Developing an amplitude level parton shower: CVolver

Fernando Torre González

With Jeff Forshaw and Simon Plätzer

The University of Manchester

QCD@LHC, October 10th

Plätzer [1312.2448] and surrounding work

The colour flow basis

 $\sum t^a_{ij}t^a_{kl}=\frac{1}{2}\left(\delta_{il}\delta_{kj}-\frac{1}{N_c}\delta_{ij}\delta_{kl}\right)$

The colour lines that

each parton carries. Possible ways of connecting the colour flows. Each permutation corresponds to a different state in colour space.

Graphic from Angeles Martinez, de Angelis, Forshaw, Plätzer, Seymour [1802.08531]

Gluons carry a colour and an anti-colour. Quarks carry colour and anti-quarks carry anti-colour.

A possible colour state is given by connecting each colour line with an anti-colour line.

If there are *n* colour flows (colour lines connected to anti-colour lines), in total there must be *n!* possible colour states, as this is the number of permutations.

Plätzer [1312.2448] and surrounding work

The colour flow basis

The colour lines that

each parton carries. Possible ways of connecting the colour flows. Each permutation corresponds to a different state in colour space.

Graphic from Angeles Martinez, de Angelis, Forshaw, Plätzer, Seymour [1802.08531]

$$
\sum_{a} t_{ij}^{a} t_{kl}^{a} = \frac{1}{2} \left(\delta_{il} \delta_{kj} - \frac{1}{N_c} \delta_{ij} \delta_{kl} \right)
$$
\n123|123

\n(123|213)

\n(123|213)

\n(123|312)

\nnumber of colour flows

\n(σ | τ) = $N^{n-1}(\sigma, \tau)$

number of permutations between the colour states

More details in Forshaw, Plätzer et al. [1802.08531]

The colour flow basis: real emissions

$$
\mathbf{T}_i = \lambda_i \mathbf{t}_{c_i} + \overline{\lambda}_i \overline{\mathbf{t}}_{\overline{c}_i} - \frac{1}{N_c} \left(\lambda_i - \overline{\lambda}_i \right) \mathbf{s},
$$

These are always rectangular matrices, of dimensions *(n+1)!xn!*

More details in Forshaw, Plätzer et al. [1802.08531]

The colour flow basis: real emissions

$$
\mathbf{T}_{i}=\lambda_{i}\mathbf{t}_{c_{i}}+\overline{\lambda}_{i}\overline{\mathbf{t}}_{\overline{c}_{i}}-\frac{1}{N_{c}}\left(\lambda_{i}-\overline{\lambda}_{i}\right)\mathbf{s}_{i}
$$

These are always rectangular matrices, of dimensions *(n+1)!xn!*

For a $e^+e^- \rightarrow$ qqbar hard process, emitting from the 1st quark every time:

0 to 1 emission

$$
\frac{1}{\sqrt{2}} - \frac{1}{\frac{1}{\sqrt{2}}}
$$

1 to 2 emissions

$$
\begin{pmatrix}\n-\frac{1}{\sqrt{2} n} & 0 \\
0 & 0 \\
0 & -\frac{1}{\sqrt{2} n} \\
0 & 0 \\
0 & \frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}} & 0\n\end{pmatrix}
$$

In these matrices, *n* is the number of colours.

2 to 3 emissions

The colour flow basis: virtual exchanges More details in Forshaw, Plätzer et al. [1802.08531]

$$
\mathbf{T}_i = \lambda_i \mathbf{t}_{c_i} + \overline{\lambda}_i \overline{\mathbf{t}}_{\overline{c}_i} - \frac{1}{N_c} (\lambda_i - \overline{\lambda}_i) \mathbf{s},
$$

The *Ti • Tj* matrices are square, of *n!xn! dimensions.*

For a $e^+e^- \rightarrow$ qqbar hard process, doing a virtual exchange between the two hard quarks:

Exponentiating the anomalous dimension

$$
\left[\tau\right|\Gamma\left|\sigma\right\rangle = -N_c\delta_{\tau\sigma}\Gamma_\sigma + \Sigma_{\tau\sigma} + \frac{1}{N_c}\delta_{\tau\sigma}\rho
$$

We can exponentiate the anomalous dimension as an infinite series in the number of swaps:

$$
[\tau|e^{\Gamma}|\sigma] = \delta_{\tau\sigma}e^{-NT_{\sigma}}\left(1+\frac{\rho}{N}\right)
$$

$$
-\frac{1}{N}\Sigma_{\tau\sigma}\frac{e^{-NT_{\tau}}-e^{-NT_{\sigma}}}{\Gamma_{\tau}-\Gamma_{\sigma}} + \text{NNLC}
$$

Exponentiating the anomalous dimension

$$
\left[\tau\right|\Gamma\left|\sigma\right\rangle = -N_c\delta_{\tau\sigma}\Gamma_{\sigma} + \Sigma_{\tau\sigma} + \frac{1}{N_c}\delta_{\tau\sigma}\rho
$$

We can exponentiate the anomalous dimension as an infinite series in the number of swaps:

Which we can use to sample directly from during Monte Carlo evolution. We simply need to select at each step how many swaps we want to introduce, and select a permutation that number of swaps away.

Graphic from de Angelis's talk at PSR19, showing the Level Swap Algorithm

Revisiting the real emissions: rings and strings Forshaw, Holguin, Plätzer [2112.13124]

We can distinguish three different cases, depending on the choice of colour flows in the amplitude versus the conjugate amplitude:

Forshaw, Holguin, Plätzer [2112.13124]

Revisiting the real emissions: rings and strings

$$
\omega_{ij}(q_n) = \frac{q_i \cdot q_j}{q_n \cdot q_i \; q_n \cdot q_j}
$$

If both colour lines are shared: only one dipole contributes $ω$ _{ij}

If one colour line is shared: three dipoles contributes $ω_{ij} + ω_{ik} - ω_{ik}$

If no colour line is shared: four dipoles contribute $ω_{il} + ω_{ik} - ω_{kl} - ω_{ij}$

Revisiting the real emissions: rings and strings Forshaw, Holguin, Plätzer [2112.13124]

In CVolver, after we select the after emission colour flows, we can reweight using the corresponding dipole, string or ring. This makes collinear cancellations explicit and helps computationally.

Fernando Torre Gonzalez 15 QCD@LHC, October 10th

We dress the hard process density matrix with iterative real and virtual operators:

$$
\sigma_0 = \text{Tr}\left(\mathbf{V}_{\mu,Q}\mathbf{H}(Q)\mathbf{V}_{\mu,Q}^{\dagger}\right) \equiv \text{Tr}\,\mathbf{A}_0(\mu)
$$
\n
$$
d\sigma_1 = \text{Tr}\left(\mathbf{V}_{\mu,E_1}\mathbf{D}_1^{\mu}\mathbf{V}_{E_1,Q}\mathbf{H}(Q)\mathbf{V}_{E_1,Q}^{\dagger}\mathbf{D}_{1\mu}^{\dagger}\mathbf{V}_{\mu,E_1}^{\dagger}\right) d\Pi_1
$$
\n
$$
\equiv \text{Tr}\,\mathbf{A}_1(\mu)d\Pi_1,
$$
\n
$$
d\sigma_2 = \text{Tr}\left(\mathbf{V}_{\mu,E_2}\mathbf{D}_2^{\nu}\mathbf{V}_{E_2,E_1}\mathbf{D}_1^{\mu}\mathbf{V}_{E_1,Q}\mathbf{H}(Q)\mathbf{V}_{E_1,Q}^{\dagger}\mathbf{D}_{1\mu}^{\dagger}\mathbf{V}_{E_2,E_1}^{\dagger}\mathbf{D}_{2\nu}^{\dagger}\mathbf{V}_{\mu,E_2}^{\dagger}\right) d\Pi_1 d\Pi_2
$$
\n
$$
\equiv \text{Tr}\,\mathbf{A}_2(\mu)d\Pi_1 d\Pi_2
$$
\n
$$
\vdots
$$
\n
$$
d\sigma_n = \text{Tr}\,\mathbf{A}_n(\mu)\prod_{i=1}^n d\Pi_i
$$
\n
$$
\text{Tr}\,\mathbf{A}_n = \text{Tr}\left[\mathcal{A}\mathcal{S}\right] = \sum_{\sigma,\tau} \left[\tau \left|\mathbf{A}_n \middle| \sigma \right] \left\langle \sigma \middle| \right. \tau \right\rangle
$$
\n
$$
d\sigma_n = \text{Tr}\,\mathbf{A}_n(\mu)\prod_{i=1}^n d\Pi_i
$$
\n
$$
\vdots
$$

The soft evolution algorithm

At each step in the evolution, the colour state after the action of the real and virtual operators is sampled. This defines each event as a trajectory in colour space.

We count every factor of *1/N^c* included at each step. There are four possible sources: the reals, the virtuals, the scalar product of the final colour states, and the hard process.

Thus, we can expand the cross-section in this way:

$$
\sum_{m} N_c^m g_m \left(C_{0,m} + \frac{C_{1,m}}{N_c} + \frac{C_{2,m}}{N_c^2} + \dots \right)
$$

Graphic from de Angelis, Forshaw, Plätzer: 2007.09648

Keeping track of colour

We have four possible sources of subleading colour:

- **The hard process matrix:** the colour structure of the process we are evolving.
- **The virtual evolution:** every V operator can produce any number of swaps on either side of the density matrix. Each swap comes with a factor of *1/Nc* .
- **The real emissions:** the only explicit factors of *1/N^c* come from the s operator, singlet gluon emissions.
- **The scalar product matrix:** the inner product of the colour permutations of the amplitude and conjugate amplitude.

$$
\operatorname{Tr} \mathbf{A}_n = \operatorname{Tr}[\mathcal{A}\mathcal{S}] = \sum_{\sigma,\tau} [\tau | \mathbf{A}_n | \sigma] \underbrace{\langle \sigma | \tau \rangle}_{\text{Scalar product matrix}}
$$

 n^3 n^2 n^2 n n n^2 n^2 n^3 n n^2 n^2 n n^2 n n^3 n^2 n^2 n $n n^2 n^2 n^3 n n^2$ $n n^2 n^2 n n^3 n^2$ n^2 n n n^2 n^2 n^3

Scalar product matrix for 3 colour flows

Cross checks

Fernando Torre Gonzalez 18 QCD@LHC, October 10th

Fernando Torre Gonzalez 19 QCD@LHC, October 10th

Fernando Torre Gonzalez **21** CCD@LHC, October 10th **21** 21

QCD@LHC, October 10th

e⁺e⁻ → qq | event generator mode

Until now we have only discussed using CVolver as a resummation tool for gaps between jets.

But it can also be run as an event generator -- evolving all events down to some infra-red scale μ, and then applying the measurement function to generate a differential cross-section.

0 emissions

1 emission

2 emissions

3 emissions

4 emissions

5 emissions

6 emissions

7 emissions

Fernando Torre Gonzalez 23 QCD@LHC, October 10th

Summary and next steps

- We have implemented a full colour soft evolution algorithm that keeps track of every source of subleading colour in a systematic way.
- We have performed every cross-check we can think of.
- We are studying the subleading colour structures for different processes and kinematic configurations.
- It is ready to produce lots of other interesting physics -- for example we can study differential observables in event generator mode (like colour reconnection) and Glauber effects.
- The algorithm design is such that we can "plug in" new features, which are under development:
- o Full kinematics parton shower, with hard process elements
- \circ k_t ordering
- o Hard-collinear physics

Colour reconnection in e⁺e⁻ to four jets