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Physical Motivation: Decoding the QFT Path Integral

• path integral: the foundation of QFT

• theoretical challenges for conventional QFT methods:

I high density ("sign problems")

I high perturbative orders and highly nonlinear processes

I non-equilibrium processes

I strong fields & large gradients: short time/distance scales

I coherence and decoherence

I radiation reaction

I quantum control & optimization

• "resurgence" unifies perturbative+nonperturbative QFT



Airy: "Spurious Rainbows", and the Airy Function (1830s)

(Mika-Pekka Markkanen, via Wikimedia Commons)



Airy and Rainbows: The Original "Sign Problem" (Airy, 1836)

"On the intensity of light in the
neighbourhood of a caustic"
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Stokes: Solution of The Original "Sign Problem" (Stokes, 1850)

"On the numerical calculation of a class of definite integrals and infinite series"
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"Stokes, by mathematical supersubtlety, transformed Airy’s integral into a form by which the

light at any point of any of those thirty bands, and any desired greater number of them, could

be calculated with but little labour" Lord Kelvin in Stokes’s Obituary, 1903



The Stokes Phenomenon (Stokes, 1857)

"On the discontinuity of arbitrary constants which appear in divergent developments"

• real physics is often governed by complex saddle points

• Stokes phenomenon: as (the phase of) an external parameter
varies, the saddle points move and the steepest descents
contours are deformed. At certain phases, these contours jump
and a saddle can appear or disappear



The Stokes Phenomenon in QFT

• basic feature of amplitude or S-matrix computations

• basic feature of QFT path integral∫
Dφ exp

[
i

~
S[φ;m, g, µ,B,E, λ, τ, T, ...]

]
• generator of perturbative (loop, gradient, ...) expansions∑

n

an ~n

• generator of nonperturbative (saddle) expansions

∑
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e
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~Sc det

(
δ2S
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)∑
(fluctuations)

• these expansions look different, but they must agree !

• how they agree = resurgence



Resurgent Trans-Series

Resurgence: ‘new’ idea in mathematics (Écalle 1980s; Dingle 1960s; Stokes 1850s)

resurgence = unification of perturbative & non-perturbative physics

• perturbative series expansion −→ trans-series expansion

f(g) =

∞∑
p=0

∞∑
k=0

k−1∑
l=1

ck,l,p (g)p︸︷︷︸
perturbative fluctuations

(
exp

[
−S
g

])k
︸ ︷︷ ︸

instantons

(ln [g])l︸ ︷︷ ︸
logarithms

• trans-series ‘well-defined under analytic continuation’

• perturbative and non-perturbative physics entwined

• ODEs, PDEs, difference equations, fluid mechanics, QM,
Matrix Models, QFT, Chern-Simons, String Theory, ...

• “non-perturbative completion” (see Daniele Dorigoni’s talk)

• define the path integral constructively as a trans-series



“Resurgence”

resurgent functions display at each of their singular points
a behaviour closely related to their behaviour at the origin.
Loosely speaking, these functions resurrect, or surge up - in
a slightly different guise, as it were - at their singularities
J. Écalle

Question: can we take advantage of this for QFT ?



Resurgence: generic large-order/low-order duality

• general feature of exponential integrals: e.g. Airy

• expansions about the two saddles are explicitly related
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• large order behavior of fluctuation coefficients:
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• generic in nonlinear ODEs, PDEs, difference eqs, ...

• similar behavior in QM, matrix models, QFT ...



Borel summation: from series to transseries

• Borel transform of series, where cn ∼ n! , n→∞

f(g) ∼
∞∑
n=0

cn g
n −→ B[f ](t) =

∞∑
n=0

cn
n!
tn

new series has finite radius of convergence (singularities)

• Borel summation of original asymptotic series:

Sf(g) =
1

g

∫ ∞
0
B[f ](t)e−t/gdt

• the singularities of B[f ](t) provide a physical encoding of the
global asymptotic behavior of f(g)

• Borel singularities = non-perturbative physical objects

• resurgence: perturbative sector encodes the non-perturbative
sectors via the Borel transform



Resurgence in Infinite Dimensions: the QM Path Integral

... ...
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• the entire trans-series can be decoded in terms of the
perturbative series Alvarez/Casares, GD/Ünsal, ...
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Nonlinear Stokes Phenomenon in the Mathieu Spectrum
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• nonlinear Stokes transition: real/complex instantons
(Başar/GD/Ünsal 1603.04924, 1501.05671)

• cf. Nekrasov partition function for N = 2 SU(2) SYM

https://arxiv.org/abs/1603.04924
https://arxiv.org/abs/1501.05671


Gross-Witten-Wadia = 2d U(N) Lattice Gauge Theory

Z(t,N) =

∫
U(N)

DU exp

[
N

t
tr
(
U + U †

)]
• ’t Hooft coupling t = g2N

• 3rd order phase transition at N =∞, t = 1 (universal)



Transmutation of the GWW Trans-series Ahmed & GD: 1710.01812

• “order parameter” ∆(t,N) ≡ 〈detU〉 satisfies a nonlinear ODE

• Rossi equation (Painlevé III):

t2∆′′ + t∆′ +
N2∆

t2
(
1−∆2

)
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∆
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(
N2 − t2

(
∆′
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• non-perturbative large N effects from the ODE
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∑
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+ . . .

• all physical observables inherit this trans-series structure

• phase transition = nonlinear Stokes phenomenon

• universal reduction to Painlevé II across phase transition

http://inspirehep.net/record/894974?ln=en


Resurgence: Large N at Strong ’t Hooft Coupling

• large N trans-series at strong coupling (t > 1)

∆(t,N) ≈ σstrong JN

(
N

t

)
∼ σstrong

√
t e−NSstrong(t)

√
2πN (t2 − 1)1/4

∞∑
n=0

Un (t)

Nn
+ . . .

• strong-coupling large N instanton action

Sstrong(t) = arccosh(t)−
√

1− 1

t2

• nonlinearity ⇒ trans-series with all odd powers of

σstrong
e−NSstrong(t)√
S′strong(t)



Resurgence: Large N at Weak ’t Hooft Coupling

• large N trans-series at weak-coupling (t < 1)

∆(t,N) ∼
√
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∞∑
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• weak-coupling large N instanton action
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• large-order growth of perturbative coefficients (∀ t < 1):
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]
• (parametric) resurgence relations, for all t:
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Resurgence in GWW: double-scaling limit = Painlevé II

• uniform limit of Bessel function:

lim
N→∞

JN (N −N1/3κ) =

(
2

N

)1/3

Ai
(

21/3κ
)

• scaling of JN (N/t) as t→ 1: N →∞ with x fixed

t ∼ 1 +
x

(2N2)1/3
; ∆(t,N) =

(
2t

N

)1/3

y(x)

∆ PIII equation −→ d2y

dx2
= x y(x)+2 y3(x) (PII)

• Painlevé II = "nonlinear Airy equation"

• the immediate vicinity of the physical phase transition region
is described by the Hastings-McLeod Painlevé II solution



Gross-Witten-Wadia Phase Transition and Lee-Yang zeros

Lee-Yang: complex zeros of Z(t,N) pinch real axis at phase
transition point in the thermodynamic (N →∞) limit
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• double-scaling: bridge across transition (nonlinear Airy)

GWW zeros (Kolbig) Painlevé II (Novokshenov; Huang)



Resurgence Extrapolation and Continuation in QFT

• idea: “reconstruct” non-perturbative physics from a
“reasonable” amount of perturbative input information

• the key to a more accurate analytic continuation from the
original series is a more accurate analytic continuation of its
Borel transform, especially near its singularities

• technical problem: given a finite number (possibly small) of
terms in a perturbative expansion, which is presumably
asymptotic, what is the most effective way to analytically
continue the truncated Borel transform?

[new optimal methods: O. Costin, GD 2003.07451, 2009.01962, 2108.01145]

https://arxiv.org/abs/2003.07451
https://arxiv.org/abs/2009.01962
https://arxiv.org/abs/2108.01145


Analytic Continuation of Painlevé I tritronquée (Costin, GD: 1904.11593)

• Painlevé I: y′′(x) = 6 y2(x)− x
• series expansion as x→ +∞

y(x) ∼ −
√
x

6
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• 5-fold symmetry: y(x) ≈
√
xP

(
4
5x

5/4; {2, g3}
)

(Boutroux)

• tritronquée: poles only in 2π
5 wedge (Dubrovin et al)
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• Q: does the expansion as x→ +∞ “know” this ?

http://inspirehep.net/record/1731578


Transmutation: Asymptotic Series to Meromorphic Function

y(x) =
1

(x− xpole)2
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• Resurgent extrapolation of y(x) near 1st pole:

y(x) ≈
0.9999999999999999999999999999999999997886

(x− x1)2
+ 3.5× 10

−35 − 2.4× 10
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+ . . .

• exact non-perturbative connection formulas satisfied to high
precision (O.Costin & GD: 1904.11593)

• extracted from a completely different expansion at x→ +∞

http://inspirehep.net/record/1731578


Heisenberg-Euler Effective Action

• the first (non-perturbative) QFT computation

• paradigm of “effective field theory” (non-linear)

• compute: ln det (D/+m) , D/ := ∂/+ ieA/

• generating function for multi-leg one-loop amplitudes



Resurgent Extrapolation of Heisenberg-Euler GD/Harris 2101.10409
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• small B → large B; small B → large E (from 10 terms!)
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• exponentially suppressed terms are also accessible

• also at 2 loop (no Borel representation)

https://arxiv.org/abs/2101.10409


Inhomogeneous Fields: further divergence

• EFT expansion grows rapidly: one of many pages at 6th order

Fliegner et al, hep-th/9707189



Inhomogeneous Background Fields GD & Z.Harris: 2212.04599

• precise comparison: test method on soluble cases

B(x) = B sech2 (x/λ) E(t) = E sech2 (t/τ)

• analytic continuations: B2 7→ −E2, λ2 7→ −τ2

• Keldysh inhomogeneity parameter

γ =
`2B
λCλ

=
m

eBλ
7→ m

eEτ

• exact Dirac spectrum, so can be solved in various ways

• weak B field expansion

S(B, λ)

L2λT
=
m4

π2

∑
n≥0

an(γ)

(
B

m2

)2n+4

• an(γ): polynomial in inhomogeneity parameter γ

• three independent Borel singularities can be seen in the large
order growth of the perturbative coefficients an(γ)

https://arxiv.org/abs/2212.04599


Resurgence for Inhomogeneous Background Fields

• large order growth of an(γ): |t1| = 1/(
√

1 + γ2 + 1)

an(γ) ∼ (−1)nΓ(2n+ 3
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• non-perturbative imaginary part

ImS(E, τ)

L3τ
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• & all Borel singularities & all multi-instantons



Resurgent Extrapolation for Inhomogeneous Background Fields

• analytic continuation: B → i E and λ→ i τ

• weak B field to strong E field (+ strong inhomogeneity)

• input: just 15 perturbative input terms
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• accurate agreement over many orders of magnitude

• far superior to WKB or LCFA



Resurgence in Chern-Simons Theory (Costin, GD,Gruen, Gukov 2310.12317)

• Chern-Simons = topological quantum field theory

• sensitive probe of the topology of its 3-manifold

resurgence: decode topological information from perturbative data

• resurgent continuation across the natural boundary (!)

https://arxiv.org/abs/2310.12317


Conclusions

• nonperturbative QFT requires new theoretical ideas and
methods

• Resurgence systematically unifies perturbative and
non-perturbative analysis, via trans-series, which ‘encode’
analytic continuation information

• resurgent extrapolation: strong-field and non-perturbative and
non-adiabatic information can be decoded efficiently from
perturbative data

• QM, matrix models, Chern-Simons, ... X

• 2d sigma models X

• integrable/localizable SUSY QFT X

• 4d QFT ? [13 loop for O(N) φ4
(Borinsky, Panzer, Balduf,...)]

• there is extra un-tapped ‘magic’ in perturbation theory


