


Non-Hermitian Quantum Mechanics

FIG. 1. Energy levels of the Hamiltonian H = p* — (ix)”™
as a function of the parameter N. There are three regions:




Classically unstable (but PT symmetric) potential V(x) = —x*

Quantum Physi




V = —x*: solutions of Hi)(x) = E(x) with x € R:
Wavefunctions of the Inverted Quartic Oscillator

[PR, 2408.12643]




PT-symmetric Quantum Mechanics is Quantum Mechanics, not some
“funny business”
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PT-symmetric Quantum Field Theory

PT-symmetric * theory

1eralize to quantum field theory, in this paper the path-integral representation of

ABS Conjecture: InZpr(g) = RelnZ(A = —g)
ABS Conjecture likely does not hold in general:

[Lawrence, Weller, Peterson & PR, 2303.01470]
[Kamata, 2401.00574 & 2406.01230]

Nevertheless very influential paper for field theorists
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Why large N7
« Consider N-component scalar ¢ = (61, 02,...,0n)
« d-dimensional Euclidean Field Theory defined by partition function

zz/DgeSE, Se :/ddx [ié‘u%ﬁu%z(&?ﬂ ,

« Examples: d = 1 is N-dimensional Quantum Mechanics
« d =4 and N=4 is Higgs case
« d =3 and N — oo has conjectured gravity dual [hep-th/0210114]

Expansion in % allows systematic non-perturbative QFT solution!



Quantitative tests of large N method (in less than 4d)



Quantum Mechanics with V = (%)? in N dimensions
Ground State Energy in N-dimensional QM with quartic potential

Numerical fixed N |
LO Large N
NLO Large N = = =
NNLO Large N B 1 1 1 1

o'l"‘

[PR, lecture notes on large N QFT: 2310.00048]



3d: superrenormalizable QFT

adapted from Kos et al., [1307.6856]
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Shear viscosity in O(N) model in 2+1d
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Large N 3d

Entropy density in O(N) model in 2+1d

finite temperature

Shear viscosity in O(N) model in 2+1d

Infinite coupllng direct from QFT: =1 ~ 0.42

Sf Tee 5’ Nsinfty

[PR, 1904.09995 & 2104.06435]

Compare to 2= = 3, 7=~ 0,08 from AdS/CFT conjecture

free ! Sinfty
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L N2
« Lagrangian has quartic term: Lg = %ﬁuqﬁ O + % (¢2)

« Transform using mathematical identity (Hubbard-Stratonovic):

. 2
ef)\x4 _ dC eflg’xf‘%\

Ve

« Gives Lagrangian in terms of auxiliary field (:

N2

1o o NE
ﬁE—Ea,u¢ 8,u¢+ 4N +1iCo

« ¢ is now entering quadratically, can be integrated out. Exact action

N .
Sg = ETlrln [—82 + IC] + N/ddxM.
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Large N solution — details for experts (2/3)

« Auxiliary field action is non-local:

Se = Mrvin [—0% +i(] Jr/\//d@’x<2
T2 ax’

« But for N — oo, partition function can be solved using saddle-point

method:
efNSE

7 = / Die e = ) .
/ i
saddles NSE
« Non-trivial to show: degenerate saddles for all constant auxiliary fields

C(x) =0
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Large N solution — details for experts (3/3)

« Large N approximation gives

ZZ/dCOeNSE(C(X)=Co)+O(|n N)

« Single remaining integral can again be evaluated for N > 1:

7 — e~ NSe(@=0)+0(n N)

where  is solution of saddle point condition:

Se(C)=0

« Note: often ¢ € C, need Lefshetz-Picard for (g integration
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If you got lost, don't worry you're not alone ;-)

Some more pedagogical introduction to new Large N approach:

“Quantum Field Theory in Large-N Wonderland: Three Lectures”
Lecture Notes, 63rd Cracow School in Theoretical Physics
arXiv:2310.00048
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The auxiliary field demystified
« ( is a composite field, here 5 q§
« For non-relativistic fermions with 1)* interactions, ( is a boson
« For fermions, (’(x) is the “Cooper” pair
« For fermions, saddle  # 0 is the superconducting “gap” parameter

The auxiliary field is not (only) a mathematical trick, it has real physical
meaning!
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Scalars with A > 0 in less than 4d:

« Large N math is solid

« Large N is quantitatively reliable down to N ~ O(1)
« Large N results for c2, % for ALL X € [0, <]
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Large N scalars in 4d

what happens if you apply large N machinery to 4d scalar field theory?
Main difference to lower dimensions: UV divergencies, requiring
renormalization
You cannot fix the coupling: it's not even an observable!

[Stevenson, 2409.01228]
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Large N scalars in 4d in continuum

« ¢* model is renormalized non-perturbatively

1 1 1

)\B N )\R(ﬁ) B 4me

« In the continuum limit, running coupling is

@y
)\R(,LL) = /\2
In 2F

« Non-vanishing coupling in the continuum. Theory is non-trivial!

« Trick to avoiding triviality:

lim Ag(p) =07,

H—00

« Theory has "UV-fixed point”, but bare coupling is negative



Exact Running coupling in O(N) Model

Running coupling in the ©(N==1) model

[PR, 2305.05678]
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Exact result for 4d ¢* theory at large N
« Running coupling has analytic continuation for all 1 € R
« Coupling is negative in the UV

« The high-energy potential for this theory is

-,

V(¢) = —g()?, g>0

« This is a PT-symmetric field theory!
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Properties of 4d ¢* theory at large N
Large N scalar theory can be analyzed using saddle point method
« Theory is asymptotically free, as expected from N=1 studies:
[Symanzik, '73; Bender, Milton, Savage '00; Dvali, Gomez, Mukhanov '11]

« Theory is not quantum trivial

« Find two saddles:

« Perturbative saddle ¢ = 0, vanishing scalar mass, unstable (tachyon)
[Coleman, Jackiw, Politzer, PRD10, 1974]
« Non-perturbative saddle ¢ # 0, non-vanishing scalar mass, stable
[Linde, NPB125, 1975; Abbott et al. PRD13, 1976; PR 2211.15683]

* Non-perturbative saddle has finite vacuum energy

[PR 2211.15683]
« Can be non-perturbatively renormalized to NLO in large N

[PR 2401.06847]
« Scattering amplitudes are well-behaved

[PR 2211.15683]
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4d ¢* theory at large N is the perfect QFT
« asymptotically free
* non-trivial in the continuum
« Solvable non-perturbatively using systematic % expansion
« PT-symmetric
Emergent energy scale A (dimensional transmutation)

Low & high temperature phases separated by 1%t-order phase
transition

Only downside: this is not a gauge theory, so most hep theorists don't care!
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4d ¢* theory at large N — Why should you care?
« Systematic & controlled non-perturbative expansion parameter %

« Solvable 4d quantum field theory with asymptotic freedom — THE
perfect place to test out approximations/ideas for QCD

« Allows (semi-) analytic calculation of almost any non-perturbative
observable: scattering, transport, real-time dynamics, ...

Potential competitor to Higgs mechanism with one parameter less
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Large N Higgs Model — Abelian Case

Standard Version:
2
Le = (D,®)' (D,®) + %FWFW FV(9), V(®)=2) (qﬂcb) — 2ot

« Gauge invariant:

A, = A +9,0(x), & — Mo

« Perturbative expansion around tree-level minimum: ®(x) = ¢ + ¢'(x)

« Gives Higgs mass, gauge boson mass and Higgs VEV:

)
my = 442 mz‘:%, <¢>:L

Problem 1: U(1) is continuous symmetry, cannot be spontaneously broken
(Elitzur's theorem): there cannot be a scalar VEV!
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« Gauge invariant:

A, = A +9,0(x), & — Mo

« Perturbative expansion around tree-level minimum: ®(x) = ¢ + ®'(x)

« Gives Higgs mass, gauge boson mass and Higgs VEV:
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Large N Higgs Model — Abelian Case
Standard Version:

i L fo) — 20t
Le = (D) (Du®) + 3 FuFus + V(). V(®) :)\<<D cb) — 2ot

« Gauge invariant:

A, = A +9,0(x), & — Mo

« Perturbative expansion around tree-level minimum: ®(x) = ¢ + ®'(x)

« Gives Higgs mass, gauge boson mass and Higgs VEV:

2,2
2 2 2 u-e %
my =4p°, my=——, O = ——
H 14 A A <> \/ﬁ

Problem 2: how to justify a tachyonic potential V(x) = —x2?
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Large N Higgs Model — Abelian Case

Standard Version:
1 2
Le = (D,®)" (D,®) + 2 FowFur + V() V(®) = (qﬂcb) — 2ot

« Gauge invariant:

A= AL+ 0,0(x), ®— e

« Perturbative expansion around tree-level minimum: ®(x) = ¢ + ¢'(x)

« Gives Higgs mass, gauge boson mass and Higgs VEV:

)
my = 442 mz‘:%, <¢>:L

Problem 3: Treatment is classical, my receives large radiative corrections,
yet my << mpianck (hierarchy problem)
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Standard Version:
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Large N Higgs Model — Abelian Case

Standard Version:
2
Le = (D,®)" (D,®) + %FWFW +V(®), V(d)=A (qﬂcb) — 2ot

« Gauge invariant:

A= AL+ 0,0(x), ®— e

« Perturbative expansion around tree-level minimum: ®(x) = ¢ + ¢'(x)

« Gives Higgs mass, gauge boson mass and Higgs VEV:

)
my = 442 mz‘:%, <¢>:L

Problem 4: Fixing parameters to LHC data, Higgs this vacuum is
unstable at > 98% cl [1307.3536]
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Large N Higgs Model — Abelian Case
Large N version: [PR, Su, Weller, 2405.00088]

te = (D,8)' (Du) + FuFuo + V(8). V(o) = (&)

. . . 1
Non-perturbative expansion in

« Gives Higgs mass & gauge boson mass via large N Coleman-Weinberg
mechanism
Features:

« no tachyon term in potential u? = 0 (fewer parameters)

« no scalar VEV: (¢) =0

« Radiative corrections give my, no hierarchy problem

« Two saddle points: perturbative saddle (unstable) and
non-perturbative saddle (unconditionally stable at large N)

« Predicts additional particle (Higgs-Higgs bound state from ¢’)

« Is PT-symmetric courtesy of effective potential V = —¢*
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Finite Temperature
Easy to implement using path-integral formulation
+ One direction is made periodic with period 8 = %
Large N calculation goes through, but now operator has different
boundary conditions (St x R3 vs R*)
Let's consider pure scalar model (no gauge fields) at finite
temperature
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Large N 4d scalar QFT at finite temperature

« Same steps as before, find
7 — /dCOeNﬁVOIXV(\/@)

where the large N effective potential is

d3k
V(m) = — 16)\3 Z/ Inw+k2+m)

« After renormalization

m* | /\12\759 +m2T2 > Ka(nBm)

v(m) = 6472 n m? 272 n?

[PR, 2211.15683]
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Last integral over (p solved by saddle point method

« At zero temperature there are two saddles: m = 0 (perturbative,
unstable) and m = /ey (stable)

« At small T > 0, situation qualitatively the same: two saddles

my # 0, my > my, mp dominates

« At a critical temperature T, ~ 0.616Ag;g, saddles become degenerate
For T > T, saddles are complex pair m; = mj3, and V is complex

Spontaneously broken P7T symmetry!
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What to do with complex saddles/complex potentials?
« One possibility [2211.15683]: use ABS conjecture and set

Y = Re(V(m))

« Gives second-order phase transition at T ~ 0.616Agg

« Remaining issues: m serves dual role as scalar pole mass because

scalar propagator is
1

TRtk m?

+ Since my = mj, one of these saddles implies exponentially growing
mode

Spontaneously broken P77 phase is unstable
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What to do with complex saddles/complex potentials?
« There is another possibility
« It could be that there is yet another phase with lower free energy

« Simple check: allow for spontaneously broken O(N) symmetry

$(x) = o+ &' (x)

« Find: SSB is unstable for T = 0 but becomes stable for high
temperature

« Find SSB phase has lowest free energy at large N for

T 2 0.523M\55



Rich phase structure in 4d Large N Scalar QFT

Ac=1,N=4, a=—10"3

— ¢y=0, N0
-= ¢o=0, n?*0, complex p
— =0, ¢o*0
* n72=0, ¢p=0

[Su, Weller & PR, in prep]
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Summary and Conclusions

« Large N and P7T-symmetric field theory nicely complement each
other for 4d scalar QFT

« Large N provides non-perturbative framework
« PT-symmetry provides physics justification for inverted potential
« Leads to beautifully simple mass generation in Abelian Higgs model

« Physics is qualitatively different from Higgs mechanism: no SSB at
low temperature, 1st order transition to SSB at high temperature?
« Auxiliary field ¢’ could be experimental handle for PT-symmetric
competitor to Higgs mechanism



