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Motivation: previous event shape measurements
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FSQ-15-002

Unexpected particle 
production across η, 
with ΔΦ ~ 0

Existing observations of unexpected effects in event shapes

https://cms-results.web.cern.ch/cms-results/public-results/publications/FSQ-15-002/index.html


University of Zürich Weijie Jin

Motivation: previous event shape measurements

3

FSQ-15-002

Unexpected particle 
production across η, 
with ΔΦ ~ 0

Existing observations of unexpected effects in event shapes

http://cds.cern.ch/record/2862457

Similar behavior observed 
in high multiplicity jets

The data-MC 
difference quantified by 
single-particle elliptic 
anisotropy*

*related to the Fourier coefficient of two-particle azimuthal angle distribution as v j
2 = Vj

2Δ

https://cms-results.web.cern.ch/cms-results/public-results/publications/FSQ-15-002/index.html
http://cds.cern.ch/record/2862457
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Eur. Phys. J. C 80, 693 (2020)

Increase in strange particle as a 
function of particle multiplicity

→ no predicted by MC

Mismodeling of strangeness production in pp collisions 

• Indicates the mismodeling in hadronization & potential quark-gluon plasma effects

• Affects the detector response and then the event shape measurement

Motivation: Strange hadron production in pp collisions

https://arxiv.org/abs/2405.05048

 fraction v.s. leading jet  

in region transverse to the hard scattering

(underlying event sensitive)

→ not predicted by MC

N(K0
S)/Nch pT

University of Zürich Weijie Jin

https://link.springer.com/article/10.1140/epjc/s10052-020-8125-1
https://arxiv.org/abs/2405.05048
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Motivation
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https://arxiv.org/abs/1911.09726QCD instantons

• Tunnelling process among discrete classical QCD 

vacuums which are topologically different

• A generic prediction of non-Abelian gauge theories 

Potentially very common at the LHC

Final states from gluon fusion: 2Nf quarks + O(10) gluons

Signature: soft, isotropic events with high multiplicity

https://arxiv.org/abs/1911.09726
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Event shape 

as functions of charged particle momentum
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Event shapes as functions of charged particle momentum
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Event shape observables:

Variables describing the “shapes ” of the events

→  Functions of the momentum of the final state particles

We focus on charged particles ← precise reconstruction of tracks

Observables for measurement:

From charged particles  > 0.5 GeV, < 2.4

• Charged particle multiplicity

• Invariant mass of charged particles


• Sphericity (+ transverse)

• Thrust (+transverse)

• Broadening

• Isotropy
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     (detector level correspondence,

      to be discussed later)
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Data & MC
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Data: Zerobias, 2018 low pileup run, O(5M) events, ~64 µb-1

MC: private minimum bias simulation without pileup (pileup effects given in 
backup)

→ minimal selections on primary vertices & tracks


Nominal samples and systematic variations

Pythia 8 CP1 (CMS), A3 (ATLAS)*

EPOS-LHC

Herwig 7 CH3


Validations and comparisons

Pythia CP5(CMS), CUETP8M1-NNPDF3.1(CMS), A14 (ATLAS) & its variations, 
CUETP8M1-NNPDF2.3(CMS), CUETP8M2T4, CUETP8M2T4-rope-hadronization&string-
shoving, Pythia CP5 αS(FSR) variations, Pythia CP5 color-reconnection tunes

Different tunes, same MC model
Regge-Gribov model, collective flow

Different shower& hadronization models

*The ATLAS A3 tune was used as nominal MC for unfolding in the strategy development and validation.

Later the nominal MC was changed to CMS CP1 tune for the data unfolding.
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Uncertainty sources

9

Statistical uncertainty from data 

→  fluctuations in the NN parameters 

→  fluctuations of the unfolding output
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Uncertainty sources

9

Statistical uncertainty from data 

→  fluctuations in the NN parameters 

→  fluctuations of the unfolding output

Systematic uncertainty from MC modelling

1. MC statistics 

→ fluctuations in modelling


2. Track reconstruction efficiency uncertainty 

→ differences between detector simulation and truth


3. Mismodelling of observables used directly in unfolding 

e.g. charged particle multiplicity, sphericity…

→ bias


4. Mismodelling of other observables which may change detector response 

e.g. track rapidity, particle composition, 

→ migration function uncertainty

pT
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Uncertainty sources

9

Statistical uncertainty from data 

→  fluctuations in the NN parameters 

→  fluctuations of the unfolding output

Systematic uncertainty from MC modelling

1. MC statistics 

→ fluctuations in modelling


2. Track reconstruction efficiency uncertainty 

→ differences between detector simulation and truth


3. Mismodelling of observables used directly in unfolding 

e.g. charged particle multiplicity, sphericity…

→ bias


4. Mismodelling of other observables which may change detector response 

e.g. track rapidity, particle composition, 

→ migration function uncertainty
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Uncertainty sources
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Statistical uncertainty from data 

→  fluctuations in the NN parameters 

→  fluctuations of the unfolding output

Systematic uncertainty from MC modelling

1. MC statistics 

→ fluctuations in modelling


2. Track reconstruction efficiency uncertainty 

→ differences between detector simulation and truth


3. Mismodelling of observables used directly in unfolding 

e.g. charged particle multiplicity, sphericity…

→ bias


4. Mismodelling of other observables which may change detector response 

e.g. track rapidity, particle composition, 

→ migration function uncertainty
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We consider variations derived from 3 separate MC models
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Machine-learning-based unbinned unfolding

& uncertainty estimation
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Unfolding algorithm
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Multifold *:

• Input: values of 8 observables for every event 

in simulation and data

• Output: reweighted simulated events 

approximating data

* https://arxiv.org/abs/1911.09107

https://arxiv.org/abs/2105.04448

Two steps of unbinned reweighting:

1.Weight MC to data at detector level 

2.Weight original MC to reweighted MC at generator level


Extra 2 steps added to deal with the selection efficiency 
and signal acceptance
→ repeat in iterations

→ The result are unbinned weighted events, although 
we show binned histograms for visualisation 

Unbinned weighting for uncertainty estimation
+

https://arxiv.org/abs/1911.09107
https://arxiv.org/abs/2105.04448


Unbinned multi-dimensional unfolding and uncertainty estimation
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← A typical binary classifier to distinguish two sets
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Unbinned multi-dimensional unfolding and uncertainty estimation
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← A typical binary classifier to distinguish two sets

What it actually did: learn the differences in the distributions → 
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Unbinned multi-dimensional unfolding and uncertainty estimation
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← A typical binary classifier to distinguish two sets

What it actually did: learn the differences in the distributions → 

← We can use the classification scores to weight MC to data,
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Unbinned multi-dimensional unfolding and uncertainty estimation
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← A typical binary classifier to distinguish two sets

What it actually did: learn the differences in the distributions → 

← We can use the classification scores to weight MC to data,

Event-wise unfolding → the result independent of binning 
The actual unfolding in iterations:

• Step 1: weight MC to data, at detector level

• Step 2: pull back the weights to particle(truth) level

University of Zürich Weijie Jin



Unbinned multi-dimensional unfolding and uncertainty estimation
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← A typical binary classifier to distinguish two sets

What it actually did: learn the differences in the distributions → 

← We can also use the classification scores to weight 

nominal MC sample to systematic variations

University of Zürich Weijie Jin



Unbinned multi-dimensional unfolding and uncertainty estimation

13

← A typical binary classifier to distinguish two sets

What it actually did: learn the differences in the distributions → 

← We can also use the classification scores to weight 

nominal MC sample to systematic variations

Event-wise uncertainty template → unbinned unfolding uncertainty & covariance

University of Zürich Weijie Jin
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Systematic uncertainty estimation based on unbinned reweighting

14

Track reconstruction efficiency uncertainty 

• Step1: Randomly drop 2.1%(1%) tracks with pT<20 GeV (>20 GeV) in nominal MC*

• Step2: weight the nominal MC to Step1 output at particle- and detector-level

* The uncertainty of track reco. eff. is given by D* analysis: https://cds.cern.ch/record/2810814/

https://cds.cern.ch/record/2810814/
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Systematic uncertainty estimation based on unbinned reweighting

14

Track reconstruction efficiency uncertainty 

• Step1: Randomly drop 2.1%(1%) tracks with pT<20 GeV (>20 GeV) in nominal MC*

• Step2: weight the nominal MC to Step1 output at particle- and detector-level

* The uncertainty of track reco. eff. is given by D* analysis: https://cds.cern.ch/record/2810814/

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Gen

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

R
ec

o

8−

6−

4−

2−

0

2

4

6

8
 Mig) (MC vs target Transverse Sphericity)∆(σ Mig/∆

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Gen

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

R
ec

o

8−

6−

4−

2−

0

2

4

6

8
 Mig) (weighted results vs target Transverse Sphericity)∆(σ Mig/∆

Difference between nominal MC and target

before weighting After weighting

Example:

Gen → reco migration 
of transverse sphericity

https://cds.cern.ch/record/2810814/


University of Zürich Weijie Jin

Systematic uncertainty estimation based on unbinned reweighting
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Mismodelling of observables used directly in unfolding 

Derive the templates by weighting nominal MC to alternative MC at the particle-level

→ ML-based unbinned weighting

→ output: weighted nominal MC events


• same particle-level distribution as alternative MC

• keeps the gen. → reco. migration of the nominal MC
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Systematic uncertainty estimation based on unbinned reweighting

15

Mismodelling of observables used directly in unfolding 

Derive the templates by weighting nominal MC to alternative MC at the particle-level

→ ML-based unbinned weighting

→ output: weighted nominal MC events


• same particle-level distribution as alternative MC

• keeps the gen. → reco. migration of the nominal MC

Weight Pythia A3P to CP1 Weight Pythia A3P to EPOS

Example:

particle-level broadening 
before & after weighting

Nominal MC

After reweighting at the gen-level
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Systematic uncertainty estimation based on unbinned reweighting

Mismodelling of other observables which may change detector response

Derive the templates with two-step weighting
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Systematic uncertainty estimation based on unbinned reweighting

Mismodelling of other observables which may change detector response

Derive the templates with two-step weighting

• Step 1: weight the alternative MC to nominal MC at the particle-level

→ output: weighted alternative MC


• with migration function of alternative MC

• particle-level distributions of nominal MC
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Systematic uncertainty estimation based on unbinned reweighting

Mismodelling of other observables which may change detector response

Derive the templates with two-step weighting

• Step 1: weight the alternative MC to nominal MC at the particle-level

→ output: weighted alternative MC


• with migration function of alternative MC

• particle-level distributions of nominal MC

• Step 2: weight the nominal MC to the Step 1 output at particle- and detector-level

→ output: weighted nominal MC


• with migration function of alternative MC

• particle-level distributions of nominal MC
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Systematic uncertainty estimation based on unbinned reweighting

Mismodelling of other observables which may change detector response

Derive the templates with two-step weighting

• Step 1: weight the alternative MC to nominal MC at the particle-level

→ output: weighted alternative MC


• with migration function of alternative MC

• particle-level distributions of nominal MC

• Step 2: weight the nominal MC to the Step 1 output at particle- and detector-level

→ output: weighted nominal MC


• with migration function of alternative MC

• particle-level distributions of nominal MC
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nominal MC - step 1 output
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Results



Unfolding results

Simultaneously unfold the 8 variables for 
ML-based weighting

Methods based on binned histograms: 

Add another dimension in binning

→ require higher statistics

→ more computation in simulation and unfolding

Add a variable to the unfolding:

This method:

Add a feature in the ML training and evaluation

→ much easier to scale up the dimensions

18
University of Zürich Weijie Jin
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Customise binning and variable choices are 
supported with the event-wise unfolded data

Unfolding results as weighted MC events
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Customise binning and variable choices are 
supported with the event-wise unfolded data

Unfolding results as weighted MC events
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2D visualisation of transverse sphericity in 
charged particle multiplicity slices

1D visualisation of charged particle invariant mass distribution

https://cms-results.web.cern.ch/cms-results/public-results/preliminary-results/SMP-23-008.


Unbinned uncertainty estimation

Customise binning and variable choices are 
supported with the event-wise unfolded data

ML-based reweighting → Uncertainty templates as sets of weights on nominal MC

→ Continuous nuisance parameters can be assigned to the event-weights

→ Uncertainty covariance can be estimated from toy experiments


- Unfold with “bootstraps” of MC with variations of nuisance parameters → Syst. Unc + Covariance

- Unfold with “bootstraps” of resampled data → Stat. Unc. + Covariance

Uncertainties+Covariance on the results

19

Example: correlation of the syst. unc. of sphericity

+

CMS-PAS-SMP-23-008

University of Zürich Weijie Jin

https://cms-results.web.cern.ch/cms-results/public-results/preliminary-results/SMP-23-008.


Unbinned uncertainty estimation

Customise binning and variable choices are 
supported with the event-wise unfolded data

ML-based reweighting → Uncertainty templates as sets of weights on nominal MC

→ Continuous nuisance parameters can be assigned to the event-weights

→ Uncertainty covariance can be estimated from toy experiments


- Unfold with “bootstraps” of MC with variations of nuisance parameters → Syst. Unc + Covariance

- Unfold with “bootstraps” of resampled data → Stat. Unc. + Covariance

Uncertainties+Covariance on the results

The way to improve the usability of unfolded results

• Publish the unbinned results on event-level

• Publish the weight sets from toy experiments

   → Unc. + Covariance

Unbinned fit for theoretical interpretation 

Unbinned generator tuning

(Or any binning chosen by the user)

19

Example: correlation of the syst. unc. of sphericity

+

CMS-PAS-SMP-23-008

University of Zürich Weijie Jin

https://cms-results.web.cern.ch/cms-results/public-results/preliminary-results/SMP-23-008.


Interpretation of results

20

The data tends to be more isotropic 
than all the MC predictions

The data is more accumulated in the 
middle Nch region (~20)

University of Zürich Weijie Jin
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Interpretation of results

The MC & data discrepancy in event shape is the largest in the middle Nch region

• The mismodeling is observed for all the event shape observables

• The mismodeling sustains under variations of PDF, generator, UE tune, color-

reconnection models, αS(FSR) (backup)

• Opposite behaviours of pp collision MC to the e+e- collision MC

• Missing QCD instanton effects or collective behaviour in this region?

• We provide the unfolded results for further theoretical interpretation

University of Zürich Weijie Jin
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Summary
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• Minimum bias collisions may be the home of interesting physics at the LHC

• Observables that are not described by existing models → QGP or others?

• Could be contributed by QCD instantons ← topological effects of non-abelian gauge fields


• Event shapes are important signatures of these physics effects


• We present a measurement of these event shape observables in CMS

• Unbinned high-dimensional unfolding based on machine-learning models

• Unbinned uncertainty estimation based on pseudo-experiments

• Validations provided: pseudo-data unfolding, bias & coverage test, bottom-line test (backup)

• The unfolding method is also used in an ATLAS measurement of Z+jets kinematics arxiv:2405.20041


• Unfolding results as weighted MC events

• Unbinned events → further usage of data does not depend on binning

• Visualised by 1D or 2D histograms

• Correlations of the uncertainties are provided (visualised by 2D histograms)

• Data is more isotropic than all the MC variations, especially in mid-Nch region

https://arxiv.org/pdf/2405.20041
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Backup
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Validation: unfold the pseudo-data from Pythia A14 tune

24

Alternative MC from Pythia A14, CP5 and CUETP8M1 tunes → pseudo-data

Unfold the pseudo-data with nominal MC and the systematic templates → Test the closure

χ2/χ2(0th iteration) between the 
unfolded histograms & pseudo-
data truth

Particle-level

MC, unfold, and pseudo-data truth

transverse thrust at iteration 2

Unfolding with nominal 
MC and its systematic 
variations

Pseudodata truth Nominal MC
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Validation: unfold the pseudo-data from Pythia A14 tune

24

Alternative MC from Pythia A14, CP5 and CUETP8M1 tunes → pseudo-data

Unfold the pseudo-data with nominal MC and the systematic templates → Test the closure

Example: Unfold the Pythia A14 sample 

(plots of other observables, reco-level plots, efficiency and acceptance in backup)

χ2/χ2(0th iteration) between the 
unfolded histograms & pseudo-
data truth

Particle-level

MC, unfold, and pseudo-data truth

transverse thrust at iteration 2

Unfolding with nominal 
MC and its systematic 
variations

Pseudodata truth Nominal MC
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Validation: unfold the pseudo-data from Pythia CP5 tune

25

Alternative MC from Pythia A14, CP5 and CUETP8M1 tunes → pseudo-data

Unfold the pseudo-data with nominal MC and the systematic templates → Test the closure

χ2/χ2(0th iteration) between the 
unfolded histograms & pseudo-
data truth

Particle-level

MC, unfold, and pseudo-data truth

broadening at iteration 2

Detector-level

MC, refold, and pseudo-data

broadening at iteration 2
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Validation: unfold the pseudo-data from Pythia CP5 tune

25

Alternative MC from Pythia A14, CP5 and CUETP8M1 tunes → pseudo-data

Unfold the pseudo-data with nominal MC and the systematic templates → Test the closure

Example: Unfold the Pythia CP5 sample

χ2/χ2(0th iteration) between the 
unfolded histograms & pseudo-
data truth

Particle-level

MC, unfold, and pseudo-data truth

broadening at iteration 2

Detector-level

MC, refold, and pseudo-data

broadening at iteration 2
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Validation: unfold the pseudo-data with other systematic templates

26

Particle-level

MC, unfold, and pseudo-data truth

Systematic templates derived from 

EPOS, Pythia A14, Pythia CUETP8M1

Systematic templates derived from 

EPOS, Pythia CP1, Herwig CH3

Broadening

unfold v.s. truth

Transverse sphericity

unfold v.s. truth

Robustness test of MC choices for 
systematic templates

• The unfolding from alternative systematic 

templates also recovers the truth

• Uncertainties from gen-bias & migration 

functions are at a similar levelTransverse sphericity

uncertainty decomposition
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Validation: unfold the pseudo-data with other systematic templates
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Example: Unfold the Pythia CP5 sample Particle-level

MC, unfold, and pseudo-data truth

Systematic templates derived from 

EPOS, Pythia A14, Pythia CUETP8M1

Systematic templates derived from 

EPOS, Pythia CP1, Herwig CH3

Broadening

unfold v.s. truth

Transverse sphericity

unfold v.s. truth

Robustness test of MC choices for 
systematic templates

• The unfolding from alternative systematic 

templates also recovers the truth

• Uncertainties from gen-bias & migration 

functions are at a similar levelTransverse sphericity

uncertainty decomposition
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Validation: unfold the pseudo-data

Test the unfolding on 2D distributions

Nominal MC
Unfolding results

with nominal MC & sys. var. 

2D test also shows closure between unfolding results and the pseudo-data truth 

University of Zürich Weijie Jin
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Validation: unfold the pseudo-data

Example: Unfold the Pythia CUETP8M1 sample, transverse sphericity in slices of Nch

Test the unfolding on 2D distributions

Nominal MC
Unfolding results

with nominal MC & sys. var. 

2D test also shows closure between unfolding results and the pseudo-data truth 

University of Zürich Weijie Jin
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Validation: bottom-line test
Information loss during unfolding 

→ the distinction between the unfolded results & MC truth < the distinction between (pseudo-)data & smeared MC

→ bottom-line test: the χ2 between unfolded results (bias & MC stat. unc.) & MC truth 


< the χ2 between (pseudo-)data & smeared MC

Example: χ2 (unfold&gen-MC) / χ2 (data&smeared MC) when unfolding CUEPT8M1 pseudo-data

χ2 ratios of 1D histograms χ2 ratios of 2D histograms

(event shape obs. in Nch slices)

Ideal case: χ2 ratios ~ 1


information loss or 
conservative unc. estimation

→ χ2 ratios < 1
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Validation: bias and coverage test

29

Randomly shift nominal MC according to systematic variations

+ shift systematic templates accordingly Resampled pseudo-data

unfold



University of Zürich Weijie Jin

Validation: bias and coverage test

29

Randomly shift nominal MC according to systematic variations

+ shift systematic templates accordingly Resampled pseudo-data

unfold

Random samples of nuisance parameters for each sys. unc. θ2 , θ3CP1 , θ3EPOS , θ3CH3 , θ4CP1 , θ4EPOS , θ4CH3 ~N(0,1)

Track reconstruction efficiency
Mismodeling of the 
observables to be unfolded Mismodeling of other observables
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Validation: bias and coverage test

29

Randomly shift nominal MC according to systematic variations

+ shift systematic templates accordingly Resampled pseudo-data

unfold

Deviation from nominal to sys. template: wi
θi

Random samples of nuisance parameters for each sys. unc. θ2 , θ3CP1 , θ3EPOS , θ3CH3 , θ4CP1 , θ4EPOS , θ4CH3 ~N(0,1)

Track reconstruction efficiency
Mismodeling of the 
observables to be unfolded Mismodeling of other observables
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Validation: bias and coverage test

29

Randomly shift nominal MC according to systematic variations

+ shift systematic templates accordingly Resampled pseudo-data

unfold

Deviation from nominal to sys. template: wi
θi

Random samples of nuisance parameters for each sys. unc. θ2 , θ3CP1 , θ3EPOS , θ3CH3 , θ4CP1 , θ4EPOS , θ4CH3 ~N(0,1)

Track reconstruction efficiency
Mismodeling of the 
observables to be unfolded Mismodeling of other observables

Poisson(1) weight on MC events (MC stat. unc.)
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Validation: bias and coverage test

29

Randomly shift nominal MC according to systematic variations

+ shift systematic templates accordingly Resampled pseudo-data

unfold

Deviation from nominal to sys. template: wi
θi

Random samples of nuisance parameters for each sys. unc. θ2 , θ3CP1 , θ3EPOS , θ3CH3 , θ4CP1 , θ4EPOS , θ4CH3 ~N(0,1)

Track reconstruction efficiency
Mismodeling of the 
observables to be unfolded Mismodeling of other observables

Poisson(1) weight on MC events (MC stat. unc.)

Multiply the weights for all the sys. unc. sources
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Validation: bias and coverage test
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Randomly shift nominal MC according to systematic variations

+ shift systematic templates accordingly Resampled pseudo-data

unfold

Deviation from nominal to sys. template: wi
θi

MC bootstrap

Random samples of nuisance parameters for each sys. unc. θ2 , θ3CP1 , θ3EPOS , θ3CH3 , θ4CP1 , θ4EPOS , θ4CH3 ~N(0,1)

Track reconstruction efficiency
Mismodeling of the 
observables to be unfolded Mismodeling of other observables

Poisson(1) weight on MC events (MC stat. unc.)

Multiply the weights for all the sys. unc. sources
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Validation: bias and coverage test

29

Randomly shift nominal MC according to systematic variations

+ shift systematic templates accordingly Resampled pseudo-data

unfold

Deviation from nominal to sys. template: wi
θi

MC bootstrap
Poisson(1) weight on pseudo-data

Pseudo-data bootstrap

Random samples of nuisance parameters for each sys. unc. θ2 , θ3CP1 , θ3EPOS , θ3CH3 , θ4CP1 , θ4EPOS , θ4CH3 ~N(0,1)

Track reconstruction efficiency
Mismodeling of the 
observables to be unfolded Mismodeling of other observables

Poisson(1) weight on MC events (MC stat. unc.)

Multiply the weights for all the sys. unc. sources
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Validation: bias and coverage test

29

Randomly shift nominal MC according to systematic variations

+ shift systematic templates accordingly Resampled pseudo-data

unfold

Deviation from nominal to sys. template: wi
θi

MC bootstrap
Poisson(1) weight on pseudo-data

Pseudo-data bootstrap

Unfold

Random samples of nuisance parameters for each sys. unc. θ2 , θ3CP1 , θ3EPOS , θ3CH3 , θ4CP1 , θ4EPOS , θ4CH3 ~N(0,1)

Track reconstruction efficiency
Mismodeling of the 
observables to be unfolded Mismodeling of other observables

Poisson(1) weight on MC events (MC stat. unc.)

Multiply the weights for all the sys. unc. sources
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Validation: bias and coverage test
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Randomly shift nominal MC according to systematic variations

+ shift systematic templates accordingly Resampled pseudo-data

unfold

Deviation from nominal to sys. template: wi
θi

MC bootstrap

Further multiply the weights of sys. templates wi

Systematic deviations on the MC bootstrap

Poisson(1) weight on pseudo-data

Pseudo-data bootstrap

Unfold

Random samples of nuisance parameters for each sys. unc. θ2 , θ3CP1 , θ3EPOS , θ3CH3 , θ4CP1 , θ4EPOS , θ4CH3 ~N(0,1)

Track reconstruction efficiency
Mismodeling of the 
observables to be unfolded Mismodeling of other observables

Poisson(1) weight on MC events (MC stat. unc.)

Multiply the weights for all the sys. unc. sources
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Validation: bias and coverage test

29

Randomly shift nominal MC according to systematic variations

+ shift systematic templates accordingly Resampled pseudo-data

unfold

Deviation from nominal to sys. template: wi
θi

MC bootstrap

Further multiply the weights of sys. templates wi

Systematic deviations on the MC bootstrap

Poisson(1) weight on pseudo-data

Pseudo-data bootstrap

Unfold

Unfold

Random samples of nuisance parameters for each sys. unc. θ2 , θ3CP1 , θ3EPOS , θ3CH3 , θ4CP1 , θ4EPOS , θ4CH3 ~N(0,1)

Track reconstruction efficiency
Mismodeling of the 
observables to be unfolded Mismodeling of other observables

Poisson(1) weight on MC events (MC stat. unc.)

Multiply the weights for all the sys. unc. sources
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Validation: bias and coverage test

Bias test: 

Bias of the unfolding results compared to 
pseudo-data truth

Coverage test:

How often does the unfold cover the pseudo-data?

Box-plot: 0.25, 0.5 and 0.75 quantile of 50 toys Average coverage and its 68.2% confidence interval

Example: unfolding CUETP8M1 pseudo-data 

Transverse sphericity distribution at iteration 2

Unfold pseudo-data with toy experiments of uncertainty variations
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Estimate systematic uncertainty with pseudo-experiments

1.MC statistics templates:

random Poisson(1) weights on MC

2. Track reco. eff. template:

weights  on nominal MCw2

3. Mismodel of obs. for 
unfolding template

weights 

 on 
nominal MC
w3A3, w3EPOS, w3CH3

4. Mismodel of other obs. 
template:

weights 

 on 
nominal MC
w4A3, w4EPOS, w4CH3
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Estimate systematic uncertainty with pseudo-experiments

1.MC statistics templates:

random Poisson(1) weights on MC

2. Track reco. eff. template:

weights  on nominal MCw2

3. Mismodel of obs. for 
unfolding template

weights 

 on 
nominal MC
w3A3, w3EPOS, w3CH3

4. Mismodel of other obs. 
template:

weights 

 on 
nominal MC
w4A3, w4EPOS, w4CH3

Sample a nuisance parameters per sys. source θ2 , θ3CP1 , θ3EPOS , θ3CH3 , θ4A3 
, θ4EPOS , θ4CH3 ~ N(0,1)

→ output: weights  mimicing the distribution of the systematic deviations,

      = 2, 3A3, 3EPOS, 3CH3, 4A3, 4EPOS, 4CH3

wi
θi

i
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Estimate systematic uncertainty with pseudo-experiments

1.MC statistics templates:

random Poisson(1) weights on MC

2. Track reco. eff. template:

weights  on nominal MCw2

3. Mismodel of obs. for 
unfolding template

weights 

 on 
nominal MC
w3A3, w3EPOS, w3CH3

4. Mismodel of other obs. 
template:

weights 

 on 
nominal MC
w4A3, w4EPOS, w4CH3

Sample a nuisance parameters per sys. source θ2 , θ3CP1 , θ3EPOS , θ3CH3 , θ4A3 
, θ4EPOS , θ4CH3 ~ N(0,1)

→ output: weights  mimicing the distribution of the systematic deviations,

      = 2, 3A3, 3EPOS, 3CH3, 4A3, 4EPOS, 4CH3

wi
θi

i

Multiply all the weights → a “bootstrap” MC set 

→ unfold with various bootstrap MC sets

→ derive systematic uncertainty and covariance from the unfolding results

University of Zürich Weijie Jin
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PDF variations of MC

32

7−10

6−10

5−10

4−10

3−10

2−10

1−10

1

10
N

or
m

al
iz

ed
 E

ve
nt

s/
Bi

n 
W

id
th CMS

13 TeV

Preliminary

<160.0tracksN≤3.0

Data A14HERAPDF1p5LO

A14MSTW2008LO A14CTEQL1

A14

 (high purity, pt>0.5 GeV)tracksN

1

2

   
   

   
   

R
at

io

50 100 150 200 250

8−10

7−10

6−10

5−10

4−10

3−10

2−10

1−10

1

N
or

m
al

iz
ed

 E
ve

nt
s/

Bi
n 

W
id

th CMS
13 TeV

Preliminary

<160.0tracksN≤3.0

Data A14HERAPDF1p5LO

A14MSTW2008LO A14CTEQL1

A14

 (high purity, pt>0.5 GeV)trackss
0

1

2

   
   

   
   

R
at

io

0 200 400 600

0

2

4

6

N
or

m
al

iz
ed

 E
ve

nt
s/

Bi
n 

W
id

th CMS
13 TeV

Preliminary

<160.0tracksN≤3.0

Data A14HERAPDF1p5LO

A14MSTW2008LO A14CTEQL1

A14

 (high purity, pt>0.5 GeV)tracksS

0.8

1.0

   
   

   
   

R
at

io
0 0.2 0.4 0.6 0.8 1

0

2

4

6

8

10

12

N
or

m
al

iz
ed

 E
ve

nt
s/

Bi
n 

W
id

th CMS
13 TeV

Preliminary

<160.0tracksN≤3.0

Data A14HERAPDF1p5LO

A14MSTW2008LO A14CTEQL1

A14

 (high purity, pt>0.5 GeV)tracksT

0.6

0.8

1.0

   
   

   
   

R
at

io

0 0.1 0.2 0.3 0.4

0

1

2

3

N
or

m
al

iz
ed

 E
ve

nt
s/

Bi
n 

W
id

th CMS
13 TeV

Preliminary

<160.0tracksN≤3.0

Data A14HERAPDF1p5LO

A14MSTW2008LO A14CTEQL1

A14

 (high purity, pt>0.5 GeV)tracks
TS

1.0

1.5

2.0

   
   

   
   

R
at

io

0 0.2 0.4 0.6 0.8 1

0

2

4

6

8

10

12

N
or

m
al

iz
ed

 E
ve

nt
s/

Bi
n 

W
id

th CMS
13 TeV

Preliminary

<160.0tracksN≤3.0

Data A14HERAPDF1p5LO

A14MSTW2008LO A14CTEQL1

A14

 (high purity, pt>0.5 GeV)tracks
TT

1.0

1.5
   

   
   

   
R

at
io

0 0.1 0.2 0.3 0.4

0

5

10

15

N
or

m
al

iz
ed

 E
ve

nt
s/

Bi
n 

W
id

th CMS
13 TeV

Preliminary

<160.0tracksN≤3.0

Data A14HERAPDF1p5LO

A14MSTW2008LO A14CTEQL1

A14

 (high purity, pt>0.5 GeV)tracksB

0.8

1.0

1.2

   
   

   
   

R
at

io

0 0.1 0.2 0.3 0.4



University of Zürich Weijie Jin

Tune variations of MC
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Estimation of systematic uncertainty

34

Binned unfolding: 

• Systematic templates as alternative MC histograms

• Nuisance parameters quantify the deviation from nominal MC to systematic template histograms

Extrapolate to unbinned unfolding:

• Systematic templates as alternative weights on nominal MC events (nominal: 

weight=1)

• Nuisance parameters quantify the deviation from the nominal weight 1 to the 

alternative weights

Aim in systematic uncertainty estimation:

• Construct the templates as weights on nominal MC events

• Continuous nuisance parameters applied on the weights

→ continuous deviation from nominal MC to systematic templates

→ enables uncertainty estimation with pseudo-experiments (unfolding with “bootstrap” MC)


