Recent soft QCD results from **ATLAS and LHCf**

on behalf of the ATLAS and LHCf collaborations

Freiburg - 8/Oct/2024

This presentation is part of a project that has received funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (Grant agreement No. 948254)

Carlos Moreno Martínez

The ATLAS experiment

- General purpose LHC detector
- Wide physics program targeting multiple processes
 - Precision measurements
 - Searches for new physics lacksquare
- Excellent probe for hadronic central physics
 - Combined calorimetry + tracking
- Charged particles in forward region more challenging due to lack of tracker
 - Will change for HL-LHC!

Underlying event with strange hadrons

- [MeV] Passing V⁰ Cuts ATLAS 250 67x10⁶ Events s=13 TeV • K^0_{S} and $(\Lambda + \overline{\Lambda})$ production studied in 2015 low pile-up minimum bias data^d 200 • Study the underlying event in a clean environment 150 • Important for the modelling of MPI hadronization and color-reconnection 100 Strange hadron decays reconstructed with displaced vertices 50 • Dedicated V^0 -finder algorithm to identify two-body decay vertices -0.5 0.5 0 • Further selections on hadron candidates for a high-purity sample $\alpha = (p_{\parallel}^{+} - p_{\parallel}^{-})/(p_{\parallel}^{+} + p_{\parallel}^{-})$ Leading Jet

- Divide transverse plane into three regions based on leading jet
 - Minimum bias data \rightarrow dijet events
 - Towards and Away: sensitive to fragmentation effects
 - Transverse: most sensitive to UE

C. Moreno Martínez

arXiv:2405.05048

Underlying event with strange hadrons

arXiv:2405.05048

Underlying event with strange hadrons

- Weak dependence with total charged activity in the transverse direction
- No model can completely account for all regimes observed
 - Pythia8 + A2 tunes predicts correct shape but yields are ~40% off!

- In each Bunch Crossing (BC) there are multiple *independent pp* interactions lacksquare
- Once the data is recorded, we reconstruct each pp interaction in a BC as Primary Vertices (PVs)
 - Standard ATLAS approach: find the PV that fires the trigger, suppress everything else
 - Alternative approach: find the PV that fires the trigger, remove it and use everything else for physics
- All interactions in a given BC are uncorrelated: pile-up interactions are not biased by the trigger selection Access to low-momentum jets for physics studies!
 - LHC

C. Moreno Martínez

arXiv:2407.10819

C. Moreno Martínez

- Key ingredients:
 - Reconstruct jets from all primary vertices in the BC

C. Moreno Martínez

- Key ingredients:
 - Reconstruct jets from all primary vertices in the BC
 - Identify and remove the Triggering Primary Vertex (TPV) and all objects associated to it

C. Moreno Martínez

Using pile-up collisions for physics

- Key ingredients:
 - Reconstruct jets from all primary vertices in the BC
 - Identify and remove the Triggering Primary Vertex (TPV) and all objects associated to it lacksquare
- TPV identification depends on the signature triggered on
 - Find a single responsible physics object for firing the trigger
 - It must be possible to match the triggering object to a PV charged objects
- Perfect signature: single-electron and single-muon triggers! TPV!

C. Moreno Martínez

arXiv:2407.10819

- TPV-removal process is essential for trigger-unbiased dataset
- **Dataset validation:** compare the pile-up data to zero bias data
 - Study single-electron and single-muon triggered-data independently
 - Good agreement with reference
 - Excellent agreement between them

- TPV-removal process is essential for trigger-unbiased dataset
- **Dataset validation:** compare the pile-up data to zero bias data lacksquare
 - Study single-electron and single-muon triggered-data independently
 - Good agreement with reference
 - Excellent agreement between them
- Jet Energy Resolution measurement at low jet p_T ullet
 - Imbalance in low-energy dijet systems
 - Good agreement with standard JER extraction, improving (stat-only) accuracy up to 40%
 - First physics result with the dataset, more to come!

The LHCf experiment

- LHC experiment optimized for neutral particle detection in the forward region $\rightarrow |\eta| > 8.4$
 - Two independent detectors Arm1 & Arm2 at about 140 meters from ATLAS IP
- 2 towers of sampling and position-sensitive calorimeters per detector
 - 44 radiation lengths // 1.6 hadronic interaction length
- Dedicated data-taking runs, possible to complement with ATLAS detector information

Forward η -meson production rate measurement

- Reconstruct $\eta \rightarrow \gamma \gamma$ decays at the IP

 - Corrections to account for detector and selection effects applied
- Functional fit to data to extract the background component

First observation of s—hadrons in the forward region with 2015 low-pileup data and Arm2 detector

Require each photon to hit a different tower \rightarrow remove large backgrounds with multi-hit veto

Forward η -meson production rate measurement

- None of the models considered can \bullet reproduce the data
- QGSJET II-04 gets close, with a similar shape but a factor 2 off in the normalisation
- The rest of the models overestimate the data by more than a factor 2

Diffractive collisions with ATLAS + LHCf

- Study photon production in pure diffractive events with the ATLAS + LHCf combined 2015 data
 - Tracker in ATLAS allows the selection of collisions with large rapidity gaps $\rightarrow \Delta \eta > 5$
- Selection of low-mass diffractive events: $M_X \lesssim 50$ GeV
- EPOS-LHC model best for ATLAS selection, Pythia8 for LHCf
- Final results in place and paper currently under internal review!

LHCf operations in LHC Run-3

- New data sample collected in 2022 at $\sqrt{s} = 13.6$ TeV
 - 300M events recorded vs 40M events in 2015 sample
- Combined performance with ATLAS sub-detectors for lacksquare
 - **Better neutron energy resolution** LHCf + ATLAS ZDC lacksquare
 - Tagging scattered protons LHCf + ATLAS RPs
- Physics targets:
 - π^0 , η and K_S^0 production with increased precision
 - $1-\pi$ exchange processes
 - Search for Δ^+ resonance in forward region
 - Detailed studies of dissociative diffractive events

C. Moreno Martínez

- A number of new results from ATLAS and LHCf collaborations on soft QCD measurements
 - New technique to access low-energy hadronic physics \bullet
 - Underlying event studies with s—hadrons
 - First observation and production rate measurement of η -mesons in the forward region
 - \bullet
- Important interplay among all results, with no model being able to describe all results at once
- More results from both collaborations to come, stay tuned!

Summary

Combined operations of both experiments for precise results with Run-2 and Run-3 data on the way

Thanks for your attention!

