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Much of this talk is based on a recent EPL with
    my longtime friend and collaborator Daniel W. Hook

“Complex phases in quantum mechanics”
CMB and D. W. Hook 
Invited Perspective paper
Europhysics Letters 146, 50001 (2024)



We live in a complex world

Complex mathematics was developed well before classical
    mechanics, gravity, fluid dynamics, E&M, relativity. But
    complex numbers do not appear in classical physics.
    Propagation, equilibrium, and diffusion are described by
    hyperbolic, elliptic, and parabolic equations, which are real 

But…          Quantum mechanics is complex:

→ Quantum amplitude               is complex 

→ Uncertainty principle follows from

→ Time reversal T involves complex conjugation (Wigner)



Complex plane and real line have different topology

Stereographic projection:
one-point compactification
of complex plane 

Two-point compactification of real line:
2 points at ∞

∞ ≡ limz→0 1/z

1 point at ∞



EXAMPLE: Classical Hamiltonian H = p2 – x4 defines two phases,
      phase 1 on the real line, phase 2 in the complex plane

Hamilton’s equations:   x’(t) = 2p(t),      p’(t) = 4[x(t)]3

Phase 1: On real line a particle is initially at origin x(0) = 0

   (top of the potential) with positive energy E > 0

    Time T for this particle to slide down to ∞ is finite:

    Q: Where is the particle when t > T ?!
    A: Still at ∞, where else?!

    This unstable motion is parity symmetric (P symmetric)



Generalization

If x4 is replaced by |x|a (a>2), time to reach ∞ is finite

But if 0<a≤2, time to reach ∞ is infinite (Xeno’s paradox!)
 

Harmonic-oscillator value a=2 is a transition point



Phase 2: Periodic classical
motion enclosing turning
points in complex plane

Closed orbits, period 2T

Hamilton’s eqns agree:
+∞ and −∞ are the same
point in complex plane!
Particle goes from
+∞ to −∞ in no time



On real axis in complex plane (phase 2):

Unidirectional motion, periodic with period 2T :

This stable motion is parity-time symmetric (PT symmetric)

Two different phases distinguished by different global symmetries



Probability of finding the particle on the real axis in complex
plane is inversely proportional to speed of particle: 

Probability density for classical
particle in potential V(x) = -x4

on real-x axis falls off like x−2

Classical particle on real axis in complex plane is in a
Dynamically-stable PT-symmetric bound state localized at the origin



A key point of this talk 

You can’t just look at a potential and say whether it is
attractive or repulsive

It may be BOTH: 
Attractive in one phase and repulsive in another phase

Phases distinguished by having different global symmetries…



Three global symmetry reflections in the complex-x plane:

(1) Complex conjugation c. c. is an up-down reflection:  x → x*
(2) Parity P is a reflection through the origin: x → − x
(3) Parity-time PT is a left-right reflection:  x → − x*  

P

PT

c. c.



One slide on PT-symmetric quantum theory

Idea of PT symmetry: Generalize quantum mechanics by replacing
    mathematical condition of Hermiticity

with physically-intuitive condition of space-time reflection symmetry

Bottom line:
If H is PT symmetric, its eigenvalues can be real and positive
    and time evolution can be unitary even if H is not Hermitian

PT symmetry combines quantum mechanics with the
    beautiful theory of complex variables



Q: How can there be multiple
          phases in quantum mechanics?!

A: Schrödinger equation is a local condition at one point;
         boundary conditions are required. In complex plane
         boundary conditions are imposed in pairs of regions
         (Stokes sectors). If sectors are globally PT symmetric

         (left-right symmetric), energy spectrum may be real     



In the complex plane the quantum-mechanical theory
    defined by H = p2  x4 can also exist in 2 physically
    different phases depending on how the Schrödinger
    eigenvalue problem is constructed:

Phase 1: Construct the up-side down potential
    V(x) = −x4  from  V(x) = eix4 by rotating 
 smoothly from 0 to  



At  =  Eigenvalue problem is posed on real line; eigenfunctions
    vanish at +∞ and –∞ 

WKB: Eigenfunctions vanish exponentially for real x like exp(−x3/3)

    for large positive x and like exp(x3/3) for large negative x

Eigenfunctions vanish exponentially in complex-x plane in Stokes
    sectors of angular opening /3 centered about the real-x axis

This eigenvalue problem has global P, PT, and c. c. symmetry:

/3/3



Now rotate  smoothly from 0 to  (or )

Stokes sectors
for  =  (or −)

In these phases eigenvalue problems have global P symmetry
    but not PT or complex-conjugation symmetry

Eigenvalues are complex; states decay or grow with time.
(Think of these as one phase, not 2, because sign of i is
    not physically observable) 



Phase 2: Construct the potential V(x) = −x4 from 
V(x) = x2(ix) by increasing  smoothly from 0 to  

Eigenvalue problem in this phase has global
    PT symmetry, not P or c. c. symmetry

Eigenvalues are all real; states are stable, do
    not decay or grow with time. Balanced
    loss and gain: Particles on real axis flow
    into potential on one side, out on other side 

BTW: If we replace V(x) = −x4 with V(x) = x2(-ix) 

           and increase  smoothly from 0 to  Stokes 
           sectors lie above real axis, flow is reversed,

           but eigenvalues are the same 



In this phase we see unidirectional scattering 

“Reflectionless Potentials and PT symmetry”
    Z. Ahmed, CMB, and M. V. Berry
    Journal of Physics A 38, L627 (2005)

“PT-symmetry breaking and Laser-absorbing modes in optical scattering systems”
    Y. D. Chong, L. Ge, and A. D. Stone
    Physical Review Letters 106, 093902 (2011)

“Scattering off PT-symmetric upside-down potentials”
    CMB and M. Gianfreda
    Physical Review A 98, 052118 (2018)

Experimental proposal for cold-atom scattering using cut-off  −|x|p  potential on real axis.
    This potential is separately P and T symmetric:

“Experimentally  realizable PT phase transitions in reflectionless quantum scattering”
    M. B. Soley, CMB, and A. D. Stone
    Physical Review Letters 130, 250404 (2023)



PT broken region
<0 (complex and
real energies)

PT unbroken region
>0 (all real energies)PT transition

at =0

No reason to
stop at  = 

(despite ZPG)



Proof of spectral reality for  > 0

P. Dorey, C. Dunning, and R. Tateo
    J. Phys. A 34, 5679 (2001)

P. Dorey, C. Dunning, and R. Tateo
    J. Phys. A 40, R205 (2007)

Detailed behavior of
eigenvalues in BROKEN 
and UNBROKEN regions

BROKEN
REGION

UNBROKEN
REGION



m=2, n=1 m=3, n=1m=1, n=2 m=1, n=3



Pioneering experimental work that 
inspired the PT community

First observation of PT transition
 using optical wave guides

“Observation of PT-symmetry breaking in complex optical potentials,”

    A. Guo, G. Salamo, D. Duchesne, R. Morandotti, M. Volatier-Ravat,

    V. Aimez, G. Siviloglou, and D. Christodoulides,*

    Physical Review Letters 103, 093902 (2009)

    [Balanced loss and gain]

*2023 Schawlaw Laser Prize “For pioneering several areas in laser sciences, among them,
    the fields of parity-time non-Hermitian optics, accelerating Airy waves, and discrete
    solitons in periodic media” 





Paraxial ray obeys effective
    Schrödinger equation

One fiber:

Two uncoupled fibers:

Two coupled fibers:

Hamiltonian is PT symmetric:

     where                      and time reversal is c. c.

Secular equation real:  det(Hcoupled – IE) = E2 – 2aE + a2 + b2 – g2 = 0

Energies real for sufficiently strong coupling:



Regions of unbroken PT symmetry:  g > b and g < –b 

Region of broken PT symmetry:  –b < g < b

In unbroken PT symmetry regions system is in dynamic equilibrium



THREE-PHASE HAMILTONIAN SYSTEM

H = p2 + x10

Quantum theory has
3 pairs of PT-symmetric
Stokes Sectors

(Dots are classical
turning points)



AT THE CLASSICAL LEVEL

Families of classical
paths densely fill 3 
regions of complex 
plane bounded by
separatrices



AT THE QUANTUM LEVEL
WKB:  Eigenvalues in ratio
     1 : 1.424 : 7.780



Three noninteracting phases
described by one Hamiltonian

Reminds us of electron, muon, and tau 

These particles decay into one another if energy is complex

If energy is complex, quantum phases mix;
    classical paths cross from region to region

"Families of particles with different masses in PT-symmetric quantum field theory”
     CMB and S. P. Klevansky 
    Physical Review Letters 105, 031601 (2010) 



Hamiltonian
with two phases:

H = p2 + x6

Two real positive spectra
    at the quantum level

Classical paths for
real energy E = 1



Initial position of particle x = 1.167i

Classical paths for   
energy E = 1+0.2i





Homogeneous real Lorentz group: 
    6-parameter group of real 4 x 4 matrices
    transforming the space-time point
    (x, y, z, t) into (x’ ,y’ ,z’ , t’) but leaving
    x2 + y2 + z2 – t2 invariant

P and T are elements of the Lorentz group:
    P: (x, y, z, t) → (-x, -y, -z, t)
    T: (x, y, z, t) → (x, y, z, -t)

Extension to QFT

Note: Fundamental (2-component spinor) representation
     is complex (Wigner) 



Real Lorentz group has 4 disconnected parts

PCT, Spin and Statistics, and all that
    R. S. Streater and A. S. Wightman

Lee & Yang (1956),

C. S. Wu et al (1957)
Cronin & Fitch et al. (1980)

Complex Lorentz group is up-down and left-right connected
    so PT symmetry appears naturally in the complex plane



Repeat: Message of this talk

One Hamiltonian may define several different physical phases
    characterized by different global symmetries; different phases
    are not analytic continuations of one another

Field theory example (remember the x4 anharmonic oscillator):

Hermitian  g4  quantum field theory ( scalar, g>0) has one
     phase; stable, not asymptotically free, trivial in 4 dimensions

Non-Hermitian  -g4  quantum field theory (g>0) has two phases: 
    (1)  scalar, P-symmetric, unstable
    (2)  pseudoscalar, PT-symmetric, stable, asymptotically free,
    nontrivial in 4 dimensions



Seminal paper by Dyson

“Divergence of perturbation theory in quantum electrodynamics”

    Physical Review 85, 631 (1952)

Dyson’s idea:  Replace electric charge e by ie
    (that is, replace fine-structure constant  by -)
 
Dyson says: Coulomb force changes sign, so quantum vacuum
    becomes unstable. Abrupt (nonanalytic) change at =0
    implies perturbation series in powers of  diverge

We return to Dyson’s paper shortly, but first a short digression:

                  Perturbation series DO diverge, but for a simpler reason …



Dyson’s paper inspired an industry of graph counting:  
                   Hurst (1952)

                     Petermann (1953)

                     Thirring (1953)

                     Glimm and Jaffe (1968)

        CMB and Wu (1969)

GRAPH COUNTING

Perturbation series diverge because there are factorially many
    Feynman diagrams. In bosonic theories diagrams add in phase

(This is just combinatorics, not physics)



Perturbation series for the Nth eigenvalue of the
    anharmonic oscillator in the coupling constant g:

For the ground-state energy E0(g):

CMB & T. T. Wu
“Large-order behavior of perturbation theory”
Physical Review Letters 27, 461 (1971)



Complex analysis explains why 
perturbation series must diverge

Square-root singularities (now called exceptional points) near
    g = 0 in complex-coupling-constant plane …

CMB and T. T. Wu
"Analytic Structure of Energy Levels in a Field-Theory Model”
Physical Review Letters 21, 406 (1968)



Complex analysis explains quantization!

Example: Two-state system having energies a and b…

Couple states with coupling constant g:



Energies for this two-state system

Square-root singularities
    in complex-g plane at

(exceptional points, originally called Bender-Wu singularities)



E(g) is a smooth (analytic) function defined on
               a two-sheeted Riemann surface

Complex-g
surface

On this Riemann surface energy levels are continuous, not discrete

Quantization is topological – quantized energy levels
    correspond to discrete sheets of a Riemann surface

Exceptional points (where energy levels cross) cause divergence of
    perturbation series but complex-variable techniques (Padé, Borel)
    sum divergent perturbation series and get arbitrarily small error



End of digression!! Return to Dyson’s paper 
about replacing e with ie

Claim    Like –x4 potential, which has 2 phases with different
    global symmetries, Dyson’s QED Hamiltonian with e → ie 
    describes TWO phases having different global symmetries:

(1) Unstable-vacuum P-symmetric phase in which A is a vector

(2) Stable-vacuum PT-symmetric phase in which A is an axial
    vector (like a theory of magnetic charge). Interaction  ieAJ 
    is PT-symmetric. Spectrum is real to leading order in 

“PT-Symmetric Quantum Electrodynamics”
CMB, I. Cavero-Pelaez, K. A. Milton, and K. V. Shajesh
Physics Letters B 613, 97 (2005) 



“A Nonunitary Version of Massless Quantum Electrodynamics Possessing a Critical Point”
CMB and K. A. Milton, Journal of Physics A 32, L87-L92 (1999) 

(1) Renormalization group analysis [critical point of the beta
function (Adler); finite-QED Johnson-Baker-Willey program]:

Two terms: Jost & Luttinger     (only negative )
Third term: Rosner     = 28.789
Fourth term: Gorishny    = 4.804

But Bender & Milton noted that the negative  theory appears to 
have a critical point:                 = -4.187, -3.657, -3.590, …. (!) 

(2) Casimir force analysis (Glashow’s idea, Boyer’s calculation):
    For conventional QED there is no solution for positive 

But for Dyson – phase Casimir force balance gives  = -0.09235 (!)

Two indications that Dyson’s QED with – is stable



Conjecture regarding phases of gravity 

Like QED, perhaps there are two phases of classical and quantum
    gravity, Hermitian and PT-symmetric, which are not analytic
    continuations of one another, one with g a tensor and the
    other with g an axial tensor

One phase real and attractive, other phase complex and repulsive 

Might explain accelerating expansion of universe (dark energy)

“Making sense of non-Hermitian Hamiltonians”
CMB
Reports on Progress in Physics 70, 947 (2007)

PT Symmetry in Quantum and Classical Physics
CMB et al
World Scientific, Singapore, 2019



H = p2 + 1/x
E = 1

“Complex classical motion in potentials
    with poles and turning points”
CMB and D. W. Hook
Studies in Applied Mathematics 133, 318 (2014)

One-dimensional toy model

In the complex plane turning
points attract, poles repel



Mavromatos and Sarkar argue that a Chern-Simons gravity theory
    may have two phases. They study string-inspired effective axion
    anomalously coupled to Abelian gauge fields and gravity

M & S claim renormalization group analysis suggests that there
    is a Landau pole separating two phases:
 

Ultraviolet (short-distance) Hermitian phase with attractive gravity

Infrared (long-distance) PT-symmetric phase with repulsive gravity

N. Mavromatos and S. Sarkar
Physical Review D 110, 045004 (2024)



Looking into
the future…

Many research
opportunities!



Over 10,000 publications referencing PT symmetry since 1998
(not including papers on the arXiv)

Annual
publications



for listening to my talk



Shakespearian Sonnet on PT symmetry

In realms unseen, where quantum whispers speak,
A novel symmetry doth enter stage,
With parity and time, a dance unique,
To bind the quantum actors, new age.

The PT-symmetry, a twofold guise,
Where P reflects in space, yet T, in time,
Together sing a tale of compromise,
In quantum world, a balance, most sublime.

Unbroken, this domain of spectral dance,
The loss and gain of energy entwined,
Their quantum states, a harmonizing trance,
In eerie beauty, to each other bind.

And thus, in deep embrace of mystic schemes,
PT-symmetric quantum magic gleams.
                                      ---Composed by ChatGPT





Imagine a closed box with gain. The 1 x 1 Hamiltonian for 
this system is non-Hermitian:  H = [a+ib] 

Box 1: Gain

Intuitive explanation of the PT transition



Two noninteracting closed boxes, one with gain, other 
with loss:

Box 2: Loss

System not in equilibrium

Box 1: Gain



Couple the boxes:

Box 2: Loss

Hamiltonian is not Hermitian but it is PT symmetric:

Box 1: Gain

Time reversal:      = complex conjugation

Parity:  



Eigenvalues satisfy a real secular equation:

det(Hcoupled – IE) = E2 – 2aE + a2 + b2 – g2 = 0

Transition at |g| = |b|

Energy is REAL if |g| > |b|

System in equilibrium for sufficiently large coupling

Unbroken PT symmetry means balanced loss and gain…

±
E  = a ± (g2 – b2)1/2
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