MINNLOPS EVENT GENERATOR: COLOUR SINGLET PLUS ONE JET

SILVIA ZANOLI University of Oxford Based on **2402.00596** Ebert, Rottoli, Wiesemann, Zanderighi, **SZ**

QCD@LHC - FREIBURG - 8th OCTOBER 2024

1. HARD SCATTERING

2. PARTON SHOWER

3. HADRONIZATION

4. UNDERLYING EVENT

MATCHING

- Two main methods available: MiNNLO_{PS} [Monni, Nason, Re, Wiesemann, -Zanderighi '19] and Geneva [Alioli, Bauer, Berggren, Tackmann, Walsh, Zuberi '13, + subsequent papers].

A solved problem for long time.

- Completely understood and fully automatized.
- Two main approaches available: POWHEG [Nason '04; Frixione, Nason, Oleari '07; Alioli, Nason, Oleari, Re '10] and MC@NLO [Frixione, Webber '02].

State-of-the-art for precision LHC phenomenology.

Lots of ongoing effort, many processes already implemented.

MATCHING

A **solved problem** for long time.

- Completely understood and fully automatized.
- Two main approaches available: POWHEG [Nason '04; Frixione, Nason, Oleari '07; Alioli, Nason, Oleari, Re '10] and MC@NLO [Frixione, Webber '02].

State-of-the-art for precision LHC phenomenology.

- Lots of ongoing effort, many processes already implemented.
- Two main methods available: MiNNLO_{PS} [Monni, Nason, Re, Wiesemann, Zanderighi '19] and Geneva [Alioli, Bauer, Berggren, Tackmann, Walsh, Zuberi '13, + subsequent papers].

Logarithmically accurate showers are now available, but matching is still under investigation (at NLO). The method I am presenting today does not directly apply to matching with NLL showers!

WHAT'S THE PROBLEM?

FIXED-ORDER CALCULATIONS

Correct real emission

!! DOUBLE COUNTING !!

When using a p_{T} -ordered shower (most common option, like PYTHIA), we apply a p_{T} -veto: all the emissions produced by the shower must be softer than the first emission produced by POWHEG.

THE POWHEG METHOD

[Nason '04; Frixione, Nason, Oleari '07; Alioli, Nason, Oleari, Re '10]

 $\bar{B}^{MiNNLO_{PS}}(\Phi_{FJ}) =$

THE MINNLOPS METHOD

$$\bar{\mathrm{B}}^{\mathrm{MiNNLO}_{\mathrm{PS}}}(\Phi_{\mathrm{FJ}}) =$$

THE MINNLOPS METHOD

THE MINNLOPS METHOD

THE MINNLOPS METHOD

Analytic all-c •

Il-order formula:

$$\frac{d\sigma}{d\Phi_{\rm F}dp_{\rm T}} = \frac{d\sigma^{\rm sing}}{d\Phi_{\rm F}dp_{\rm T}} + R(p_{\rm T}) = \frac{d}{dp_{\rm T}} \left\{ e^{-\tilde{S}(p_{\rm T})} \mathscr{L}(p_{\rm T}) \right\} + R(p_{\rm T}) = e^{-\tilde{S}(p_{\rm T})} \left[D(p_{\rm T}) + \frac{R(p_{\rm T})}{e^{-\tilde{S}(p_{\rm T})}} \right]$$

THE MINNLOPS METHOD

Analytic all-o •

-order formula:

$$\frac{d\sigma}{d\Phi_{\rm F}dp_{\rm T}} = \frac{d\sigma^{\rm sing}}{d\Phi_{\rm F}dp_{\rm T}} + R(p_{\rm T}) = \frac{d}{dp_{\rm T}} \left\{ e^{-\tilde{S}(p_{\rm T})} \mathscr{L}(p_{\rm T}) \right\} + R(p_{\rm T}) = e^{-\tilde{S}(p_{\rm T})} \left[D(p_{T}) + \frac{R(p_{T})}{e^{-\tilde{S}(p_{\rm T})}} \right]$$

Combine with FJ fixed-order $d\sigma_{\rm FJ}$ and expand up • $\mu_R = \mu_F = p_T$

$$d\sigma_{\rm F} = d\sigma_{\rm F}^{\rm sing} + [d\sigma_{\rm FJ}]_{\rm f.o.} - [d\sigma_{\rm F}^{\rm sing}]_{\rm f.o.} = e^{-\tilde{S}(p_{\rm T})} \left\{ D + \frac{[d\sigma_{\rm FJ}]_{\rm f.o.}}{[e^{-\tilde{S}(p_{\rm T})}]_{\rm f.o.}} - \frac{[d\sigma_{\rm F}^{\rm sing}]_{\rm f.o.}}{[e^{-\tilde{S}(p_{\rm T})}]_{\rm f.o.}} \right\}$$
$$-\alpha_s \tilde{S}^{(1)} - \alpha_s^2 D^{(1)}(p_{\rm T}) - \alpha_s^2 D^{(2)}(p_{\rm T})$$

THE MINNLOPS METHOD

• to
$$\alpha_s^3$$
: $\int \frac{dp_T}{p_T} \alpha_s^m(p_T) \ln^n \frac{p_T}{Q} e^{-\tilde{S}(p_T)} \approx \mathcal{O}(\alpha_s^{m-\frac{n+2}{2}})$

Analytic all-o

order formula:

$$\frac{d\sigma}{d\Phi_{\rm F}dp_{\rm T}} = \frac{d\sigma^{\rm sing}}{d\Phi_{\rm F}dp_{\rm T}} + R(\mathbf{p}_{\rm T}) = \frac{d}{dp_{\rm T}} \left\{ e^{-\tilde{S}(\mathbf{p}_{\rm T})} \mathscr{L}(\mathbf{p}_{\rm T}) \right\} + R(\mathbf{p}_{\rm T}) = e^{-\tilde{S}(\mathbf{p}_{\rm T})} \left[D(p_T) + \frac{R(p_T)}{e^{-\tilde{S}(\mathbf{p}_{\rm T})}} \right]$$

Combine with FJ fixed-order $d\sigma_{\rm FJ}$ and expand up • $\mu_R = \mu_F = p_T$

$$d\sigma_{\rm F} = d\sigma_{\rm F}^{\rm sing} + [d\sigma_{\rm FJ}]_{\rm f.o.} - [d\sigma_{\rm F}^{\rm sing}]_{\rm f.o.} = e^{-\tilde{S}(p_{\rm T})} \left\{ D + \frac{[d\sigma_{\rm FJ}]_{\rm f.o.}}{[e^{-\tilde{S}(p_{\rm T})}]_{\rm f.o.}} - \frac{[d\sigma_{\rm F}^{\rm sing}]_{\rm f.o.}}{[e^{-\tilde{S}(p_{\rm T})}]_{\rm f.o.}} \right\}$$

$$\frac{1 - \alpha_s \tilde{S}^{(1)}}{-\alpha_s D^{(1)}(p_{\rm T}) - \alpha_s^2 D^{(2)}(p_{\rm T})}$$

$$\bar{\mathbf{B}}^{\text{MiNNLO}_{\text{PS}}}(\Phi_{\text{FJ}}) = e^{-\tilde{\mathbf{S}}(p_{\text{T}})} \left(\mathbf{B}(\Phi_{\text{FJ}}) \left(1 + \alpha_{\text{s}} \tilde{\mathbf{S}}^{(1)}\right) + \mathbf{V}(\Phi_{\text{FJ}}) \right)$$

THE MINNLOPS METHOD

to
$$\alpha_s^3$$
:

$$\int \frac{dp_T}{p_T} \alpha_s^m(p_T) \ln^n \frac{p_T}{Q} e^{-\tilde{S}(p_T)} \approx \mathcal{O}(\alpha_s^{m-\frac{n+2}{2}})$$

 $(\Phi_{FJ}) + \left[d\Phi_{rad} R(\Phi_{FJJ}) + \left(D(p_T) - \alpha_s D^{(1)}(p_T) - \alpha_s^2 D^{(2)}(p_T) \right) \mathcal{F} \right]$

WHAT CAN WE DO WITH MINNLOPS?

= publicly available at https://powhegbox.mib.infn.it/

MINNLOPS FOR PROCESSES WITH JETS

- We now aim to target NNLO+PS accuracy in processes with a jet.
- sufficient order for a NNLO+PS accurate formalism.

N-jettiness (τ_N) is a suitable observable to study processes with jets, and the resummation is known at a

τ_N represents how "N-jet-like" an event looks.

$$p_k,\ldots,q_N\cdot p_k\}$$

 q_a , q_b = incoming particles q_i = signal jets p_k = hadronic fs particles

 $\tau_{\rm N} \rightarrow 1$: the event has hard radiation between the N signal jets

MiNNLO_{PS}-τ₀: NNLO accuracy on F

MiNNLO_{PS}-τ₁: NNLO accuracy on FJ

- **MiNNLO_{PS}-pt:** NNLO accuracy on F

Theoretical formalism

- Implementation for H/Z production
- Phenomenological analysis

THE PLAN

MINNLOPS-PT: NNLO accuracy on F

- **MiNNLO_{PS}-τ₀:** NNLO accuracy on F

- Problems in the matching with the shower
- Large discrepancies in the 1 jet **bin for H production**

MiNNLO_{PS}-τ₁: NNLO accuracy on FJ

DY - CMS 2205.04897

MiNNLO_{PS}-pt

GENEVA-τ₀

GENEVA-pt

 \bullet

$$\frac{\mathrm{d}\sigma}{\mathrm{d}\Phi_{\mathrm{F}}\mathrm{d}\tau_{0}} = \frac{\mathrm{d}\sigma^{\mathrm{sing}}}{\mathrm{d}\Phi_{\mathrm{F}}\mathrm{d}\tau_{0}} + R_{f}(\tau_{0}) \qquad \qquad \frac{\mathrm{d}\sigma^{\mathrm{sing}}}{\mathrm{d}\Phi_{\mathrm{F}}\mathrm{d}\tau_{0}} = \sum_{a,b} \frac{\mathrm{d}|M_{a,b}|^{2}}{\mathrm{d}\Phi_{\mathrm{F}}} H_{a,b}(Q,\mu) \int \mathrm{d}t_{a}\mathrm{d}t_{b}B_{a}(t_{a},x_{a},\mu) B_{b}(t_{b},x_{b},\mu) S\left(\tau_{0} - \frac{t_{a}}{Q} - \frac{H_{a}}{Q}\right) d\Phi_{\mathrm{F}}$$

- We evolve and expand all the needed ingredients in order to obtain:
- We follow all the steps presented for MiNNLO_{PS}- p_T to obtain:

$$\bar{B}^{\text{MiNNLO}_{\text{PS}}}(\Phi_{\text{FJ}}) = e^{-\tilde{S}(\tau_0)} \left(B(\Phi_{\text{FJ}}) \left(1 + \alpha_{\text{s}} \tilde{S}^{(1)} \right) + V(\Phi_{\text{FJ}}) + \int d\Phi_{\text{rad}} R(\Phi_{\text{FJJ}}) + \left(D(\tau_0) - \alpha_{\text{s}} D^{(1)}(\tau_0) - \alpha_{\text{s}}^2 D^{(2)}(\tau_0) \right) \mathscr{F} \right)$$

THE MINNLOPS-TO METHOD [Ebert, Rottoli, Wiesemann, Zanderighi, SZ '24]

We start from the factorization formula of O-jettiness at NNLL' (for 1-jettiness, include also jet function)

$$\frac{\mathrm{d}\sigma^{\mathrm{sing}}}{\mathrm{d}\Phi_{\mathrm{F}}\mathrm{d}\tau_{0}} = \frac{\mathrm{d}}{\mathrm{d}\tau_{0}} \left(e^{-\tilde{S}(\tau_{0})} \mathscr{L}(\tau_{0}) \right)$$

$$\frac{d\sigma}{d\Phi_{\rm F}d\tau_0} = \frac{d\sigma^{\rm sing}}{d\Phi_{\rm F}d\tau_0} + R_f(\tau_0) \qquad \qquad \frac{d\sigma^{\rm sing}}{d\Phi_{\rm F}d\tau_0} = \sum_{a,b} \frac{d|M_{a,b}|^2}{d\Phi_{\rm F}} H_{a,b}(Q,\mu) \int dt_a dt_b B_a(t_a, x_a, \mu) B_b(t_b, x_b, \mu) S\left(\tau_0 - \frac{t_a}{Q} - \frac{t_a}{Q}\right)$$
• We evolve and expand all the needed ingredients in order to obtain:
$$\frac{d\sigma^{\rm sing}}{d\Phi_{\rm F}d\tau_0} = \frac{d}{d\tau_0} \left(e^{-\tilde{S}(\tau_0)} \mathscr{L}(\tau_0)\right)$$

- We follow all the steps presented for MiNNLO_{PS}- p_T to obtain:

$$\bar{B}^{\text{MiNNLO}_{\text{PS}}}(\Phi_{\text{FJ}}) = e^{-\tilde{S}(\tau_0)} \left(B(\Phi_{\text{FJ}}) \left(1 + \alpha_{\text{s}} \tilde{S}^{(1)} \right) + V(\Phi_{\text{FJ}}) + \int d\Phi_{\text{rad}} R(\Phi_{\text{FJJ}}) + \left(D(\tau_0) - \alpha_{\text{s}} D^{(1)}(\tau_0) - \alpha_{\text{s}}^2 D^{(2)}(\tau_0) \right) \mathcal{F} \right)$$

The logarithmic structure in transverse momentum and jettiness resummation is different! The MiNNLO_{PS} formulae in the two cases are the same in the structure, but contain different ingredients.

THE MINNLO_{PS}-τ₀ METHOD [Ebert, Rottoli, Wiesemann, Zanderighi, SZ '24]

We start from the factorization formula of O-jettiness at NNLL' (for 1-jettiness, include also jet function)

 $d\tau_0 \setminus$

The accuracy of the parton shower is not fully preserved because we rely on the POWHEG formalism.

Fix this issue requires a deep modification of the POWHEG method, mainly modifying the mappings and/or including truncated-vetoed showers. We plan to implement these changes when matching with NLL accurate showers.

MATCHING WITH THE SHOWER

MATCHING WITH THE SHOWER [Ebert, Rottoli, Wiesemann, Zanderighi, SZ '24]

The accuracy of the parton shower is not fully preserved because we rely on the POWHEG formalism.

Fix this issue requires a deep modification of the POWHEG method, mainly modifying the mappings and/or including truncated-vetoed showers. We plan to implement these changes when matching with NLL accurate showers.

Our results are anyway reliable because the showers effects are small and they have the same impact in MiNNLO_{PS}- p_T and MiNNLO_{PS}- τ_0 .

- MiNNLO_{PS}-p_T (LHE)
- MiNNLO_{PS}-p_T (PY8)
- MiNNLO_{PS}- τ_0 (LHE)
- MiNNLO_{PS}- τ_0 (PY8)

		$pp \to H \text{ (on-shell)}$		$pp \to Z \to \ell^+ \ell^-$	
		σ [pb]	$\sigma/\sigma_{ m NNLO}$	$\sigma~[{ m fb}]$	$\sigma/\sigma_{ m NNLO}$
	NNLO	$\left 40.32(2)^{+10.7\%}_{-10.4\%} ight $	1.000	$1919(1)^{+0.9\%}_{-1.1\%}$	1.000
	$MINNLO_{PS}$ - p_{T}	$39.33(1)^{+12.2\%}_{-11.0\%}$	0.975	$1907(2)^{+1.1\%}_{-1.2\%}$	0.994
	$\mathrm{MiNNLO_{PS}}$ - \mathcal{T}_0	$\left 41.56(2)^{+9.4\%}_{-10.1\%} ight $	1.031	$1925(1)^{+1.2\%}_{-1.2\%}$	1.003

NOTE: the two MiNNLOPS descriptions differ by terms beyond accuracy, so they are expected to agree within error bands.

CROSS SECTIONS [Ebert, Rottoli, Wiesemann, Zanderighi, SZ '24]

NNLO OBSERVABLES

[Ebert, Rottoli, Wiesemann, Zanderighi, SZ '24]

 $p_{\mathrm{T,e^+}}$

 $p_{\mathsf{T},j}$

Large differences between MiNNLO-p_T and MiNNLO- τ_0 for H production not covered by scale variation.

LHC 13 TeV, $pp \to Z/\gamma^* (\to \ell^+ \ell^-) + X$ 10^{2} $MiNNLO_{PS}-p_T + Pythia8$ $MiNNLO_{PS}-\mathcal{T}_0 + Pythia8$ 10^{1} NNPDF3.1 (NNLO) [qd] $66 < m_{\ell\ell} < 116 {
m ~GeV}$ $d\sigma/dp_{\mathrm{T,j_1}}$ $ext{anti-}k_t,\ R=0.4$ 10^{0} 10^{-1} $\dot{r}_{10^{-2}}$ 0.0°_{+} atio $100 \ p_{\mathrm{T,j_1}} \ [\mathrm{GeV}]$ 507512525200150175 $p_{\mathrm{T},j}$

NOTE: GENEVA error bars are obtained through 3-point scale variation.

COMPARISON WITH GENEVA - DY

[Ebert, Rottoli, Wiesemann, Zanderighi, SZ '24]

COMPARISON WITH GENEVA - DY [Ebert, Rottoli, Wiesemann, Zanderighi, SZ '24]

NOTE: GENEVA error bars are obtained through 3-point scale variation.

Accurate resummation needed

Good agreement (1-2 σ) between MiNNLO_{PS} predictions and data.

- **NNLO+PS** accuracy is the **state-of-the art** for precision physics at the LHC.
- The MiNNLO_{PS} method is a powerful framework to reach this accuracy.
- Extending MiNNLO_{PS} to processes with jets is not trivial.
 - MiNNLO_{PS} based on 0-jettiness resummation: I presented the theoretical formalism and discussed phenomenological results for Higgs production and Drell-Yan process. We found very good agreement for NNLO observables, while discrepancies are present for NLO ones (in the Higgs case).
 - The comparison with GENEVA shows a nice agreement between the two methods, both for the pt and the jettiness formalisms.
 - We obtained a good agreement with ATLAS and CMS data.
 - MiNNLO_{PS} based on 1-jettiness resummation: I (briefly) presented the theoretical formalism.

- **NNLO+PS** accuracy is the **state-of-the art** for precision physics at the LHC.
- The MiNNLO_{PS} method is a powerful framework to reach this accuracy.
- Extending MiNNLO_{PS} to processes with jets is not trivial.
 - MiNNLO_{PS} based on 0-jettiness resummation: I presented the theoretical formalism and discussed phenomenological results for Higgs production and Drell-Yan process. We found very good agreement for NNLO observables, while discrepancies are present for NLO ones (in the Higgs case).
 - The comparison with GENEVA shows a nice agreement between the two methods, both for the pt and the jettiness formalisms.
 - We obtained a good agreement with ATLAS and CMS data.
 - MiNNLO_{PS} based on 1-jettiness resummation: I (briefly) presented the theoretical formalism.

Thank you!

