Central Exclusive Diffraction at LHCb

Ronan McNulty University College Dublin

QCD@LHC Freiburg, Oct 7-11, 2024

General Motivation

- Much to understand about QCD
 - perturbative / non-perturbative regime
 - proton and nuclear structure (PDFs GPDs)
 - hot spots
 - saturation
 - quark model bound states (η_c , J/ ψ , χ_c)
 - beyond the naïve quark model (hybrids, tetraquarks, glueballs)
- Can be addressed in diffractive DIS.

Specific Motivation

- ρ meson production in PbPb UPC
 - comparison with ep and Pbp gives nuclear shadowing (linear QCD)
 - sensitive to non-linear QCD (saturation)
 - spectroscopy of $\pi\pi$ system
 - understanding ρ parameters that differ in ee and tau decays
 - could help with hadronic corrections for g-2.
- J/ψ+φ production in exclusive pp collisions

 sensitive to beyond the naïve quark model (hybrids, tetraquarks, glueballs)

It's QCD – but not as we normally see it. It's colour-free

Central Exclusive Production

o_{inelastic}

Central Exclusive Production

Colourless propagators

Hadron colliders:

Generally, to ensure no (colourful) QCD interaction, $d>R_1+R_2$ (1.5 - 6 fm).

Large impact parameter - Small p_T

Electron-hadron collider: ~70% of total cross-section is diffractive

Photoproduction

Ultra-Peripheral Collisions

Ultra-Peripheral Collisions

Ultra-Peripheral Collisions

Coherent production Photon converts into ρ -meson before the target Collision is between a ρ -meson and a nucleus.

Coherent vs Incoherent Interactions

Coherent Interaction

- Low p_T
- Intact nuclei

Incoherent Interaction

- High p_T
- Nuclear Breakup

Photoproduction

- Rise in σ related to Pomeron intercept
 - $\circ \sigma \sim W^{\delta}$
 - $\circ \ \delta = 4(\alpha_{P}(t)-1)$ $\circ \ \alpha_{P}(t) = \alpha_{P}(0) + \alpha' t$
- Compare slopes
 ρ,ω,φ to J/ψ,ψ',Υ
- Extract g(x,Q²)

Nuclear suppression

Frankfurt, Guzey, Strikman, Zhalov, Phys.Lett.B 752 (2016) 51-58

LHCb data is in range 6-20 GeV and 200-650 GeV

The LHCb detector

Forward-arm spectrometer ($2 < \eta < 5$) Unique acceptance and capabilities. Constraints nPDFs down to $x \sim 10^{-6}$ Precise Tracking Full PID.

Mass resolution: $m_{\pi\pi} \sim 5$ MeV.

19

Low background levels

The LHCb detector

Data Selection

Data

- 2018 PbPb LHCb data
- $\sqrt{s_{NN}} = 5.02 \text{ TeV}$
- Integrated luminosity: 228 ± 10 μb⁻¹

Selection Criteria

- Triggered Low Multiplicity Events (SPD < 50)
- Two oppositely charged tracks
- Fiducial region defined by $2.05 < y_{(parent)} < 4.9$, $p_{T(Track)} > 100$ Mev, and $2 < \eta_{Track} < 5$
- Invariant mass > 400 MeV
- Both tracks consistent with being a pion (using PID)
- Transverse momentum of the system < 100 MeV

Resultant Data

• Final sample contains ~12 million candidates

Backgrounds

Backgrounds ~<1%

- Gamma-gamma production:
 - Diphoton production
 peaked at low masses and
 low p_T
 - Shape of the γγ→ee/μμ
 determined by fitting
 identified electrons or
 muons.
 - Contamination from $\gamma\gamma \rightarrow ee \text{ and } \gamma\gamma \rightarrow \mu\mu$ processes ~0.5%.
- Multi-hadron backgrounds (πππ⁰/KK etc) at 0.1% level

Fit to standard Söding model

$$\mathcal{S}(M_{\pi\pi}) \propto \left| A rac{\sqrt{M_{\pi\pi}M_{
ho}\Gamma}}{M_{\pi\pi}^2 - M_{
ho}^2 + iM_{
ho}\Gamma} + B
ight|^2$$

Experiment	Zeus [4]	H1 [5]	CMS [6]	ALICE [7]	LHCb Pb–Pb
Fit range [GeV]	[0.55, 1.2]	[0.6, 1.1]	[0.5, 1.2]	[0.6, 1.5]	[0.4, 1.2]
$M_{ ho}[{ m MeV}]$	770 ± 2	769 ± 4	776 ± 1	$762^{+6.5}_{-3.8}$	771 ± 3
$\Gamma_{\rho} [MeV]$	146 ± 13	162 ± 8	154 ± 3	150^{+13}_{-7}	150 ± 4
B/A	0.70 ± 0.04	0.57 ± 0.09 [45]	0.50 ± 0.05	$0.50\substack{+0.10\\-0.06}$	0.72 ± 0.04

[4] ZEUS, J. Breitweg et al., Elastic and proton dissociative ρ 0 451 photoproduction at HERA, 452 Eur. Phys. J. C 2 (1998) 247, arXiv:hep-ex/9712020.

[5] H1, F. D. Aaron et al., Diffractive Electroproduction of rho and phi Mesons at HERA, 454 JHEP 05 (2010) 032, arXiv:0910.5831.

[6] CMS, A. M. Sirunyan et al., Measurement of exclusive p(770)0 455 photoproduction in ultraperipheral pPb collisions at $\sqrt{456}$ sNN = 5.02 TeV, Eur. Phys. J. C 79 (2019) 702, 457 arXiv:1902.01339.

[7] ALICE, J. Adam et al., Coherent ρ 0 400 photoproduction in ultra-peripheral Pb-Pb collisions at $\sqrt{401}$ sNN = 2.76 TeV, JHEP 09 (2015) 095, arXiv:1503.09177.

Add ω to Söding model

(Parametrisation of STAR)

[8] STAR, L. Adamczyk et al., Coherent diffractive photoproduction of ρ 394 0mesons on gold 395 nuclei at 200 GeV/nucleon-pair at the Relativistic Heavy Ion Collider, Phys. Rev. C 396 96 (2017) 054904, arXiv:1702.07705.

Add ω to Söding model

[9] H1, V. Andreev et al., Measurement of Exclusive π + π – and ρ 388 0 Meson Photoproduction 389 at HERA, Eur. Phys. J. C 80 (2020) 1189, arXiv:2005.14471.

Fit Results

LHCb Preliminary LHCb-PAPER-2024-042	LH	[Cb	STAR	H1
	STAR-fit	H1-fit		
$M_{ ho}[\mathrm{MeV}]$	774 ± 3	776 ± 3	776.2 ± 0.2	771 ± 3
$\Gamma_{ ho} [{ m MeV}]$	156 ± 3	153 ± 3	156 ± 1	151 ± 3
B/A	0.73 ± 0.03	$0.19\pm.02$	0.79 ± 0.08	0.19 ± 0.04
$\phi_{\omega}[\mathrm{r}ad]$	1.36 ± 0.03	$-0.23 \pm .04$	1.46 ± 0.11	-0.5 ± 0.3
C/A	0.34 ± 0.03	$0.18\pm.01$	0.36 ± 0.05	0.17 ± 0.02
$\Lambda [{ m MeV}]$	-	366 ± 110		180 ± 590
δ	-	$1.07 \pm .11$	-	0.76 ± 0.35

Results consistent with previous experiments but model dependent.

Masses > 1.2 GeV?

$\pi\pi$ spectrum 400 to 2300 MeV

- Data at high mass falls well below fit
- Does not account for clear structure around 1.7 GeV

Add form-factor, continuum interference + extra BW to ω + Söding model

$$S = \frac{q^3(m_{\pi\pi})}{q^3(m_{\rho})} \left| \exp\left(-\left(\frac{m_{\pi\pi}^2 - m_{\rho}^2}{\Delta^2}\right)^2\right) \mathcal{BW}_{\rho}(m_{\pi\pi}) \left(1 + C\exp(i\phi_{\omega})\frac{m_{\pi\pi}^2}{m_{\omega}^2} \mathcal{BW}_{\omega}(m_{\pi\pi})\right) + \frac{B\exp(i\phi_c)}{(m_{\pi\pi}^2 - 4m_{\pi}^2 + \Lambda^2)^{\delta}} + D\exp(i\phi_{\rho\prime})\mathcal{BW}_{\rho\prime}\right|^2$$
(6)

Add form-factor, continuum interference + extra BW to ω + Söding model

There is no unique way to fit the data. Amount of ρ , continuum, omega, ρ ', ρ '' are model dependent

$$S = \frac{q^3(m_{\pi\pi})}{q^3(m_{\rho})} \left| \exp\left(-\left(\frac{m_{\pi\pi}^2 - m_{\rho}^2}{\Delta^2}\right)^2\right) \mathcal{BW}_{\rho}(m_{\pi\pi}) \left(1 + C\exp(i\phi_{\omega})\frac{m_{\pi\pi}^2}{m_{\omega}^2} \mathcal{BW}_{\omega}(m_{\pi\pi})\right) + \frac{B\exp(i\phi_c)}{(m_{\pi\pi}^2 - 4m_{\pi}^2 + \Lambda^2)^{\delta}} + D\exp(i\phi_{\rho'})\mathcal{BW}_{\rho'}\right|^2$$
(6)

Aside: Useful for g-2?

Qualitatively similar. If direct comparison not possible, may help understand structure.

Double Pomeron Exchange

Understanding colourless strong interactions is fundamental Also simple environment for spectroscopy, in particular, glueballs

Today from inclusive measurements we know there is significant structure and tetraquark candidates

Diffractive measurements are cleaner and help identify quantum numbers

$J/\psi + \phi$: search for exotica

Structure seen in Inclusive production of $J/\psi {+}\varphi$.

Similar and much cleaner structure now seen exclusively.

Summary

- New measurements from LHCb in central exclusive production
 - $-\pi\pi$ production in PbPb collisions
 - J/ ψ + ϕ in pp collisions
- Broad range of implications for understanding QCD