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Textbook QFT
Traditionally, finite predictions in QFT can be made through (systematically
improvable) perturbation theory

σ=
∑
i=1

αi
S(µR)σ

(i)(µR)

But QFT perturbation theory has many unphysical features:
• UV singularities need renormalization
• IR singularities → individual renormalized diagrams not finite, only after

summing unresolved (virtual) and resolved (real) diagrams (KLN theorem)
• Perturbative series not positive definite order by order
• Series not convergent in general
• Complexity grows exponentially → predictions restricted to low

multiplicities

Would like to organise calculation such that it is positive definite and free of
singularities ⇒ Parton Showers!
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Why are we talking about logarithmic accuracy?
Parton showers evolve hard states from
Q ∼

√
ŝ down to Λ ∼ 1 GeV

This evolution generates logarithms of the
form L ∼ ln Q

Λ ≫ 1, (gX(αSL) ∼ αSL)

Σ(O< e−L) = exp
[
−LgLL(αSL)
+gNLL(αSL)

+αSgNNLL(αSL)+ . . .
]

Q = MZ Q = 1 TeV

|LgLL| ∼αSL2 2 4
|gNLL| ∼αSL 0.5 0.6 ← O(100%)
|αSgNNLL| ∼α2

S L 0.06 0.05 ← O(10%)

NNLL crucial to reach percent-level accuracy!

Figure by S. Ferrario Ravasio
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√
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Conceptual limitations
• Can we improve systematically from

LL → NLL → NNLL → ...?
• How do we incorporate the hard

scattering at high orders?
Figure by S. Ferrario Ravasio
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The ubiquitous Parton Shower

Parton Showers enter one way or another in almost 95% of all ATLAS and CMS
analyses. Collider physics would not be the same without them.
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Current status on parton showers

• The most widely-used event generators,
Pythia, Herwig, and Sherpa, are all for-
mally limited to LL

• Overall they do a good job at the LHC,
but places where big differences are seen

→ very differential phase space regions of
jets are associated with 10− 30% differ-
ences

• Feeds into many analysis, becoming
even more important to get right as ma-
chine learning will learn wrong features

CMS [2312.16343]
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The NLL revolution
The PANSCALES collaboration has lead the effort to go beyond LL.

core principle for NLL showers:

QCD factorisation ⇒ Parton showers must correctly reproduce QCD matrix
elements in single soft/collinear limits, where QFT amplitudes factorise

This principle is violated by most standard showers!

Other work
NLL also achieved by other groups: ALARIC Herren, Höche, Krauss, Reichelt, Schoenherr

[2208.06057], [2404.14360], APOLLO Preuss [2403.19452], DEDUCTOR Nagy, Soper [2011.04773],
and Forshaw-Holguin-Plätzer [2003.06400]. Two latter with additional novelty
due to amplitude evolution.
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PANSCALES [2207.09467]

Part of advantage in LL→NLL is
reduction in residual scale

uncertainties for inclusive quantities
like the transverse momentum of the Z
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PANSCALES [2207.09467]

Larger shape differences
can be observed in more

exclusive observables
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PANSCALES [2207.09467]

Larger shape differences
can be observed in more

exclusive observables

further enhanced at large
scales!
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e+e−: Dasgupta, Dreyer, Hamilton, Monni, Salam, Soyez

[2002.11114]; pp (w/spin+colour): van Beekveld, Fer-

rario Ravasio, Salam, Soto-Ontoso, Soyez, Verheyen [2205.02237]; +
pp tests: eid. + Hamilton [2207.09467]; DIS+VBF: van Beekveld,

Ferrario Ravasio [2305.08645]

Hamilton, Medves,

Salam, Scyboz, Soyez

[2011.10054]

AK, Salam, Scyboz, Verheyen

[2103.16526],
eid. + Hamilton [2111.01161]
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a selection of the logarithmic accuracy tests

14

Figure 11: NLL global event-shape tests of the segment and NODS colour schemes,

showing NLL agreement for � = 1/2 PanScales showers and for the � = 0 PanGlobal

shower. In contrast to the NLL-LC tests of Ref. [12], the Pythia 8 �obs > 0 results here

are coloured green rather than amber, because our colour code does not incorporate the

information about failure of exponentiation in fixed-order tests, tests that we have not

explicitly repeated for this paper.

of the slice [22, 59] (see also Ref. [60]). The full-colour resummation for such observables is

sensitive to arbitrarily complex colour correlators, both in the real emissions and the virtual

corrections, which need to be evaluated at amplitude level. The resulting subleading-

colour single-logarithmic corrections go far beyond the scope of the colour schemes that we

introduced in sections 3 and 4. In particular, we expect the segment scheme to be correct

at full colour only up to order ↵sL, and the NODS scheme to be correct at full colour up to

order ↵2
sL

2. Recall that leading-colour all-order single-logarithmic accuracy for PanScales

showers was demonstrated in Ref. [12].

– 38 –

(a) (b)

Figure 12: NLL (single-logarithmic) tests for a non-global observable. (a) Fraction of

events whose energy flow in a central slice of rapidity is less than e�|L|Q, shown in the

limit ↵s ! 0 for fixed ↵sL, as a function of ⌧(↵s, L), defined in Eq. (7.10). Our results

are shown for the PanScales antenna shower with �PS = 1/2, with three di↵erent colour

schemes: leading-Nc (with CF = CA/2 = 3/2), segment and NODS. They are compared

to the full-colour Hatta-Ueda (“finite-Nc (exact)”) result [28]. (b) Ratio of the same set

of results to the NODS result, illustrating apparent consistency of the segment and NODS

schemes with the Hatta-Ueda result, to within its statistical uncertainty. The agreement is

potentially surprising given that our schemes do not achieve NLL-FC (↵n
s Ln) accuracy for

non-global observables. The thin band for our results represents the statistical uncertainty

added in quadrature to estimates of systematics obtained using the di↵erence between our

default runs (⌘max = 10 and ↵s = 0.7⇥10�8) and runs with ⌘max = 8 and ↵s = 1.4⇥10�8.

Our results for other showers with the same colour schemes are very similar, as is to be

expected.

methods. Recall that those methods are not expected to work beyond order � and �2

respectively. However in Fig. 12 (left) they are indistinguishable from the full-Nc Hatta-

Ueda result. To further probe this observation, the right hand plot shows ratios to a

reference, which we take to be the PanLocal-antenna � = 1/2 NODS (the specific choice

is largely immaterial, since our aim is to compare di↵erent predictions on this ratio plot).

One sees that the di↵erence between the full-Nc Hatta-Ueda result and our leading-Nc

result is about 23% at ⌧ = 0.4. Remarkably, both our segment and NODS methods seem

to be in good agreement with the Hatta-Ueda result across the full range of ⌧ : the whole

range is within two standard deviations of the Hatta-Ueda result, and in much of the range

the agreement is within one standard deviation. Some caution is needed in interpreting

these results: firstly, they correspond to one specific choice of slice size. Secondly, when

using a finite-resolution angular grid (as in the Hatta-Ueda approach), there are inevitably

original paper and providing us with the corresponding numerical results.
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(a) (b)

Figure 5: Ratio of the cumulative distribution for the colour-singlet transverse momentum

to the NLL analytic result, in the ↵s ! 0 limit, for (a) qq̄ ! Z and (b) gg ! H events. The

results are shown for Dipole-kt with local (red dashed line) and global recoil (green dotted

line), PanGlobal with �PS = 0 (blue solid line) and �PS = 0.5 (blue circles), and PanLocal

with �PS = 0.5, both for the antenna (black triangles) and dipole (black squares) variants.

For clarity, the PanLocal antenna (dipole) points have been slightly shifted towards the

left (right), with respect to the values actually used, which coincide with the PanGlobal

�ps = 0.5 ones.

It is useful to recall the structure of the standard b-space result for the resummation

of the transverse-momentum distribution [15, 59, 60],

d⌃

dp2
tX

=

Z 1

0

db

2
bJ0(bptX)⌃V (b0/b) , (5.1)

with b0 = 2e��E , ⌃V the b-space resummed distribution, and J0 the Bessel function of

the first kind and order 0. Observe that for ptX ! 0 the result tends to a non-zero

constant, whose value can be straightforwardly obtained by replacing J0(bptX) ! 1 in

Eq. (5.1). Fig. 6a shows the small-ptX behaviour of the distribution for Z production, in

four showers. Three of them, PanGlobal, PanLocal and Dipole-kt(global), indeed tend to

a non-zero constant. In contrast the variant of Dipole-kt with local recoil for IF dipoles

tends to zero in this limit, i.e. it has the wrong scaling behaviour. This is because, after

the first emission, the event consists of two IF dipoles, and from that point onwards, no

further transverse recoil is taken by the Z boson. Therefore the only mechanism for ptZ to

be small is Sudakov suppression of the first emission, which is a much stronger suppression

than the vector cancellation.13

13For processes such as gg ! H with two II dipoles, one does recover the correct power-dependence of

the scaling (i.e. the plateau), because the Higgs recoil induced by an emission o↵ one II dipole can have a

vector cancellation with recoil induced by an emission o↵ the other II dipole. However the normalisation

of the plateau is still expected to be wrong, as is the whole shape of the distribution for ↵sL ⇠ 1.
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Figure 4: Summary of deviations from NLL for several global observables for the process

qq̄ ! Z and � = �0.5. Red squares denote a clear NLL failure; amber triangles indicate a

NLL fixed-order failure that is masked at all orders; green circles are used when the shower

passed both the numerical NLL tests and the fixed-order recoil tests. The ↵s ! 0 result is

obtained by quadratically extrapolating the shower results at ↵s = 0.00625, 0.003125 and

0.0015625, and includes a systematic error that is evaluated as the change in the ↵s ! 0

extrapolation when one uses ↵s = 0.0125 instead of ↵s = 0.003125. The showers include a

dynamic cuto↵ � = 18, which functions as discussed in our earlier e+e� tests [8, 11].

and the PanScales showers, so as to concentrate on the impact of recoil. In contrast,

standard dipole showers choose the colour factor according to whether the emitting dipole

end that is closer (in the dipole centre-of-mass frame) is a gluon (CA/2) or a quark (CF ).

This results in incorrect terms already at LL, in analogy with the final-state discussion in

Ref. [10]. The numerical impact will be the same as in the all-order final-state study [8].

5 The transverse momentum of the colour-singlet system

The next observable that we discuss is the cumulative distribution for the transverse mo-

mentum of a massive colour singlet (here, Z or H boson) produced in proton collisions. It

has wide relevance for LHC phenomenology, and for example its understanding is critical

for W mass extractions [40–42].10 It is also widely used in matching showers and fixed-order

calculations [44, 54–56].

10One should keep in mind, that in many applications parton showers are reweighted so that the colour-

singlet transverse momentum distribution agrees with high-order matched resummed and fixed order predic-

tions, such as [43–53]. Still, even if such a procedure results in a correct colour-singlet transverse momentum

distribution for the reweighted shower, it will not in general correctly account for correlations between the

colour singlet and the full pattern of hadronic energy deposition. We leave the detailed study of such

questions to future, more phenomenological work.
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Figure 8: Extrapolation of Nshower�NNDL
NNDL�NDL

to ↵s = 0 at a fixed value of ⇠ = ↵sL
2 for all

showers, two di↵erent energies (
p

s = 5mX , left, and
p

s = 1000mX , right), and the two

processes under study, i.e. pp ! Z and pp ! H.

⌃ rather than ln⌃. The analogue of Eq. (4.1) for such non-exponentiating observables is

⌃(L) = h1(↵sL
2) +

p
↵sh2(↵sL

2) + . . . , (7.1)

where the NkDL function ↵
k/2
s hk+1(↵sL

2) resums terms of ↵n
s L2n�k. That is, the function

h1 captures the double logarithmic (DL) enhancement, h2 the next-to-double-logarithmic

(NDL) contribution and so on. In the multiplicity case, the logarithm that needs to be

resummed is L = ln(kt,cut/mX), where, up to NDL accuracy, kt,cut may be either a shower

transverse momentum cuto↵ (for particle multiplicities) or a jet algorithm transverse mo-

mentum cut for a suitably defined subjet multiplicity.

Recently, the subjet multiplicity in colour singlet production has been computed up

to NDL accuracy [69] (earlier calculations gave similar structures [70–72]). In a shower

context, up to NDL, it applies equally well to the number of particles in the event (Nshower)

when one sets the strong coupling to zero below a given value of kt,cut.

To test the NDL terms in Eq. (7.1), we compute the following ratio

Nshower � NNDL

NNDL � NDL
, (7.2)

which vanishes in the ↵s ! 0 limit if the shower is correct at NDL accuracy.16 The result

of computing Eq. (7.2) with all showers, at two di↵erent energies and for two di↵erent hard

processes (pp ! Z and pp ! H) is shown in Fig. 8. We observe that all showers are con-

sistent with the full-colour NDL expectation, within the small statistical errors. Relative

16Practically, we run the shower for di↵erent values of kt,cut, i.e. ln kt,cut = {�31.25,�62.5,�125,�1000},

keeping ⇠ ⌘ ↵sL
2 = 5 fixed (L = ln kt,cut/mX) and use all four points to perform a cubic polynomial

extrapolation down to ↵s ! 0. The error that we quote on Nshower is purely statistical.

– 19 –

0.00

0.05

0.10

1
�
to

t

d
�

d
�
 

1
2

↵
s

=
10

�
7,

1-lo
o
p

ru
n
n
in

g
z
1

>
0
.1,

z
2

>
0
.1

all

gg

qq̄
rest

all

gg

qq̄
rest

all

gg

qq̄
rest

all

gg

qq̄
rest

��12

PanGlobal (� = 0)
PanLocal (dip. � = 0.5)

PanLocal (ant. � = 0.5)
Toy shower

�5
0
5 all

⇥10�3
PS�toy

toy

�5
0
5 g

g

�5
0
5 q

q̄

�5
0
5 rest

�⇡ �⇡/2 0 ⇡/2 ⇡

� 

0.000

0.002

0.004

0.006

0.008

1
�
to

t

d
�

d
�
 

↵
s

=
10

�
7,

1-lo
op

ru
n
n
in

g

all

gg

qq̄

rest

all

gg

qq̄

rest

all

gg

qq̄

rest

all

gg

qq̄

rest

EEEC

�5
0
5 all

⇥10�3
PS�toy

toy

�5
0
5 g

g

�5
0
5 q

q̄

�⇡ �⇡/2 0 ⇡/2 ⇡

� 

�5
0
5 rest

All-order �⇤
! qq̄, � = �0.5

Figure 17: All-order comparison of the toy shower and di↵erent PanScales showers, for �⇤ ! qq̄
events. The two observables shown are the azimuthal angle, � 12, between a primary and
secondary splitting planes in Lund declustering, and the di↵erence in angle � between the
(ij)k and ij planes in the EEEC (Eq. (12)). The results are obtained in the limit ↵s ! 0 for
fixed � = ↵sL = �0.5. For the Lund declustering � 12 we consider events with kt,2/Q > e�|L|

and for the EEEC � we consider events with ✓S > e�|L|.
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Going beyond NLL

Already made significant progress, in a few years, taking NLL → NNLL.

core additional principle for NNLL showers:

achieve QCD factorisation also for commensurate scale “pair” of emissions ⇒
1 hard emission double-soft emissions triple-collinear emissions

• leading-order αS matching → Hamilton, AK, Salam, Scyboz, Verheyen [2301.09645]

• double-soft emissions → Ferrario Ravasio, Hamilton, AK, Salam, Scyboz, Soyez [2307.11142]

• parts of triple-collinear → Dasgupta, El-Menoufi [2109.07496], eid. + van Beekveld, Helliwell,

Monni [2307.15734], eid. + AK [2402.05170], PANSCALES [2406.02661]
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Analytic structure beyond NLL
Taking an event shape, O, to be less than some value e−|L| we have at NNLL (focusing
for now on e+e− only)

Σ(O< e−|L|) = (1+αSC1 + . . .)exp
[

1
αS

g1(αSL)+g2(αSL)+αSg3(αSL)+ . . .
]

(1)

where g1 accounts for LL terms, g2 for NLL terms, and g3 and C1 for NNLL terms1.
Whereas an analytic resummation in principle retains only the terms that are put in (i.e.
g1 and g2 at NLL) the shower will instead generate spurious higher order terms

Σ(O< e−|L|) =
(
1+αSC̃1 + . . .

)
exp

[
1
αS

g1(αSL)+g2(αSL)+αSg̃3(αSL)+ . . .
]

(2)

When thinking about going beyond NLL we need to address two things: 1) what are the
necessary analytic ingredients from resummation and 2) how do we compensate the
NNLL terms already present in the shower?

1In the language of qT resummation A1 is responsible for LL terms, A2 and B1 for NLL terms and
A3 and B2 for NNLL terms (together with the hard coefficient function C1(z)).
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Lund plane picture

kt,1 ∼ Q

1

b a kt,1 ∼ kt,2≪Q

θ12≪ θ1a,θ2a

1 2
b a

kt,1 ∼ kt,2≪Q

θ12 ∼ θ1a ∼ θ2a

E1 ∼ E2 ∼ Q

ab
1

2

hard matching →
αS correct for first emission

double-soft →
get any pair of soft commen-
-surate energy/angle right

triple-collinear →
account for genuine 2 → 4
collinear splittings
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Match without breaking NLL
Hamilton, AK, Salam, Scyboz, Verheyen [2301.09645]

Standard matching→ don’t break fixed-order!

Log-aware matching→ first step in improving
the shower log accuracy!

• Existing matching schemes not necessarily
suited.

• Main concern related to kinematic mismatch
between shower and hardest emission gener-
ator. This issue has been studied in the past
Corke, Sjöstrand [1003.2384] but logarithmic un-
derstanding is new.

• Further subtelty in how shower partitions g→
gg splitting function
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Phenomenological impact
Hamilton, AK, Salam, Scyboz, Verheyen [2301.09645]

• Contour mismatch by area α∆ leads to
breaking of NLL and exponentiation

• Correct matching on the other hand
augments the shower from NLL to
NLL+NNDL for event shapes.

• Impact of NLL breaking terms vary - for
SoftDrop they have a big impact due to
the single-logarithmic nature of the ob-
servable. In particular the breaking man-
ifests as terms with super-leading logs

∂LΣSD(L)= ᾱceᾱcL−ᾱ∆−2ᾱLe−ᾱL2
(1−e−ᾱ∆)
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Include double-soft corrections
Ferrario Ravasio, Hamilton, AK, Salam, Scyboz, Soyez [2307.11142]

kt,1 ∼ kt,2≪Q

θ12≪ θ1a,θ2a

1 2
b a Double-soft corrections necessary for general

NNLL accuracy → sufficient for large classes of
observables

Achieves NNDL (αn
S L2n−2) for multiplicities

and NSL (αn
S Ln−1) for non-global observables

(at leading colour)

We implement through multiplicative matrix
element correction, care needed to get correct
NLO normalisation (interplay with KCMW)
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The double-soft ME
Ferrario Ravasio, Hamilton, AK, Salam, Scyboz, Soyez [2307.11142]

• Any two-emission configuration in a
dipole-shower comes with a number of
histories

• We accept any such configuration with
the true ME divided by the shower’s ef-
fective double-soft ME summed over all
histories that could have lead to that con-
figuration

• NB: Efficiency depends on shower over-
estimate!

Paccept =
|M2

DS|∑
h |M

2
shower,h|
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...and associated virtuals!
Ferrario Ravasio, Hamilton, AK, Salam, Scyboz, Soyez [2307.11142]

• Shower needs to reproduce both real and
virtual contributions!

• Virtuals are always included through the
Sudakov veto and an effective coupling
(CMW-coupling)

αS → αS +α2
S K1/2π

• Shower-recoil effectively modifies the
Sudakov/coupling → needs compensat-
ing term ∆K1

∆K1 =

∫
dΦ(PS)

12/1̃
|M(PS)

12/1̃
|2−

∫
dΦ(PS)

12/1̃sc
|M(PS)

12/1̃sc
|2.
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Lund Multiplicities at NNDL (αn
S L2n−2)

Ferrario Ravasio, Hamilton, AK, Salam, Scyboz, Soyez [2307.11142]

lim
αS→0

N(PS) −NNNDL

αSNDL

∣∣∣
fixedαSL2

Reference NNDL analytic
result from Medves, Soto-Ontoso,
Soyez [2205.02861]

Showers without double-soft
corrections show clear
differences from reference (and
each other).

Adding the double-soft
corrections brings NNDL
agreement.
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Energy in a slice at NSL (αn
S Ln−1)

Ferrario Ravasio, Hamilton, AK, Salam, Scyboz, Soyez [2307.11142]

lim
αS→0

Σ(PS) −ΣSL

αS

∣∣∣
fixedαSL

Reference NSL from Gnole
Banfi, Dreyer, Monni [2111.02413]
(see also Becher, Schalch, Xu
[2307.02283]).

We did this test semi-blind:
only compared to Gnole after
we had agreement between the
three PanGlobal variants.

We have NSL agreement with
Gnole (using nreal

f = 0) and
agreement between all showers
with full-nf dependence (first
calculation of this kind as a
by-product!)
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What about pheno?
Ferrario Ravasio, Hamilton, AK, Salam, Scyboz, Soyez [2307.11142]

• We studied energy flow be-
tween two hard (1 TeV)
jets as a preliminary pheno
case

• The three PanGlobal vari-
ants are remarkably close
without double-soft correc-
tions, but have large uncer-
tainties

• With double-soft correc-
tions we see a small shift
in central values but a sig-
nificant reduction in uncer-
tainties.
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Compute triple-collinear ingredients
Double-soft corrections are not sufficient to reach NNLL accuracy for event shapes.
Need triple-collinear ingredients (cf. Dasgupta, El-Menoufi [2109.07496], eid. + van Beekveld,

Helliwell, Monni [2307.15734], eid. + AK [2402.05170] for work in this direction)

However, with the inclusion of real double-soft emissions, only the Sudakov form factor
needs to be modified to reach NNLL, i.e. we do not need the fully differential
triple-collinear structure (hot off the press: van Beekveld, Dasgupta, El-Menoufi, Helliwell, Monni,

Salam [2409.08316])

Taking

αeff = αS

[
1+

αS

2π
(K1+∆K1(y)+B2(z))+

α2
S

4π2 K2

]

there are two pieces missing - B2 which is of triple-collinear origin [2109.07496],
[2307.15734] and K2 (A3) which is known Banfi, El-Menoufi, Monni [1807.11487], Catani, De Florian,

Grazzini [1904.10365]

NB: NLL showers generate spurious B̃2 and K̃2 → must be compensated by ∆B2 and ∆K2
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An intuitive picture
PANSCALES [2406.02661]

ΔK1 B
2 (z)B 2(

z)yı̃

ln kt,ı̃

O(k)
= v

kt = vβ ≡ v
1

1 + βobs

Recoil induces a drift of emissions in the Lund plane. Main novelty here is numerical
compensation. Shower but not observable dependent!
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Relation between shower and resummation ingredients
PANSCALES [2406.02661]

It is fairly straightforward to see that at NNLL we only depend on ∆K1 and B2
through their respective integrals

∆Kint
1 ≡

∫∞
−∞dy∆K1(y) , Bint

2 ≡
∫1

0
dz

Pgq(z)
2CF

B2(z).

These (and K2) can be related to the drifts in y (⟨∆y⟩), lnz (⟨∆lnz⟩), and lnkt
(⟨∆lnkt⟩) and analytical resummation through

∆Kint,PS
1 = 2⟨∆y⟩, Bint,PS

2 = Bint,NLO
2 − ⟨∆lnz⟩︸ ︷︷ ︸

=∆B2

, KPS
2 = Kresum

2 −4β0⟨∆lnkt⟩︸ ︷︷ ︸
=∆K2

.

Using these relations and taking Bint,NLO
2 from [2109.07496], [2307.15734] and Kresum

2
from [1807.11487] one can prove that our showers are NNLL accurate for
event-shape observables

.
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NNLL numerical tests
PANSCALES [2406.02661]

-3 -2 -1 0
1 T

FCx = 0
Mj, = 1
Sj, = 1
FCx = 1

2

Mj, = 1
2

Sj, = 1
2

BW

BT

y23
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PGsdf
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(2 , , , )

process
shower
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-3 -2 -1 0
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(3 , , , )

NNLL
OK

-3 -2 -1 0

PG = 1/2
(3 , , , )

NNLL
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-3 -2 -1 0
lim

s 0
2
2
s
[ln PS / ln NNLL 1]  for = sL = 0.4

PGsdf
= 0

(3 , , , )

NNLL
OK

Z qq H gg

s/
M

Z
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1,
 C

A
=

2C
F
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3,
 4

 
s v

al
ue

s

NNLL accuracy tests

→
→

→
→
→
→

→
→

NLL w/DS →: New analytic
results, not available
in literature

With no NNLL
improvements, the
coefficient of NNLL
difference is
significant, O(2−3),
indicating importance
of getting NNLL right

After inclusion of
shifts and B2 and K2
we have perfect
agreement
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Impact of NNLL
PANSCALES [2406.02661]

10 3

0.01

0.1

1
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1/
d

/d
v

NNLL

e + e Z hadrons
s = MZ = 91.2 GeV
s(MZ) = 0.118

2-jet@NLO

Thrust
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NLL
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v = T
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NNLL

10 4

10 3

0.01

0.1

+Pythia8.311
hadronisation
(tunes PG * -24A)

y23 (Durham)

ALEPH
PGsdf

0

PG0

PG1/2

0.6
0.8
1.0
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1.4

2 4 6 8 10
v = ln 1/y23

0.6
0.8
1.0
1.2
1.4

Long-standing tension
between LEP data and
Pythia8 unless using an
anomalously large value
of αS(MZ) = 0.137 Skands,

Carrazza, Rojo [1404.5630]

Inclusion of NNLL brings
large corrections wrt NLL.
Agreement with data
achieved without
anomalously large value
of αS
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What about tuning?
PANSCALES [2406.02661]

10 3

0.01

0.1

1
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n

/d
C
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PGsdf
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C
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 d
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a

Improved agreement with
data across a large range of
event shapes

We start from the Monash tune
(see ref. above) but fix
αS(MZ) = 0.118 (M13)

Full tuning exercise still to be
done, but very little impact on
infrared safe observables!
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What about tuning?
PANSCALES [2406.02661]
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Impact of tune very minor on infrared safe observables, even those that are
only NLL accurate
Impact on unsafe observables much larger, bringing good agreement with
ALEPH data.
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Conclusions and outlook

NNLL parton showers have arrived!

Full phenomenological impact still to be studied but encouraging results
observed in e+e−

Our code, including the NNLL improvements discussed here from v0.2, can be
obtained from https://gitlab.com/panscales/panscales-0.X.

Next steps are to extend to hadron collisions...
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