

Physics Institute

Event shape variables in pp collisions in CMS

Weijie Jin

QCD@LHC 2024

Motivation

Motivation: previous event shape measurements

Existing observations of **unexpected effects in event shapes**

Motivation: previous event shape measurements

Existing observations of **unexpected effects in event shapes**

University of Zürich Weijie Jin

3

Motivation: Strange hadron production in pp collisions

Mismodeling of **strangeness production in pp collisions**

- Indicates the mismodeling in hadronization & potential quark-gluon plasma effects
- Affects the detector response and then the event shape measurement

Motivation

• Tunnelling process among discrete classical QCD vacuums which are topologically different

• A generic prediction of non-Abelian gauge theories

Event shape as functions of charged particle momentum

Event shapes as functions of charged particle momentum

We focus on **charged particles** ← **precise reconstruction of tracks**

Observables for measurement:

From charged particles p_T > 0.5 GeV, $\mid \! \eta \! \mid$ < 2.4

- Charged particle multiplicity
- Invariant mass of charged particles
- Sphericity (+ transverse)
- Thrust (+transverse)
- Broadening
- Isotropy

measures of momentum distributions

 \rightarrow Example: transverse sphericity (detector level correspondence, to be discussed later)

1

2

Normalized Events/Bin Width

Normalized

Events/Bin Width

3

CMS

Preliminary

 $3.0 \le N_{\text{tracks}} < 160.0$

Anisotropic

13 TeV

Isotropic

- EPOS

 \rightarrow Data \rightarrow CP1 $CUEP8M1$ \rightarrow A3P

 $CP5$ \rightarrow CH3

Data & MC

Data: **Zerobias**, 2018 **low pileup** run, O(5M) events, ~64 µb-1

MC: private minimum bias simulation **without pileup** (pileup effects given in backup)

 \rightarrow minimal selections on primary vertices & tracks

Nominal samples and systematic variations

Pythia 8 CP1 (CMS), A3 (ATLAS)* EPOS-LHC Herwig 7 CH3

The Different tunes, same MC model

- Regge-Gribov model, collective flow
- Different shower& hadronization models

Validations and comparisons

Pythia CP5(CMS), CUETP8M1-NNPDF3.1(CMS), A14 (ATLAS) & its variations, CUETP8M1-NNPDF2.3(CMS), CUETP8M2T4, CUETP8M2T4-rope-hadronization&stringshoving, Pythia CP5 α_s (FSR) variations, Pythia CP5 color-reconnection tunes

*The ATLAS A3 tune was used as nominal MC for unfolding in the strategy development and validation. Later the nominal MC was changed to CMS CP1 tune for the data unfolding.

Statistical uncertainty from data

- \rightarrow fluctuations in the NN parameters
- \rightarrow fluctuations of the unfolding output

Statistical uncertainty from data

- \rightarrow fluctuations in the NN parameters
- \rightarrow fluctuations of the unfolding output

Systematic uncertainty from MC modelling 1. **MC statistics**

 \rightarrow fluctuations in modelling

2. **Track reconstruction efficiency** uncertainty

 \rightarrow differences between detector simulation and truth

3. **Mismodelling of observables used directly in unfolding**

e.g. charged particle multiplicity, sphericity… \rightarrow bias

4. **Mismodelling of other observables which may change detector response**

- e.g. track rapidity, particle composition, $p_{\overline{I}}$
- \rightarrow migration function uncertainty

Statistical uncertainty from data

- \rightarrow fluctuations in the NN parameters
- \rightarrow fluctuations of the unfolding output

Systematic uncertainty from MC modelling 1. **MC statistics**

 \rightarrow fluctuations in modelling

2. **Track reconstruction efficiency** uncertainty \rightarrow differences between detector simulation and truth

e.g. charged particle multiplicity, sphericity… \rightarrow bias

4. **Mismodelling of other observables which may change detector response**

- e.g. track rapidity, particle composition, $p_{\overline{I}}$
- \rightarrow migration function uncertainty

University of Zürich Weijie Jin

 p_T and η of the particles Not unfolded, but affect all the event shape obs.

Statistical uncertainty from data

- \rightarrow fluctuations in the NN parameters
- \rightarrow fluctuations of the unfolding output

Systematic uncertainty from MC modelling 1. **MC statistics**

 \rightarrow fluctuations in modelling

- 2. **Track reconstruction efficiency** uncertainty \rightarrow differences between detector simulation and truth
	-

3. **Mismodelling of observables used directly in unfolding**

e.g. charged particle multiplicity, sphericity…

We consider variations derived from 3 separate MC models

4. **Mismodelling of other observables which may change detector response**

- e.g. track rapidity, particle composition, $p_{\overline{I}}$
- \rightarrow migration function uncertainty

 \rightarrow bias

 10^{-7} −6 10 −5 10 10^{-4} −3 10 10^{-2} 10^{-1} 1 10 10^{2}

0.5

1.0 Ratio

Ratio

CMS

Preliminary

 $3.0 \le N_{\text{tracks}} < 160.0$

Data +CP1 $+$ EPOS-LHC A3P o CP1_trackdrop

Normalized Tracks//Bin Width

Normalized Tracks//Bin Width

13 TeV

_{track}/dη

종

15

CMS

Preliminary $3 \leq N_{\text{tracks}} < 160$ 13 TeV

Data +CP1 $-$ CH3 $+$ EPOS-LHC A3P o CP1_trackdrop

Machine-learning-based unbinned unfolding & uncertainty estimation

Unfolding algorithm

*<https://arxiv.org/abs/1911.09107> <https://arxiv.org/abs/2105.04448>

Multifold *:

- **Input**: values of 8 observables for every event in simulation and data
- **Output**: reweighted simulated events approximating data

 \rightarrow The result are **unbinned** weighted events, although we show binned histograms for visualisation

Two steps of unbinned reweighting:

- 1.Weight **MC** to **data** at **detector level**
- 2.Weight **original MC** to **reweighted MC** at **generator level** Extra 2 steps added to deal with the selection efficiency and signal acceptance
	- \rightarrow repeat in **iterations**

Unbinned weighting for uncertainty estimation +

← A typical binary classifier to distinguish two sets

 \leftarrow A typical binary classifier to distinguish two sets

What it actually did: learn the differences in the distributions \rightarrow

 \leftarrow A typical binary classifier to distinguish two sets

What it actually did: learn the differences in the distributions \rightarrow

← We can use the classification scores to weight **MC** to **data**,

 \leftarrow A typical binary classifier to distinguish two sets

What it actually did: learn the differences in the distributions \rightarrow

← We can use the classification scores to weight **MC** to **data**,

Event-wise unfolding \rightarrow the result independent of binning

The actual unfolding in iterations:

- Step 1: weight **MC** to **data**, at detector level
- Step 2: pull back the weights to particle(truth) level

 \leftarrow A typical binary classifier to distinguish two sets

What it actually did: learn the differences in the distributions \rightarrow

 \leftarrow We can also use the classification scores to weight **nominal MC sample** to **systematic variations**

 \leftarrow A typical binary classifier to distinguish two sets

What it actually did: learn the differences in the distributions \rightarrow

← We can also use the classification scores to weight **nominal MC sample** to **systematic variations**

Event-wise uncertainty template \rightarrow unbinned unfolding uncertainty & covariance

Track reconstruction efficiency uncertainty

- Step1: Randomly drop 2.1%(1%) tracks with pT<20 GeV (>20 GeV) in nominal MC*
- Step2: weight the nominal MC to Step1 output at particle- and detector-level

University of Zürich Weijie Jin * The uncertainty of track reco. eff. is given by D* analysis:<https://cds.cern.ch/record/2810814/>

Track reconstruction efficiency uncertainty

- Step1: Randomly drop 2.1%(1%) tracks with pT<20 GeV (>20 GeV) in nominal MC*
- Step2: weight the nominal MC to Step1 output at particle- and detector-level

University of Zürich Weijie Jin * The uncertainty of track reco. eff. is given by D* analysis:<https://cds.cern.ch/record/2810814/>

Example: $Gen \rightarrow reco$ migration of transverse sphericity

Mismodelling of observables used directly in unfolding

Derive the templates by **weighting nominal MC** to **alternative MC** at the **particle-level**

- → **ML-based** unbinned weighting
- → output: **weighted nominal MC events**
	- same **particle-level distribution** as **alternative MC**
	- keeps the **gen. → reco. migration** of the **nominal MC**

Mismodelling of observables used directly in unfolding

Derive the templates by **weighting nominal MC** to **alternative MC** at the **particle-level**

- → **ML-based** unbinned weighting
- → output: **weighted nominal MC events**
	- same **particle-level distribution** as **alternative MC**
	- keeps the **gen. → reco. migration** of the **nominal MC**

Mismodelling of other observables which may change detector response

Derive the templates with two-step weighting

Mismodelling of other observables which may change detector response

Derive the templates with two-step weighting

- **Step 1**: weight the **alternative MC** to **nominal MC** at the **particle-level**
	- → output: **weighted alternative MC**
		- with migration function of alternative MC
		- particle-level distributions of nominal MC

Mismodelling of other observables which may change detector response

Derive the templates with two-step weighting

- **Step 1**: weight the **alternative MC** to **nominal MC** at the **particle-level**
	- → output: **weighted alternative MC**
		- with migration function of alternative MC
		- particle-level distributions of nominal MC
- **Step 2**: weight the **nominal MC** to the **Step 1 output** at **particle- and detector-level**
	- → output: **weighted nominal MC**
		- with migration function of alternative MC
		- particle-level distributions of nominal MC

Mismodelling of other observables which may change detector response

Derive the templates with two-step weighting

- **Step 1**: weight the **alternative MC** to **nominal MC** at the **particle-level**
	- → output: **weighted alternative MC**
		- with migration function of alternative MC
		- particle-level distributions of nominal MC
- **Step 2**: weight the **nominal MC** to the **Step 1 output** at **particle- and detector-level**
	- → output: **weighted nominal MC**
		- with migration function of alternative MC
		- particle-level distributions of nominal MC

 $Gen \rightarrow \text{reco migration}$ of spherocity

Unfolding results

Simultaneously unfold the 8 variables for ML-based weighting

Add a variable to the unfolding:

Methods based on **binned** histograms:

Add **another dimension** in binning

→ require **higher statistics**

 \rightarrow more **computation** in simulation and unfolding

This method:

Add **a feature** in the ML training and evaluation \rightarrow much easier to scale up the dimensions

Unfolding results

Simultaneously unfold the 8 variables for ML-based weighting

Add a variable to the unfolding:

Methods based on **binned** histograms:

Add **another dimension** in binning

→ require **higher statistics**

 \rightarrow more **computation** in simulation and unfolding

This method:

Add **a feature** in the ML training and evaluation \rightarrow much easier to scale up the dimensions

Unfolding results as **weighted MC events**

Customise binning and **variable choices** are supported with the **event-wise unfolded data**

Unfolding results

Simultaneously unfold the 8 variables for ML-based weighting

Add a variable to the unfolding:

Methods based on **binned** histograms:

Add **another dimension** in binning

→ require **higher statistics**

 \rightarrow more **computation** in simulation and unfolding

This method:

Add **a feature** in the ML training and evaluation \rightarrow much easier to scale up the dimensions

Unfolding results as **weighted MC events**

Customise binning and **variable choices** are supported with the **event-wise unfolded data**

1D visualisation of **charged particle invariant mass** distribution

Unbinned uncertainty estimation

- **ML-based reweighting** → **Uncertainty templates** as sets of **weights on nominal MC**
- → **Continuous nuisance** parameters can be assigned to the **event-weights**
- → Uncertainty **covariance** can be estimated from **toy experiments**
	- Unfold with **"bootstraps" of MC** with **variations of nuisance parameters → Syst. Unc + Covariance**
	- Unfold with "**bootstraps" of resampled data → Stat. Unc. + Covariance**

Unbinned uncertainty estimation

- **ML-based reweighting** → **Uncertainty templates** as sets of **weights on nominal MC**
- → **Continuous nuisance** parameters can be assigned to the **event-weights**
- → Uncertainty **covariance** can be estimated from **toy experiments**
	- Unfold with **"bootstraps" of MC** with **variations of nuisance parameters → Syst. Unc + Covariance**
	- Unfold with "**bootstraps" of resampled data → Stat. Unc. + Covariance**

Example: correlation of the syst. unc. of sphericity

The way to improve the usability of **unfolded results**

- Publish the **unbinned** results on **event-level**
- Publish the **weight sets** from **toy experiments**
	- **→ Unc. + Covariance**

University of Zürich Weijie Jin

Customise binning and **variable choices** are supported with the **event-wise unfolded data**

Uncertainties+Covariance on the results

Interpretation of results

The **data** tends to be **more isotropic** than all the **MC** predictions

The **data** is **more accumulated** in the middle Nch region (~20)

Interpretation of results

Summary

- **Minimum bias collisions** may be the home of **interesting physics** at the LHC
	- Observables that are not described by existing models \rightarrow QGP or others?
	- Could be contributed by QCD instantons ← topological effects of non-abelian gauge fields
- **Event shapes** are important signatures of these physics effects
- We present a **measurement of these event shape observables** in CMS
	- **Unbinned high-dimensional unfolding** based on machine-learning models
	- **Unbinned uncertainty estimation** based on pseudo-experiments
	- Validations provided: pseudo-data unfolding, bias & coverage test, bottom-line test (backup)
	- The unfolding method is also used in an ATLAS measurement of Z+jets kinematics arxiv: 2405.20041
- Unfolding results as weighted MC events
	- Unbinned events \rightarrow further usage of data does not depend on binning
	- Visualised by 1D or 2D histograms
	- Correlations of the uncertainties are provided (visualised by 2D histograms)
	- **• Data is more isotropic than all the MC variations, especially in mid-Nch region**

Validation: unfold the pseudo-data from Pythia A14 tune

Alternative MC from Pythia A14, CP5 and CUETP8M1 tunes → **pseudo-data**

Unfold the **pseudo-data** with **nominal MC** and the **systematic templates →** Test the closure

Validation: unfold the pseudo-data from Pythia A14 tune

Alternative MC from Pythia A14, CP5 and CUETP8M1 tunes → **pseudo-data**

Unfold the **pseudo-data** with **nominal MC** and the **systematic templates** \rightarrow Test the closure

Example: Unfold the Pythia **A14** sample (plots of other observables, reco-level plots, efficiency and acceptance in backup)

Validation: unfold the pseudo-data from Pythia CP5 tune

Alternative MC from Pythia A14, CP5 and CUETP8M1 tunes → **pseudo-data**

Unfold the **pseudo-data** with **nominal MC** and the **systematic templates →** Test the closure

Particle-level **MC**, **unfold**, and **pseudo-data truth** broadening at iteration 2

25 Detector-level **MC**, **refold**, and **pseudo-data** broadening at iteration 2

Validation: unfold the pseudo-data from Pythia CP5 tune

Alternative MC from Pythia A14, CP5 and CUETP8M1 tunes → **pseudo-data**

Unfold the **pseudo-data** with **nominal MC** and the **systematic templates →** Test the closure

Example: Unfold the Pythia **CP5** sample

 σ /dB_{trac} nominal refold MC: A3P EPOS gen. EPOS mig. CP1 gen. CP1 mig. CH3 gen. CH3 mig. track reco unc pseudodata: CP5 data Refold 0.00 0.05 0.10 0.20 0.25 0.30 0.35 0.40 0.15 B_{tracks}

2018 (13 TeV)

 $_{1\,e8}$ CMS Simulation Preliminary

Particle-level **MC**, **unfold**, and **pseudo-data truth** broadening at iteration 2

25 Detector-level **MC**, **refold**, and **pseudo-data** broadening at iteration 2

Validation: unfold the pseudo-data with other systematic templates

Particle-level **MC**, **unfold**, and **pseudo-data truth**

Systematic templates derived from EPOS, **Pythia CP1, Herwig CH3**

Systematic templates derived from EPOS, **Pythia A14, Pythia CUETP8M1**

Robustness test of MC **choices for systematic templates**

- The unfolding from alternative systematic templates also recovers the truth
- Uncertainties from gen-bias & migration Transverse sphericity **Functions** are at a similar level

Broadening unfold v.s. **truth**

Transverse sphericity **unfold** v.s. **truth**

uncertainty decomposition

Validation: unfold the pseudo-data with other systematic templates

MC, **unfold**, and **pseudo-data truth**

Systematic templates derived from EPOS, **Pythia CP1, Herwig CH3**

Systematic templates derived from EPOS, **Pythia A14, Pythia CUETP8M1**

Robustness test of MC **choices for systematic templates**

- The unfolding from alternative systematic templates also recovers the truth
- Uncertainties from gen-bias & migration Transverse sphericity **Functions** are at a similar level

Broadening unfold v.s. **truth**

Transverse sphericity **unfold** v.s. **truth**

uncertainty decomposition

Validation: unfold the pseudo-data

Test the unfolding on **2D distributions**

2D test also shows closure between unfolding results and the pseudo-data truth

Validation: unfold the pseudo-data

Test the unfolding on **2D distributions**

Example: Unfold the Pythia **CUETP8M1** sample, transverse sphericity in slices of Nch

2D test also shows closure between unfolding results and the pseudo-data truth

Validation: bottom-line test

Information loss during unfolding

- → the distinction between the **unfolded results** & **MC truth** < the distinction between **(pseudo-)data** & **smeared MC**
- → **bottom-line test**: the **χ2** between **unfolded results** (bias & MC stat. unc.) & **MC truth**

< the **χ2** between **(pseudo-)data** & **smeared MC**

Example: **χ2** (unfold&gen-MC) / **χ2** (data&smeared MC) when unfolding CUEPT8M1 pseudo-data

2018 (13 TeV) 2018 (13 TeV) **CMS** Simulation Preliminary **CMS** Simulation Preliminary $\frac{\chi^2(\text{unfold8genMC})}{\chi^2(\text{data8smearedMC})}$ $\frac{\chi^2(\text{unfold\&genMC})}{\chi^2(\text{data\&mearedMC})}$ thrust — thrust transverse sphericity transverse sphericity transverse thrust transverse thrust broadening broadening isotropy isotropy ≿ّ Ideal case: χ^2 ratios \sim 1 mass mass 0.4 nparticle — sphericity 06 chjet_deltaphi information loss or sphericity 0.3 conservative unc. estimation 0.4 0.2 \rightarrow **x**² ratios < 1 0.2 0.1 -0.06 0.0_n $\overline{2}$ $\overline{3}$ $\boldsymbol{\Lambda}$ $\overline{2}$ $\overline{3}$ Iteration Iteration **^χ2** ratios of 1D histograms **^χ2** ratios of 2D histograms (event shape obs. in Nch slices) University of Zürich Weijie Jin

Randomly **shift nominal MC** according to systematic variations + **shift systematic templates** accordingly **Resampled pseudo-data**

Randomly **shift nominal MC** according to systematic variations + shift systematic templates accordingly **Resampled pseudo-data** unfold Deviation from nominal to sys. template: $\overrightarrow{w_{i}}$ *θi* Random samples of nuisance parameters for each sys. unc. θ_2 , θ_3 _{CP1}, θ_3 _{EPOS}, θ_4 _{CP1}, θ_4 _{EPOS}, θ_4 _{CH3} ~N(0,1) Track reconstruction efficiency Mismodeling of the Mismodeling of the unfolded Mismodeling of other observables Poisson(1) weight on MC events (MC stat. unc.) Multiply the weights for all the sys. unc. sources

Unfold pseudo-data with **toy experiments** of **uncertainty** variations

Bias test:

Bias of the unfolding results compared to pseudo-data truth

Example: unfolding CUETP8M1 pseudo-data Transverse sphericity distribution at iteration 2 **Coverage** test:

How often does the unfold cover the pseudo-data?

Box-plot: 0.25, 0.5 and 0.75 quantile of 50 toys **Average coverage and its 68.2% confidence interval**

Estimate systematic uncertainty with pseudo-experiments

1.MC statistics templates: random **Poisson(1) weights** on MC

2. Track reco. eff. template: weights $\overrightarrow{w_2}$ on nominal MC

3. Mismodel of obs. for unfolding template weights $\widetilde{w}_{3A3}, \widetilde{w}_{3EPOS}, \widetilde{w}_{3CH3}$ on nominal MC

4. Mismodel of other obs. template: weights $\widetilde{w}_{4A3}, \widetilde{w}_{4EPOS}, \widetilde{w}_{4CH3}$ on nominal MC

Estimate systematic uncertainty with pseudo-experiments

Estimate systematic uncertainty with pseudo-experiments

PDF variations of MC

Tune variations of MC

A14 tune eigen-variation 1 and 2

A14 tune eigen-variation 3a, 3b, 3c

University of Zürich Weijie Jin

Estimation of systematic uncertainty

Binned unfolding:

- **Systematic templates** as alternative MC **histograms**
- **Nuisance parameters** quantify the deviation from nominal MC to systematic template histograms

Extrapolate to unbinned unfolding:

- **Systematic templates** as alternative **weights on nominal MC** events (nominal: weight=1)
- **Nuisance parameters** quantify the deviation from the nominal weight 1 to the alternative weights

Aim in systematic uncertainty estimation:

- Construct the **templates as weights on nominal MC events**
- **Continuous nuisance parameters** applied on the weights
	- \rightarrow continuous deviation from nominal MC to systematic templates
	- \rightarrow enables uncertainty estimation with pseudo-experiments (unfolding with "bootstrap" MC)

