

Model: QCD with a scalar H, n_l light (massless) quarks, n_h heavy (top) quarks. Amplitude of $q\bar{q}\to t\bar{t}H$ projected onto Born, and decomposed in α_s as

$$\langle \mathsf{AMP} \, | \, \mathsf{AMP}_\mathsf{tree} \rangle = \mathscr{A} + \left(\frac{\alpha_s}{2\pi}\right) \mathscr{B} + \left(\frac{\alpha_s}{2\pi}\right)^2 \mathscr{C}.$$

As a proof-of-concept: only parts proportional to n_l or n_h in $\mathscr C$ for now. Why is the calculation complicated?

- 1. IBP reduction of the amplitude to master integrals is too complicated to be computed symbolically (at the moment).
 - * 5 legs and 2 masses $(m_t, m_H) \Rightarrow$ 7 scales (6 scaleless variables).
- 2. Massive two-loop integrals contributing to $\mathscr C$ are not known analytically.

Calculation method

1. Generate all Feynman diagrams for $q\bar{q} \rightarrow t\bar{t}H$ at two loops.

QGRAF

[ALIBRARY]

- \Rightarrow 249 non-zero diagrams (of 702 for the full $qar{q}$ channel).
- 2. Insert Feynman rules, apply the projector $|AMP_{tree}\rangle$.

[FORM: COLOR.H]

- 3. Sum over the spinor and color tensors.
 - \Rightarrow ~20000 scalar integrals (of ~90000);
 - \Rightarrow 9 structures: $\{n_h|n_l\} C_A C_F N_c$, $\{n_h|n_l\} C_F^2 N_c$, $\{n_h|n_l\} d_{33}$, $\{n_h|n_l\}^2 C_F N_c$;
 - * 6 structures not included: $C_A^2 C_F N_c$, $C_A C_F^2 N_c$, $C_F^3 N_c$, $C_A d_{33}$, $C_F d_{33}$, d_{44} .
- 4. Resolve integal symmetries, construct integral families. [FEYNSON; ALIBRARY]
 - \Rightarrow 44 families, 28 up to external leg permutation (of 89 and 39).
- 5. Figure out master integral count in each sector. [Kira]
 - \Rightarrow 831 master integrals in total (of 3005 for the full $q\bar{q}$ channel);
 - \Rightarrow up to 8 integrals per sector (up to 13 for the full $q\bar{q}$ channel).

...

Calculation method, II

- Choose a good master integral basis, allowing raised denominator powers and dimensional shifts.
- 7. Generate IBP relations, dimensional recurrence relations. [KIRA; ALIBRARY]
- 8. Precompute ("trace") the IBP solution for each family with Rational Tracer.

 [RATRACER]
- 9. Precompile the pySecDec integration library for the amplitude pieces.

 [pySecDec]
 - * Each color structure as a separate weighted sum of the master integrals.
- 10. For each point in the phase space:
 - 10.1 Solve IBP relations using the precomputed trace (with RATRACER).
 - * Each Mandelstam variable set to a rational number.
 - 10.2 Evaluate the amplitudes as weighted sums of masters (with pySECDEC).
 - * The weights are taken from the IBP solution.
 - 10.3 Apply renormalization and pole subtraction.

[Ferroglia, Neubert, Pecjak, Yang '09; Bärnreuther, Czakon, Fiedler '13]

10.4 Save the result.

Choosing the master integrals

A good basis of master integrals optimizes the IBP solution time and the pySecDec evaluation time. Our choice:

* is quasi-finite,

[von Manteuffel, Schabinger '14]

* is d-factorizing,

- [Smirnov, Smirnov '20; Usovitsch '20]
- * results in IBP coefficients with small denominators.
- \star avoids ε poles in the coefficients of top-level sectors,
- * avoids ε poles in the differential equation matrix,
- * is fast to evaluate with pySECDEC.
- \Rightarrow Need to consider denominator powers raised up to 6, and dimensional shifts to $d=6-2\varepsilon$ and $d=8-2\varepsilon$.

To illustrate, pySecDec integration time to 10^{-3} precision:¹

¹pySecDec 1.5.3, NVidia A100 GPU.

IBP relations with RATRACER

Solving IBP with Rational Tracer

Basic finite field method:

[von Manteuffel, Schabinger '14; Peraro '16]

- 1) solve IBP equations many times using modular arithmetic with variables set to integers modulo a 63-bit prime;
 - * same sequence of operations, many times, with different numbers;
- 2) reconstruct the coefficients as rational functions from the many samples.

Observation: modular arithmetic is so fast, that typical solvers waste 90% of the time managing their data structures (not performing the arithmetic). Improvement: cut the waste, and abandon the data structures:

- * solve the system once using modular artihmetics, and record every arithmetic operation into a file (a "trace");
- * instead of re-solving the system from scratch, just *replay the trace*.

Implementation: Rational Tracer (RATRACER).

[V.M. '22]

- * github.com/magv/ratracer
- * Around 10x faster black-box evaluation than KIRA.

[github.com/magv/ibp-benchmark]

Solving IBP with Rational Tracer, II

Additional trick with traces:

- * A trace is a stand-in for a rational expression, and can be expanded in ε , producing a new trace that
 - st outputs the arepsilon expansion of the IBP coefficients directly,
 - * drops ε from the list of considered variables.
 - \Rightarrow 3x-4x performance gain for this calculation.

For our case of 2-loop $q\bar{q} \to t\bar{t}H$ (n_l - and n_h -parts):

- * Reduction is done for each phase-space point separately.
 - \Rightarrow Mandelstam variables are set to rational numbers.
- * Coefficients are expanded into a series in ε .
 - \Rightarrow No need to reconstruct in ε .
- ⇒ RATRACER outputs *rational numbers* (no need for function reconstruction).
 - * Traces of size 0.4–90MB per family, 500MB in total (compressed).
- ⇒ IBP reduction in under 2 CPU minutes per phase-space point.
 - * Down from ~1 hour on 16 cores with KIRA 2.3+FIREFLY!
 - Fast enough that we don't need symbolic IBP solution.

Feynman integrals with pySECDEC

Amplitude evaluation with pySecDec

pySecDec: library for numerically evaluating Feynman integrals via sector decomposition and (Quasi-) Monte Carlo integration. [Heinrich et al '23, '21, '18, '17]

- * github.com/gudrunhe/secdec
- * Takes a specification for *weighted sum of integrals* (i.e. amplitudes), decomposes integrals into sectors, produces an integration library.
 - * Integration via Randomized Quasi-Monte Carlo on rank-1 lattice rules constructed via median QMC lattice construction (new in v1.6), applied to Korobov-transformed integrands. [Heinrich et al '23; Goda, L'Ecuyer '22]
 - * We use one sum per color structure.
 - * Integrals sampled adaptively to reach the requested precision of the sums.
 - * The 831 masters decompose into \sim 18000 sectors (\sim 28000 integrals).
- * Integration time to get 0.3% precision for this calculation on a GPU:
 - * from 5 minutes in the bulk of the phase-space,
 - * to ∞ near boundaries (e.g. high-energy region) due to growing cancellations and spiky integrals (capped at 1 day).

Dealing with large cancellations

Large cancellations in parts of the high-energy region, e.g.:

$$\mathcal{C} = 10^{29} + 10^{29} + 10^{29} + 10^{24} + 10^{24} + 10^{24} + 10^{19} + 10^{19} + 10^{19} + 10^{19} + 10^{19}$$

- * Knowing the integrals at full double precision (16 digits) is not enough!
- * The cancelling integrals converge well with QMC.
 - * The precision is limited by the use of double floats more than convergence.
- → Make pySecDec use double-double (32 digits) for integrals that need it:

 [Bailey, Li, Hida '03; Shewchuk '97]
 - 20+ digits of precision for 4-propagator integrals reachable;
 - * custom implementation for CPUs and GPUs;
 - around 20x performance hit compared to doubles.

Results for qq̄→tt̄H

Phase-space parameters

We parameterize the q ar q o t ar t H phase space as chained decay, and instead of

$$\begin{split} s &= \left(p_q + p_{\bar{q}} \right)^2 \in \left[\left(2m_t + m_H \right)^2 ; \infty \right], \\ s_{t\bar{t}} &= \left(p_t + p_{\bar{t}} \right)^2 \in \left[\left(2m_t \right)^2 ; \left(\sqrt{s} - m_H \right)^2 - \left(2m_t \right)^2 \right], \end{split}$$

introduce:

$$\begin{split} \beta^2 &\equiv 1 - \frac{s_{min}}{s} \in [0;1], \\ \operatorname{frac}_{s_{t\bar{t}}} &\equiv \frac{s_{t\bar{t}} - s_{t\bar{t},min}}{s_{t\bar{t},max} - s_{t\bar{t},min}} \in [0;1], \\ \theta_H &\in [0;\pi], \\ \theta_t &\in [0;\pi], \\ \varphi_t &\in [0;2\pi]. \end{split}$$

Which parts of the phase-space are relevant?

Event density at the LHC according to the tree-level amplitude:

To cover 90% of events: $\beta^2 \in$ [0.24, 0.88], that is $\sqrt{s} \in$ [540 GeV, 1.4 TeV].

Example results as two-dimensional slices around the center point of:

$$eta^2 = 0.8, \qquad \qquad {
m frac}_{s_{t\bar{t}}} = 0.7, \\ \cos\theta_H = 0.8, \qquad \qquad \cos\theta_t = 0.9, \qquad \cos\varphi_t = 0.7, \\ m_H^2 = 12/23 \, m_t^2, \qquad \qquad \mu = s/2.$$

16

Resulting slices in β^2 and $\mathrm{frac}_{s_{t\bar{t}}}$, θ_H , θ_t , φ_t

Resulting slices in eta^2 and $\mathrm{frac}_{s_{tar{t}}}$

Resulting slices in β^2 and $\mathrm{frac}_{s_{i\pi}}$ by color factor

How to use the results?

Goal: precompute points on a 5-dimensional grid, interpolate in between.

- * How few points do we need to evaluate for 1% approximation error?
 - * How to define "approximation error" in the first place?
- * Which interpolation method fits best?
 - * Splines, polynomials, rationals, sparse grids, radial basis functions, low-rank decompositions, neural networks?
- * At which points to sample?
 - Random unweighted samples, RAMBO samples, regular grids, sparse grids, lattices, Padua points, Fekete points, locally adaptive points?

Total cross section approximation error with various methods (PRELIMINARY!):

Summary & Outlook

Done:

- * N_f -part of the two-loop virtual amplitude for $q\bar{q} o t\bar{t}H$.
- * IBP performance improvements with RATRACER.
- * Peformace and precision improvements in pySecDec.

In progress:

- * The rest of the two-loop virtual amplitude for $q\bar{q} \to t\bar{t}H$.
- Interpolation for the results.

Future plans:

- * Two-loop virtual amplitude for $gg \to t\bar{t}H$.
- * Combination with real radiation.
- * Phenomenological applications.

Backup slides

Monte Carlo vs RQMC

Integration time scaling for Monte Carlo (VEGAS) vs Randomized Quasi Monte Carlo (QMC).²

²pySecDec v1.5.3 on NVidia A100 GPU.