Efficiency of Event Generators

Enrico Bothmann

Institute for Theoretical Physics, University of Göttingen

QCD@LHC 2024 7—11 October, Freiburg, Germany

Prologue

Disclaimer

- Ignore recent \sim 20–40× speed-ups in Sherpa 2.2.12, 2.2.13 and 3.0.0 [EB et al.] arXiv:2209.00843
- Ignore ML developments
 - \rightarrow already discussed by Steffen on Monday
- Focus on recent developments in the novel Pepper event generator

The Pepper team:

Enrico Bothmann (ITP, U Göttingen)

Efficiency of Event Generators

QCD@LHC2024

2 Efficiency & portability with Pepper

3 Numerical stability for higher-order calculations

2 Efficiency & portability with Pepper

3 Numerical stability for higher-order calculations

Why improve event generation efficiency?

- High statistics at HL-LHC & excellent detector performance
 - \rightarrow Need for accurate & expensive simulated event samples
 - $\rightarrow \mbox{Poor event generation efficiency can limit experimental success} $$ [HSF Physics Event Generator WG] arXiv:2004.13687 arXiv:2109.14938 $$$

What dominates the computing budget?

- Which physics processes?
- Parton or particle level?
- Which final-state jet multiplicities?

In contrast to computers, human resources are scarce. We can't afford to make incremental improvements.

Enrico Bothmann (ITP, U Göttingen)

Efficiency of Event Generators

LHC projected CPU consumption for event generation

ATLAS: 14 % CPU for event generation in 2022
expect ca. 20 % during HL-LHC ("Aggressive R&D" scenario 2031)

Miha's slide on background uncertainties in VH production

Impact of background theory uncertainties in H→bb/cc

ATLAS

 $\mu_{V\mu}^{bb} = 0.91 \pm 0.10 \,(\text{stat.}) \pm 0.12 \,(\text{syst.})$ $\mu_{VH}^{cc} = 1.0 \pm 4.0 \,(\text{stat.}) \pm 3.5 \,(\text{syst.})$

Source of un	certainty				
		$VH, H \rightarrow b\bar{b}$	$VH, H \rightarrow c\bar{c}$		
Total		0.151	5.29		
Statistical		0.097	3.94		
Systematic		0.116	3.53		
Statistical u	ncertainties				
Data statist:	ical	0.089	3.70		
$t\bar{t} e\mu$ control	region	0.009	0.06		
Background	floating normalisations	0.034	1.23		
Other VH f	loating normalisation	0.007	0.24		
Simulation s	amples size	0.023	1.61		
Experimenta	al uncertainties				
Jets		0.028	1.00		
E_T^{miss}		0.009	0.24		
Leptons		0.004	0.23		
	b-jets	0.020	0.30		
b-tagging	c-jets	0.013	0.73		
	light-flavour jets	0.006	0.67		
Pile-up		0.009	0.24		
Luminosity		0.006	0.08		
Theoretical	and modelling uncertain	ties			
Signal		0.073	0.56		
Z + jets		0.039	1.76		
W + jets		0.055	1.41		
$t\bar{t}$ and Wt		0.018	1.03		
Single top q	uark (s-, t-ch.)	0.010	0.15		
Diboson		0.032	0.51		
Multi-jet		0.006	0.57		

ATLAS-CONF-2024-010

October 10, 2024

- Background modeling related uncertainties are among the largest in the ATLAS and CMS H→bb/cc searches
- MC statistical uncertainty also poses an issue due the computational complexity in generating the multi-leg NLO samples
- At HL-LHC it will be extremely challenging to get background predictions with systematic uncertainty matching the data statistics

 Λu

CMS $\mu_{VH}^{bb} = 1.15 \pm 0.21$

Background (theory)	+0.043 - 0.043
Signal (theory)	+0.088 - 0.059
MC sample size	+0.078 - 0.078
Simulation modeling	+0.059 - 0.059
b tagging	+0.050 - 0.046
Jet energy resolution	+0.036 - 0.028
Int. luminosity	+0.032 - 0.027
Jet energy scale	+0.025 - 0.025
Lepton ident.	+0.008 - 0.007
Trigger (\vec{p}_{T}^{miss})	+0.002 - 0.001
PRD 109 (2024) 092011	

CMS $\mu_{VH}^{cc} = 7.7 \pm 3.7$

Uncertainty source	$\Delta \mu / (\Delta \mu)_{tot}$		
Statistical	85%		
Background normalizations	37%		
Experimental	48%		
Sizes of the simulated samples	37%		
c jet identification efficiencies	23%		
Jet energy scale and resolution	15%		
Simulation modeling	11%		
Integrated luminosity	6%		
Lepton identification efficiencies	4%		
Theory	22%		
Backgrounds	17%		
Signal	15%		
PDI 101 (0000) 061901			

Miha Muškinia

11

.

Let's make sure this does not become a common finding.

Which physics processes?

[ATLAS] https://twiki.cern.ch/twiki/bin/view/AtlasPublic/StandardModelPublicResults

- Signals: High multiplicity but comparably low complexity
- Main backgrounds: High multiplicity and high complexity

Efficiency of Event Generators

5/20

Heavy hitter background simulations

ATLAS' state-of-the-art Sherpa samples

- $pp \rightarrow e^+e^- + 0, 1, 2j@NLO + 3, 4, 5j@LO$
- $pp \rightarrow t\bar{t} + 0, 1j@NLO + 2, 3, 4j@LO$
- Unweighted events needed for downstream processing
- 60-80 % time spent in LO matrix elements (ME) and phase space optimized & using analytic loop MEs [EB et al.] arXiv:2209.00843
- Reason: low unweighting efficiencies and expensive ME for high jet multiplicities [Höche,Prestel,Schulz] arXiv:1905.05120

6 / 20

Timing distribution: scaling with multiplicity

- Hard scattering simulation much more demanding than particle-level remainder [Höche,Prestel,Schulz] arXiv:1905.05120
- Complexity of multi-jet merging can be reduced to achieve linear scaling using sector showers [Brooks,Preuss] arXiv:2008.09468
 → not a problem in principle

2 Efficiency & portability with Pepper

3 Numerical stability for higher-order calculations

Pepper aims and preconditions

With the identified bottleneck & multiplicity scaling, we set our

Figure of merit for efficient event generation unweighted parton-level event throughput for highest relevant jet multiplicity of heavy-hitter processes e.g. $pp \rightarrow e^+e^- + 5j$, $pp \rightarrow t\bar{t} + 4j$ (more for HL-LHC era?)

In devising optimal algorithms, consider current computational trends:

- 10–20 years ago: homogeneous CPU+RAM architectures
- Most modern HPC uses GPU accelerators enabling large throughput
- Many computing vendors, heterogeneous architectures
- \rightarrow Portability required to achieve efficiency on wide range of hardware

Pepper amplitudes

 Berends–Giele recursion for best multi-jet scaling behaviour Based on early 2000s performance studies: [Dinsdale, Ternick, Weinzierl] arXiv:hep-ph/0602204
 [Duhr, Höche, Maltoni] arXiv:hep-ph/0607057

- Colour summing to allow for lockstep GPU evaluation
- Use minimal colour basis for general QCD amplitudes

$$\mathcal{O}(({n-1})!^2) \to \mathcal{O}(({n-2})!^2)$$

[Melia] arXiv:1304.7809 arXiv:1312.0599 arXiv:1509.03297 [Johansson,Ochirov] arXiv:1507.00332

- Combined for the first time with Berends-Giele recursion
- Generalised in our implementation for e^+e^- +jets amplitudes
- Helicity sampling to avoid additional 2ⁿ scaling

Pepper phase space

- Chili phase-space generator uses simple MCFM-inspired structure: one t channel + adjustable number of s channels [EB et al.] arXiv:2302.10449
 - Simple and thus easily ported
 - Rambo-like speed
 - Efficiency on par with complex recursive Sherpa phase space
 - Full Chili vs. "Basic" Chili (minimum number of *s* channels):

Baseline performance comparison (single-threaded)

- Unweighted event throughput compared to Sherpa (Comix*)
- Constitutes baseline single-threaded performance of currently available competitive algorithms
- Novel Pepper generator performs better than Comix, but Pepper's real goal is portability [EB et al.] arXiv:2311.06198

Numbers generated on Intel Xeon E5-2650 v2

* Partonic processes split into to g/q groups (not Sherpa standard)

[†] Modified to match efficiency convention of [Gao et. al] arXiv:2001.10028

Why portability?

- Many computing vendors, heterogeneous architectures
- (Pre-)Exascale computing systems intentionally diverse
- → Portable ME generator projects: Pepper, madgraph4gpu, MadFlow [EB et al.] arXiv:2311.06198 [Hageböck et al] arXiv:2312.02898 [Carrazza et al] arXiv:2106.10279

Portability is baked into Pepper

- Focus on highest multi (e.g. $e^+e^- + 5$, $t\bar{t} + 4$) this is beyond small scale computing \rightarrow WLCG / HPC
- Computing is undergoing a big change (partly due to AI trends)
 - $\blacksquare \ \mbox{HPC moves to exascale era} \rightarrow \mbox{scalability}$
 - $\blacksquare \ GPU \ acceleration \rightarrow \textbf{portability}$
- Pepper addresses both aspects with MPI, HDF5 and CUDA & Kokkos
- Pepper parallelises the entire parton-level event generation:

$\begin{array}{c c c c c c c c c c c c c c c c c c c $	copy non-	output LHEF/HDF5/ HEPMC3
parallel (device)	zero events	CPU (host)

- Tested Xeon CPU, Intel/AMD/Nvidia GPU, HPC systems
 - ✓ Covers all (pre-)exascale architectures on previous slide
 - $\checkmark\,$ Scalable from a laptop to a Leadership Computing Facility
- Tested scaling on up to 1024 Nvidia GPU on Argonne's Polaris cluster

Comparing runtimes on relevant architectures

- Excellent performance across a wide range of architectures
- One code-base compiled for different architectures

Comparing runtimes on relevant architectures

- Excellent performance across a wide range of architectures
- One code-base compiled for different architectures

Toolchain integration

- Pepper writes out reusable HDF5 based LHEH5 parton-level events
- Particle-level simulation via Sherpa or Pythia \rightarrow Validated LHEH5-based framework [EB et al.] arXiv:2309.13154

■ 3–5× speed-up for heavy-hitter ATLAS Sherpa MEPS@NLO set-ups

2 Efficiency & portability with Pepper

3 Numerical stability for higher-order calculations

Numerical stability for higher-order calculations

- Numerically stable scattering ME near infrared (IR) limit
- Important for success of (future) collider experiments
- (N)NLO subtraction methods
 - $\rightarrow\,$ cancellation of large numbers between real & subtraction terms
 - ightarrow naive algorithms at double precision (DP) give instable results
- Example of a slicing calculation at NNLO
 - \blacksquare Use unphysical IR cutoff $\tau_{\rm cut} \rightarrow$ must ensure independence of results
 - \blacksquare Quad precision (QP) rescue system $\rightarrow \mathcal{O}(10 \dots 100)$ time penalty
 - \blacksquare Post-processing to remove outliers \rightarrow labor intensive
 - $\rightarrow\,$ Cf. e.g. Event generators' and N(n)LO codes' acceleration workshop, CERN, Nov 2023 \square

Numerically stable amplitudes in Pepper

Idea

- Use physics knowledge to write propagators, vertices and ext. states in terms of large and small momentum components
- Rewrite expressions to avoid numerically unstable operations
- Novel DP algorithms with smaller rounding errors than naive QP implementations @ smaller computational cost
- \blacksquare Implemented in Pepper \rightarrow perfect source of stable & fast real/subtraction terms for (N)NLO calculations
 - Could drastically reduce NNLO simulation runtimes
 - Real-real contribution can be $\sim 2/3$ of total runtime

Pepper IR stability deep into infrared limit

Study behaviour in IR limits of $pp \rightarrow e^+e^- + 2j$ at LO

Pepper IR stability for LHC physics at NNLO

• $u\bar{u} \rightarrow e^+e^- + X$ at NNLO with jettiness slicing • MCFM vs. MCFM+Pepper (= "BG recursion")

	$ au_{ m cut}$	$\delta\sigma_{ m NNLO}(uar{u} ightarrow e^+e^-+X)~[m pb]$			
		naive double	improved double		
			analytic ME	BG recursion	
I.	10^{-2}	28.11(5)	28.12(5)	28.10(7)	
÷	10^{-3}	27.4(3)	27.0(1)	27.0(1)	
<u>-</u>	10^{-4}	27.2(4)	27.4(3)	27.0(3)	
≌∣	10^{-5}	instable	27.2(9)	27.1(8)	
↓	10^{-6}	instable	27.7(18)	27.4(16)	

[EB, Campbell, Höche, Knobbe] arXiv:2406.07671

Uncertainty driven by subtracted real-emission corrections

- Must use asymptotic $au_{\mathsf{cut}} o 0$, but naive double instable
- Has been combined with projection-to-Born improved subtraction

[Campbell et al.] arXiv:2408.05265

Enrico Bothmann (ITP, U Göttingen)

2 Efficiency & portability with Pepper

3 Numerical stability for higher-order calculations

- Current bottleneck in (Sherpa4LHC) event generation:
 - Large MEPS@NLO background samples for V+jets, tt+jets, ...
 - Tree-level matrix elements and phase space at highest jet multis
- Can now be offloaded to GPU using novel Pepper event generator
- Next target: Subtracted real emission terms for NLO and NNLO
 - Excellent numerical stability for (N)NLO subtraction methods
- GPU event generators as provider for on-device ML training data

5 Backup: Additional material on Pepper

6 Backup: Sherpa optimisations

7 Backup: Projected CPU and energy consumption

8 Backup: Machine Learning

9 Backup: Chris' slides

Phase space generator: Chili [SciPost Phys. 15 (2023) 169]

Differential phase space element for an *n*-particle final state

$$\mathrm{d}\Phi_n(a,b;1,\ldots,n) = \left[\prod_{i=1}^n \frac{\mathrm{d}^3 \vec{p_i}}{(2\pi)^3 \, 2E_i}\right] (2\pi)^4 \delta^{(4)} \left(p_a + p_b - \sum_{i=1}^n p_i\right).$$

Standard factorization formula

$$d\Phi_n(a, b; 1, ..., n) = d\Phi_{n-m+1}(a, b; \{1, ..., m\}, m+1, ..., n) \frac{ds_{\{1,...,m\}}}{2\pi} d\Phi_m(\{1, ..., m\}; 1, ..., m) .$$

- Use t-channel + adjustable number of s-channels
- Basic strategy: use single t-channel and only add s-channel resonances when required
 - \rightarrow easy to combine with Vegas
 - \rightarrow lean implementation allows for portability

Simple & portable phase space: applications & NIS

- What to do with Chili? (stand-alone library 🗷)
 - \blacksquare Simplicity & portability \rightarrow used in Pepper v1 as default
 - Speed \rightarrow public parton-level Sherpa version for HPC \square
- One/few channels + speed + portability \rightarrow good fit for ML
- Example: Neural Importance Sampling Proof-of-principle [EB et al.] arXiv:2001.05478
 i-Flow+Sherpa [Isaacson et al.] arXiv:2001.10028 arXiv:2001.05486
 MADNIS [Heimel et al.] arXiv:2212.06172 arXiv:2311.01548
- Chili+MadNIS quick'n'dirty [EB et al.] arXiv:2302.10449

Future: Sherpa v3.x, on-device NN training with Pepper

Portability: Aurora example

- Estimate "roughly 330 billion [leptonically decaying V+jets] events" required for HL-LHC [ATLAS] arXiv:2112.09588
 - "Sherpa 2.2.11 setup would exceed budget by 16%"
 - Assume all 330 billion events are Z+4j Production cost at parton-level would be:
 - 240M CPUh Comix @ Intel E5-2650 v2 CPU
 - 380k GPUh Pepper @ Nvidia A100 \rightarrow

This would be 8h on Aurora (with PVC)

Enrico Bothmann (ITP, U Göttingen)

Efficiency of Event Generators

QCD@LHC2024

The Color & Helicity Sum [EB, Giele, Höche, Isaacson, Max Knobbe, 2106.06507]

Benchmark performance for gluon-only Color-treatment:

- Compare different color treatments: colordressing/summing/sampling
- Color-sampled algorithms scale similar to color-summed approaches
- Color-summing scales worse than color-dressing, but faster up to roughly 5-6 outgoing jets
- Caveat: Color-sampling comes with penalty factor from slower convergence

 \Rightarrow Algorithmic choice: Sum colors Helicity-treatment:

 Picture less clear, still allow multiple options

The Color & Helicity Sum [EB, Giele, Höche, Isaacson, Max Knobbe, 2106.06507]

Benchmark performance for gluon-only Color-treatment:

- Compare different color treatments: colordressing/summing/sampling
- Color-sampled algorithms scale similar to color-summed approaches
- Color-summing scales worse than color-dressing, but faster up to roughly 5-6 outgoing jets
- Caveat: Color-sampling comes with penalty factor from slower convergence

 \Rightarrow Algorithmic choice: Sum colors Helicity-treatment:

 Picture less clear, still allow multiple options

The Color & Helicity Sum [EB, Giele, Höche, Isaacson, Max Knobbe, 2106.06507]

Benchmark performance for gluon-only Color-treatment:

- Compare different color treatments: colordressing/summing/sampling
- Color-sampled algorithms scale similar to color-summed approaches
- Color-summing scales worse than color-dressing, but faster up to roughly 5-6 outgoing jets
- Caveat: Color-sampling comes with penalty factor from slower convergence

 \Rightarrow Algorithmic choice: Sum colors Helicity-treatment:

 Picture less clear, still allow multiple options

From Gluon-only to V+Jets

- Introduce spinors (Weyl for massless, Dirac for massive particles)
- Add more general QCD three point vertices
- Straight-forward for helicity-sum and Berends-Giele recursion
- First time in a code aimed for production: use minimal QCD color-basis $\{A(1,2,\sigma), \sigma \in Dyck\}$

[Melia] arXiv:1304.7809 arXiv:1312.0599 arXiv:1509.03297 [Johansson, Ochirov] arXiv:1507.00332

- ightarrow Allows to fix one fermion line, remaining permutations are given by Dyck-Words
- \rightarrow Four particle Dyck Words: ()(), (())
- \rightarrow Significantly fewer amplitudes to compute
- Include EW particles after QCD basis has been set up

arXiv:1304.7809

Timing details

- Lower multiplicities are limited by write-out speed → No more need for computing improvements, but faster I/O
- Computing becomes relevant component only for large multiplicities

- Test scalability for up to 1024×A100's
- Equivalent technology to [2309.13154]
 → established scaling to up to 16k threads at NERSC
- Scaling problems might not show up for a couple of nodes or low data volume
 - \rightarrow important benchmark

Validation + Pipeline into existing tools

Validated against Sherpa

- ightarrow for V + j, $t\bar{t}+j$, single multiplicity and multi-jet merged
- Writeout of HDF5 files, processable via Sherpa & Pythia

NNLO

Slide by Alexander Huss

@ CERN generator & code acceleration workshop Nov' 2023

SUBTRACTIONS - NNLO • typical runtime for $2 \rightarrow 2$ processes: $\mathcal{O}(100k)$ CPU core hours · V+jet, di-jet, ...
VV:RV:RR ~ 1:20:100 (CPU hours) • an extreme $2 \rightarrow 3$ example: $\mathcal{O}(100M)$ CPU core hours · tri-jet VV:RV:RR ~ 1:100:200 (CPU hours) H₁₂ > 1000 GeV [ATLAS arXiv:2301.09351]

5 Backup: Additional material on Pepper

6 Backup: Sherpa optimisations

Backup: Projected CPU and energy consumption

8 Backup: Machine Learning

9 Backup: Chris' slides

On-the-fly uncertainty calculation

- On-the-fly param./th./algo. uncertainties encoded by rel. event weights
- Easy for prefactors, but even changing the underlying probability distribution of accept/reject algorithms can be accounted for by a single weight factor [Höche,Schumann,Siegert] arXiv:0912.3501, [Giele,Kosower,Skands] arXiv:1102.2126, [EB,Schönherr,Schumann] arXiv:1606.08753, [Bellm et al.] arXiv:1605.08256, [Mrenna,Skands] arXiv:1605.08352
- Standard for Pythia, Herwig, Sherpa samples in ATLAS/CMS production
- E.g. alternative event weights for 7-point μ_{F,R} scale variations, PDF/α_S variations in ME, shower and, newly, hadronisation [Bierlich et al.] arXiv:2308.13459

\rightsquigarrow Uncertainty estimates at a fraction of the cost

Negative event weights

$$f(\epsilon) = (1 - 2\epsilon)^{-2}$$

- Negative events still need expensive detector simulation
- Mitigations and ideas available but no complete solution yet [Danziger Höche Siegert] arXiv:2110.15211 [ATLAS] arXiv:2112.09588
 [Frederix et al.] arXiv:2002.12716 arXiv:2310.04160
 [Maier et al.] arXiv:2303.15246

Pilot runs

- Low efficiencies can be mitigated by pilot runs:
 - 1 run minimal pilot run to only calculate acceptance probability
 - 2 if a proposal is accepted, revert RNG state and run again with full shebang
- applicable to any accept/reject algorithm with low efficiencies
- e.g. $5 \times$ speed-up in Sherpa simulation:

[EB et al.] arXiv:2209.00843

Pilot runs: part of significant performance improvements

Case study: ATLAS baseline configuration

- CPU consumption overall improved by factors of \times **39** and \times **43** for V+jets and $t\bar{t}$ +jets [EB et al.] arXiv:2209.00843
- After optimisation, more than two thirds of CPU time spent in phase space sampling and (tree-level) matrix elements

Enrico Bothmann (ITP, U Göttingen)

Efficiency of Event Generators

5 Backup: Additional material on Pepper

6 Backup: Sherpa optimisations

7 Backup: Projected CPU and energy consumption

8 Backup: Machine Learning

9 Backup: Chris' slides

LHC projected CPU consumption for event generation

ATLAS: 14 % CPU for event generation in 2022

expect ca. 20% during HL-LHC ("Aggressive R&D" scenario 2031)

- High statistics at HL-LHC & excellent detector performance
 - \rightarrow Need for precise & efficient event generator simulations
 - → Poor performance can limit experimental success [HSF Physics Event Generator WG] arXiv:2004.13687, arXiv:2109.14938

Enrico Bothmann (ITP, U Göttingen)

Efficiency of Event Generators

What does this mean in terms of energy consumption?

[Britton, Campana, Panzer-Stradel] CHEP 2023

 "WLCG data centres' power consumption [...] generally driven by the CPU needs [...], at CERN, 70% [...]"

- difficult to convert to CO₂ equivalents, as the conversion factor is strongly country & season dependent
- 2031: 15k-30k households (each 3.5 MWh/year) → 2k-4k for event generation back-of-the-envelope

Enrico Bothmann (ITP, U Göttingen)

Efficiency of Event Generators

5 Backup: Additional material on Pepper

6 Backup: Sherpa optimisations

7 Backup: Projected CPU and energy consumption

8 Backup: Machine Learning

9 Backup: Chris' slides

Phase space sampling/integration with Normalising Flows

- Use NN trained bijective phase space mappings for improved sampling/integration of your integrand
- Example: Neural Importance Sampling Proof-of-principle [EB et al.] arXiv:2001.05478
 i-Flow+Sherpa [Isaacson et al.] arXiv:2001.10028 arXiv:2001.05486
 MADNIS [Heimel et al.] arXiv:2212.06172 arXiv:2311.01548
- Might work best with simple phase space such as Chili, easy to train due to low number of channels and ported as part of Pepper to run on GPU [EB et al.] arXiv:2302.10449
- Chili+MadNIS quick'n'dirty [EB et al.] arXiv:2302.10449

More ML: Surrogate Unweighting

- Replace |M|² with fast ML surrogate Daniel Maître's and Simon Badger's talks @ CERN generator & code acceleration workshop Nov' 2023 C, LC surrogate: [Frederix, Vitos] arXiv:2409.12128
- Use second unweighting step to correct to exact |*M*|²
 [Danziger et al.] arXiv:2109.11964
- Train linear coefficients C_{ijk} of dipole terms D_{ijk}

[Janßen et al.] arXiv:2301.13562

Efficiency of Event Generators

5 Backup: Additional material on Pepper

6 Backup: Sherpa optimisations

7 Backup: Projected CPU and energy consumption

8 Backup: Machine Learning

9 Backup: Chris' slides

Targeted optimisation of CPU-based event generation

- → Most event generation CPU spent on multi-leg NLO calculations [JHEP 08 (2022) 089]
 - used for main Standard Model processes: extremely large event sample sizes
 - relevant to measurements and searches alike
- → Study CPU performance of Sherpa MEPS@NLO calculations for e⁺e⁻ + 0, 1, 2j@NLO+3, 4, 5j@LO and tt + 0, 1j@NLO+2, 3, 4j@LO
 - introduction of pilot run in Sherpa brings a factor 5 improvement
 - → using analytic QCD loop amplitudes in the unweighting brings another factor 1.5
 - detailed write-up presented in [EPJC 82 (2022) 12]

cumulative speed-ups for:	pp	$ ightarrow e^+e^-$	- + jets	p	$p \rightarrow t\bar{t}$	+ jets
setup variant	runtime old	e [CPU h new	/5k events] speed-up	runtime old	e [CPU h new	n/5k events] speed-up
no variations EW _{virt} EW _{virt} +scales EW _{virt} +scales+100 PDFs EW _{virt} +scales+100 PDFs	20 h 35 h 45 h 90 h 725 h	5h 5h 5h 5h 8h	4× 6× 7× 15× 78×	15 h 20 h 25 h 55 h 440 h	8 h 8 h 8 h 8 h 9 h	2× 2× 4× 7× 51×

Lack of active development on infrastructure tools (LHE, HepMC, ...) set to become a major bottleneck going forward

Introducing LHEH5

→ established LHEF format is based on XML

- flexible enough to add any desired feature
- → poses a challenge for I/O operations at scale

new efficient LHE-like data format based on HDF5+HighFive proposed in [PRD 109 (2024) 1]

Name	Data type	Contents
VERSION INIT	3 imes int 10 $ imes$ double	Version ID beamA, beamB, energyA, energyB, PDFgroupA, PDFgroupB, PDFsetA, PDFsetB, weightingStrategy, numProcesses
PROCÍNFO	$6 \times \text{double}$	procld, npLO, npNLO, xSection, error, unitWeight
EVENTS	$9 \times \text{double}$	pid, nparticles, start, trials, scale, fscale, rscale, aged, agcd
PARTICLES	13 $ imes$ double	id, status, mother1, mother2, color1, color2, px, py, pz, e, m, lifetime, spin
CTEVENTS CTPARTICLES	$\begin{array}{l} 9\times \text{double} \\ 4\times \text{double} \end{array}$	ijt, kt, i, j, k, z1, z2, bbpsw, tlpsw px, py, pz, e

I/O performance

overall I/O time reduced to below 1s per rank

time spent in I/O operations less than 5% when reading 128.85 GiB

→ ideal for accessing back-fill queues at large computing centres

Comparison of parton-level event generators

- \rightarrow validated for standard candle processes (Z+jets shown) at various multiplicities
- can mix and match generators to reduce computing time to the absolute minimum required for event simulation

Improved modelling through high-multiplicity final states

- simulation of additional radiation at tree level clearly necessary for proper physics modelling of high-multiplicity final states
- hatched bands indicate the scale uncertainties from 7-point scale variations at LO, solid bands represent the corresponding band at NLO
- uncertainties inevitably increase with additional jet multiplicities as more of the phase space is systematically varied

ICHEP, Prague, 19 July 2024

More robust uncertainty estimates

→ LHEH5 enables efficient substitution of various parts in the event generation chain

- → already supported by Pepper, Sherpa and Pythia!
- \rightarrow 10% uncertainty seen in Z+jets due to different algorithmic choices in the parton showers

Future event generation workflows

- Approach 1: produce parton-level samples centrally with input from the MC developers, provide them in a shared space for all experiments
 - → experiments run their preferred shower setup (
 - → allows for affordable plug & play between different models (✓)
 - → lowers cost threshold for reproducing larger setups after some time if need be (✓)
 - → requires more storage for parton-level events (×)
 - → new infrastructure needs to be set up and maintained (×)
- Approach 2: run everything in one go, harnessing heterogeneous resources, possibly with in-memory transfer of GPU-accelerated calculation components
 - → no intermediate storage for parton level events needed (✓)
 - → minimal infrastructure changes required (✓)
 - → parton-level events continue to cost twice as strictly necessary (×)
 - → regenerating larger setups from scratch will become painful (×)