

Physics Institute

Parton showers and event generators studies and modeling

Weijie Jin

QCD@LHC 2024

Underlying event, proton structure and particle production

Underlying-event studies with strange hadrons in pp collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector

axiv:2405.05048

Study of Z boson plus jets events using variables sensitive to doubleparton scattering in pp collisions at √s = 13 TeV (CMS) arxiv:2105.14511

Energy scaling behavior of intrinsic transverse momentum parameters in Drell-Yan simulation (CMS) arxiv:2409.17770

affects the MC

$$K_S^0 \to \pi^+ \pi^-, \Lambda \to \pi^- p, \bar{\Lambda} \to \pi^+ \bar{p}$$

 \rightarrow use displaced two-particle vertices to reconstruct them

Measure:

- Strange hadron density or fraction
- In Towards, Transverse or Away regions
- In bins of leading jet $p_{T} % \left(p_{T} \right) = p_{T} \left(p_{T} \right) \left(p_{T} \right)$

Hadronization & multiple-parton interaction (MPI) models

The data can be used to tune

Strange hadron production in UE

Measure them

https://arxiv.org/abs/2405.05048

University of Zürich

Weijie Jin

University of Zürich

\ N(K⁰) / ۵۱ ک Data EPOS-LHC Low leading jet p_T **PY8-A2** 0.1 PY8-MONASH+CR ~ soft scattering region • Increase of K^0_S density versus jet p_T 0.05 EPOS-LHC describes the data √s=13 TeV ATLAS \rightarrow different pp collision model 67x10⁶ Events **Transverse Region** (hydrodynamic) from Pythia MC/Data • Pythia A2 & color-reconnection 0.8 tune under-estimates 30 35 10 15 20 25 5 40 Leading-jet p_{\perp} [GeV] Color-reconnection tune performs better the A2 tune N(K⁰) / N(ch) Data 0.04 EPOS-LHC PY8-A2 PY8-MONASH+CR 0.03 0.02 None of the generators describe well the $K_{\rm S}^0$ / Nch(prompt) √s=13 TeV ATLAS 0.01 67x10⁶ Events Transverse Region MC/Data 1.2 0.8 0.6 5 10 15 20 25 30 35 40 Leading-jet p_{T} [GeV] University of Zürich Weijie Jin

Low leading jet p_T ~ soft scattering region

- Increase of K^0_S density versus jet p_T
- EPOS-LHC describes the data

 → different pp collision model
 (hydrodynamic) from Pythia
- Pythia A2 & color-reconnection tune under-estimates
- Color-reconnection tune performs better the A2 tune

• None of the generators describe well the K_S^0 / Nch(prompt)

High leading jet p_T ~ hard scattering region

- Weak dependence on jet p_T
 - Dominated by non-diffractive hard collisions
 - \rightarrow the measured K_S^0 dominated by MPI
 - \rightarrow especially in region transverse to leading jet

• EPOS-LHC mismodeling

- not monotonic & underestimates the data
- \rightarrow probably because of lack of hard scattering model
- Pythia tunes predicts the shape well but under estimates the yield overall

Enhancement of K_S^0 and $\Lambda + \overline{\Lambda}$ / Nch (prompt) in towards region of leading jet \rightarrow the feature is captured by **EPOS-LHC**

Summary

- These strangeness observables are sensitive to hadronization models (e.g. color reconnection)
 → inputs for generator tuning
- They reflect non-perturbative effects in pp collisions (difference between EPOS & Pythia)
 - \rightarrow useful for investigating non-perturbative phenomena e.g. quark-gluon plasma

University of Zürich

Double parton scattering (DPS) in Z+jets events arxiv:2105.14511

 $Z \rightarrow \mu\mu$ production is experimentally clean and theoretically well understood

 \rightarrow use it to explore the simultaneously occurred scatterings — presence of MPI, typically DPS

The kinematics of jets tend to be **correlated** with Z & **balance** the Z momentum

The jets are less likely to balance each other

Design variables about Z&jet, Z&dijet, and two jets relations

- sensitive to momentum correlation
- sensitive to momentum balance University of Zürich

Z+jets from double parton scattering (DPS)

The jets more likely to balance each other

 \rightarrow the kinematics of jets are **less correlated** with Z

→ the jets are less likely to balance the Z momentum

Two separate scatters

The measurements reflect DPS modeling

Weijie Jin

Azimuthal angle between Z and leading jet University of Zürich

Weijie Jin

The variables show high sensitivity to DPS

• The tunes were **fit** to data from **soft QCD process** → **generally describes well** these variables from hard scattering process (Z production)

Input for DPS-specific tunes & global tunes with other soft QCD measurements

$$\Delta_{\rm rel} p_{\rm T}(j_1, j_2) = \frac{|\vec{p}_{\rm T}(j_1) + \vec{p}_{\rm T}(j_2)|}{|\vec{p}_{\rm T}(j_1)| + |\vec{p}_{\rm T}(j_2)|}.$$

University of Zürich

Weijie Jin

Intrinsic k_T in generators probed by Drell-Yan p_T

Parton Shower

Weiiie Jin

Intrinsic kT:

The transverse momenta of the partons in the incoming

colliding hadrons

 \rightarrow Not calculable in perturbative QCD

 \rightarrow Described by phenomenological models

Use Drell-Yan p_T to probe the intrinsic k_T

- DY $p_T(l^+l^-)$ measured from precisely reconstructed l^+l^-
- DY $p_T(l^+l^-)$ reflects the intrinsic k_T from incoming partons \rightarrow especially the low $p_T(l^+l^-)$ region

arxiv:2409.17770

Generator models of intrinsic k_T :

- Fermi motion of partons (non-perturbative)
- Soft parton emissions not included by the parton shower in initial state radiation (ISR) (perturbative + non-perturbative)

Intrinsic k_T in generators probed by Drell-Yan p_T

Intrinsic k_T parameter is tuned to DY differential XS at low $p_T(l^+l^-)$

 \rightarrow Tune results gives hints on parton Fermi motions and soft ISR, non-perturbative and perturbative

Tune both **Pythia** and **Herwig** with a few underlying-event (UE) tunes + NLO DY matrix elemens \rightarrow Study the impact of **parton shower** and **UE** model

Tune to data from experiments of various \sqrt{s} and hadron types

- NuSea, R209, PHENIX, D0, CDF, CMS, ATLAS, LHCb
- + \sqrt{s} : 38.8 GeV— 13 TeV, $m(l^+l^-)$ 5 GeV—1 TeV

For each \sqrt{s} , tune intrinsic k_T separately for various $m(l^+l^-) \sim$ hard scattering scale

 \rightarrow Stable tune results versus $m(l^+l^-) \sim x_1 x_2 \sqrt{s}$ under fixed \sqrt{s}

 \rightarrow Weak/no dependence on parton momentum fraction x_1, x_2

Intrinsic k_T in generators probed by Drell-Yan p_T

Tune intrinsic k_T under various \sqrt{s}

- Tune results increase with \sqrt{s}
- Power-law scaling behaviour log(intrinsic k_T) \propto log(\sqrt{s})

Parton Fermi motion cannot depend on \sqrt{s}

 \rightarrow the behaviour comes from missing ISR in parton shower

The trend is similar for Pythia & Herwig \rightarrow The scaling behaviour is **robust versus parton shower model** (p_T -ordered or angular-ordered)

Tuning result with CASCADE (arxiv:2312.08655) shows a weaker dependence on \sqrt{s}

CASCADE simulation uses **parton-branching** method to **describe transverse momentum dependent PDF**

 \rightarrow Different from the Pythia and Herwig parton shower and collinear PDF

 \rightarrow Includes more non-perturbative soft gluon emissions

The **intrinsic** $k_T - \sqrt{s}$ scaling behaviour in Pythia & Herwig probably related non-perturbative gluon emissions

Weijie Jin

Jets and jet substructure

Dependence of the Jet Energy Scale on the Particle Content of Hadronic Jets in the ATLAS Detector ATL-PHY-PUB-2022-021

Measurement of energy correlators inside jets and determination of the strong coupling $\alpha_S(m_Z)$ (backup)

covered by Oleg Kuprash arxiv:2402.13864

Calibration of jets depending on simulation models ATL-PHY-PUB-2022-021

Reconstructed jet energy does not exactly equal to the truth

- \rightarrow calibration (jet energy scale) needed based on MC models of jets and detector simulation
- Electromagnetic shower can be correctly reconstructed $\langle E_{reco}/E_{true}\rangle = 1$
- Energy deposit of hadronic shower is not fully reconstructed (non-compensation hadronic calorimeter)

 E_{reco} depends on **MC models of jet**

– hadron contents & kinematics

→ Jet models affects the calibration

- Averagely under-calibrated $\langle E_{reco}/E_{true} \rangle < 1$
- $\langle E_{reco}/E_{true} \rangle$ depends on energy/type of hadrons

University of Zürich

Weijie Jin

13

Calibration of jets depending on simulation models

Ratio of Simulated jet response (p_T^{reco}/p_T^{true}) to Pythia response

Calibration of jets depending on simulation models

Quark jets and gluon jets have different jet response

- \rightarrow different **fragmentation pattern** \rightarrow hadron momentum spectrum
- \rightarrow different hadron contents e.g. fraction of baryons & kaons

Important to model the jet fragmentation pattern and hadron contents

Calibration of jets depending on simulation models

The modeling differences of hadron contents are investigated by Baryon Energy Fraction f_{baryon} & Kaon Energy Fraction f_{kaon}

Reweighting Herwig to Pythia by f_{baryon} and f_{kaon} versus $p_T^{jet} \rightarrow$ closer jet response !

First quantitive estimate of the effects of hadron contents on jet reconstruction \rightarrow encourages improvement on hadronization models for jet calibration & precision measurements

Weijie Jin

Modeling of Top processes

Simulation of on- and off-shell *ti* production with the Monte Carlo generator b_bbar_4I at CMS <u>CMS-NOTE-2023-015</u>

Study of matrix element correction in *tī* events using MG5_aMC@NLO+Pythia8

ATL-PHYS-PUB-2024-002

Studies on the improvement of the matching uncertainty definition in topquark processes simulated with Powheg+Pythia 8 <u>ATL-PHYS-PUB-2023-029</u>

State-of-the-art MC simulation of $t\bar{t}$ **at NLO**

CMS-NOTE-2023-015

Sketch of $t\overline{t}$ processes

One of the top quarks goes off-shell \rightarrow Large interference with tW processes

For precise modeling of $t\bar{t}$ kinematics \rightarrow **Full NLO calculation** of $pp \rightarrow b\bar{b}l^+l^-\nu\bar{\nu}$ needed (assume leptonic final states)

 \rightarrow CMS simulation on board

b_bbar_41 (bb41) generator in POWEG BOX RES package + matched PYTHIA shower (CP5 tune)

State-of-the-art MC simulation of $t\overline{t}$ **at NLO**

CCMS

MC tests on a variable sensitive to $t\bar{t}$, tW interference

Lower accuracy MC samples assuming stable top: NLO $t\bar{t}$ production in narrow width approximation (NWA) NLO tW production in NWA + interference treatment to prevent double counting • diagram removal (DR) scheme $\rightarrow t\bar{t} + tW$, DR • diagram subtraction (DS) scheme $\rightarrow t\bar{t} + tW$, DS

 $m_{b\ell}^{\min} = \min \left[\max \left(m_{b_1 \ell_1}, m_{b_2 \ell_2} \right), \max \left(m_{b_1 \ell_2}, m_{b_2 \ell_1} \right) \right]$

+ LO top quark decay

bb41 describes data better than $t\bar{t} + tW$, DR, $t\bar{t} + tW$, DS in regions sensitive to off-shell $t\bar{t}$ and interference

NLO $t\overline{t}$ production and NLO top quark decay + LO treatment of $t\overline{t}$, tW interference \rightarrow **ttb_NLO_dec**

ttb_NLO_dec and **bb41** matches data similarly

University of Zürich

State-of-the-art MC simulation of $t\bar{t}$ **at NLO**

Prediction of top quark mass spectrum is significantly different for **bb41** and $t\bar{t} + tW$, **DR**, $t\bar{t} + tW$, **DS** \rightarrow indicates the effects of off-shell top production and NLO top decay \rightarrow expect to give **bb41** to give a more accurate

prediction

Studies of matrix element correction (MEC) in $t\bar{t}$ events using MG5_aMC@NLO+Pythia8

ATL-PHYS-PUB-2024-002

 $t\bar{t}$ production at NLO by MG5_aMC@NLO (narrow width approximation) + Pythia shower of $t\bar{t}$

Already including NLO corrections in top production

MEC added in Pythia shower for hard recoils (new recommendation for Pythia*)

- Higher order corrections to top decays
- More precise than NL parton shower

* Frixione, S., Amoroso, S., & Mrenna, S. (2023). Matrix element corrections in the Pythia8 parton shower in the context of matched simulations at next-to-leading order. *The European Physical Journal C*, *83*(10), 970.

University of Zürich

Weijie Jin

Studies of matrix element correction (MEC) in $t\bar{t}$ events using MG5_aMC@NLO+Pythia8

ATLAS EXPERIMENT

MC test for MG5_aMC@NLO

• Inclusive $t\overline{t}$ production (MG5aMC)

╋

Pythia shower with/without MEC

• $t\overline{t}$ production + FxFx merging up to two partons at the Born level (**FxFx**)

University of Zürich

ATL-PHYS-PUB-2023-029

Matrix element (ME) calculation of the hard scatter ------ Parton shower

Match

Double counting or holes in the phase space \rightarrow Matching uncertainty

Previous uncertainty estimation

- Difference between PowhegBox+Pythia and MG5_aMC@NLO+Pythia
- \rightarrow includes **multiple effects**: shower adjustments to ME generator, top-decay settings
- → Over-coverage for matching uncertainty

New prescription for the matching uncertainty:

- Both Powheg and Pythia have emissions based a p_T based variable "hardness"
- Pythia vetos the emission above the "hardness" to avoid double counting
- \rightarrow Use various choices of "hardness" (p_T^{hard}) definition to estimate the uncertainty

Powheg+Pythia p_T^{hard} = 2 "hardness" as the minimal p_T of all the Powheg final-state partons

University of Zürich

Weijie Jin

2000

Some effects previously covered by **PowhegBox** and **MG5_aMC@NLO** differences are not included

Modeling of top decay lineshape

 \rightarrow corresponding new prescriptions for them

- Modeling of $\operatorname{top} p_T\operatorname{spectrum}$

Similar approach in **PowhegBox** and **MG5_aMC@NLO** for top production and decay

- narrow width approximation for top production
 - + smear mass by Breit-Wigner distribution
 - + reshuffle momenta of other particles for energy-momentum conservation

model difference for the two generators

- top decay lineshape difference

→ isolate this effect: replace the reshuffling method of PowhegBox with the MG5_aMC@NLO one (MadSpin)

top decay lineshape difference is approximated by the PowhegBox and PowhegMadSpin difference

Some effects previously covered by PowhegBox and MG5_aMC@NLO differences are not included

- Modeling of top decay lineshape
- Modeling of top p_T spectrum

Several NLO+PS generator shows a similar trend of mismodeling \rightarrow Mismodeling comes from NNLO contribution

Solution: reweight **PowhegBox+Pythia** to NNLO calculation by $m^{t\bar{t}}$ and $p_T^{t\bar{t}}$

•••••• reweighted sample

Description to data is improved by reweighting

26

Summary

Non-perturbative QCD effects & modeling in pp collisions

- Underlying event study: strange hadron measurement in UE
- **Double parton scattering**: use Drell-Yan process as a standard candle to measure the extra scatter
- Intrinsic k_T in generators: how the parameter scales with \sqrt{s} and hard-scattering scale

Jets as a probe for generator models

- How the hadron content modeling of jets affect the jet calibration
- Use jet substructure to extract the strong coupling constant $\alpha_S(m_Z)$

Development of top process models

- Full **NLO simulation** of on-shell and off-shell $t\bar{t}$ at the CMS
- Adding matrix element corrections to improve $t\bar{t}$ simulation with MG5_aMC@NLO at the ATLAS
- Improved matching uncertainty estimation subscription in top processes from Powheg at the ATLAS

Studies not discussed in the talk

- Measurement of the mass dependence of the transverse momentum of lepton pairs in Drell--Yan production in proton-proton collisions at $\sqrt{s} = 13$ TeV (<u>CMS-SMP-20-003</u>)
- Measurement of double-parton scattering in inclusive production of four jets with low tranverse momentum in proton-proton collisions at $\sqrt{s} = 13 \text{ TeV} (\underline{\text{CMS-SMP-20-007}})$
- Study of quark and glon jet substructure in Z+jet and dijet events from pp collisions (CMS-SMP-20-010)
- Measurement of jet multiplicity and jet transverse momentum in multijet events in proton-protn collisions at $\sqrt{s} = 13 \text{ TeV} (CMS-SMP-21-006})$
- Measurement of inclusive and differential cross sections for single top quark production in association with a W boson (<u>CMS-TOP-21-010</u>)
- Measurement of differential cross sections for the production of top quark pairs and of additional jets (<u>CMS-TOP-20-006</u>)
- Measurement of the top quark pole mass using pair produced top quarks (CMS-TOP-21-008)
- Measurement of the inclusive and differential tty cross section (<u>CMS-TOP-21-004</u>)
- Measurement of the shape of the b quark fragmentation function using charmed mesons produced inside b jets from (<u>CMS-TOP-18-012</u>)
- Studies of Monte Carlo predictions for the $t\bar{t}bb$ process (<u>ATL-PHYS-PUB-2022-006</u>)
- Measurements of observables sensitive to colour reconnection in $t\bar{t}$ events with the ATLAS detector at $\sqrt{s} = 13 \text{ TeV} (\underline{\text{TOPQ-2019-01}})$
- Modelling and computational improvements to the simulation of single vector-boson plus jet processes for the ATLAS experiment (<u>PMGR-2021-01</u>)

Double parton scattering in 4-jet events with low p_T <u>CMS-SMP-20-007</u>

Multijet is the background for many measurements \rightarrow important to improve the theoretical models of multijet

University of Zürich

Double parton scattering in 4-jet events with low p_T

Weiiie Jin

Double parton scattering in 4-jet events with low p_T

CMS

Azimuthal angular difference between the hard and soft jet pairs

$$\Delta S = \arccos\left(\frac{(\vec{p}_{\text{T},1} + \vec{p}_{\text{T},2}) \cdot (\vec{p}_{\text{T},3} + \vec{p}_{\text{T},4})}{|\vec{p}_{\text{T},1} + \vec{p}_{\text{T},2}| |\vec{p}_{\text{T},3} + \vec{p}_{\text{T},4}|}\right)$$

← More robust MC behaviours under various shower models

Suitable for extracting the DPS contribution and DPS-specific tunes

Energy correlators in jets & extraction of $\alpha_S(m_Z)$

arxiv:2402.13864

Cross section of jet production

Energy correlators in jets & extraction of $\alpha_S(m_Z)$

Energy correlators in jets & extraction of $\alpha_S(m_Z)$

Measure the E3C/E2C versus x_L slope at various p_T^{jet}

Generate MC predictions from various $\alpha_S(m_Z)$ \rightarrow Interpolate

Fit MC templates to data \rightarrow measured $\alpha_S(m_Z)$ $0.1229^{+0.0014}_{-0.0012} \text{ (stat)}^{+0.0030}_{-0.0033} \text{ (theo)}^{+0.0023}_{-0.0036} \text{(exp)}$

Most precise $\alpha_{S}(m_{Z})$ from jet substructures