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Non-Hermitian Quantum Mechanics

[Bender & Böttcher, 1997]



Classically unstable (but PT symmetric) potential V (x) = −x4



V = −x4: solutions of Hψ(x) = Eψ(x) with x ∈ R:

[PR, 2408.12643]



PT -symmetric Quantum Mechanics is Quantum Mechanics, not some
“funny business”



PT -symmetric Quantum Field Theory

ABS Conjecture: lnZPT (g) = Re lnZ (λ = −g)

ABS Conjecture likely does not hold in general:

[Lawrence, Weller, Peterson & PR, 2303.01470]
[Kamata, 2401.00574 & 2406.01230]

Nevertheless very influential paper for field theorists
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Why large N?

Consider N-component scalar ϕ⃗ = (ϕ1, ϕ2, . . . , ϕN)

d-dimensional Euclidean Field Theory defined by partition function

Z =

∫
Dϕ⃗e−SE , SE =

∫
ddx

[
1

2
∂µϕ⃗ · ∂µϕ⃗+

λ

N

(
ϕ⃗2

)2
]
,

Examples: d = 1 is N-dimensional Quantum Mechanics

d = 4 and N=4 is Higgs case

d = 3 and N → ∞ has conjectured gravity dual [hep-th/0210114]

Expansion in 1
N allows systematic non-perturbative QFT solution!
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Quantitative tests of large N method (in less than 4d)



Quantum Mechanics with V = (x⃗)2 in N dimensions

[PR, lecture notes on large N QFT: 2310.00048]



3d: superrenormalizable QFT

adapted from Kos et al., [1307.6856]



Large N 3d finite temperature

Infinite coupling, direct from QFT: s∞
sfree

= 4
5 ,

η∞
Nsinfty

≃ 0.42

[PR, 1904.09995 & 2104.06435]

Compare to s∞
sfree

= 3
4 ,

η∞
sinfty

≃ 0.08 from AdS/CFT conjecture
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Large N solution – details for experts (1/3)

Lagrangian has quartic term: LE = 1
2∂µϕ⃗ · ∂µϕ⃗+ λ

N

(
ϕ⃗2

)2

Transform using mathematical identity (Hubbard-Stratonovic):

e−λx4 =

∫
dζ√
2π

e−iζx− ζ2

4λ

Gives Lagrangian in terms of auxiliary field ζ:

LE =
1

2
∂µϕ⃗ · ∂µϕ⃗+

Nζ2

4λ
+ iζϕ⃗2

ϕ is now entering quadratically, can be integrated out. Exact action

SE =
N

2
Tr ln

[
−∂2 + iζ

]
+ N

∫
ddx

ζ2

4λ
.
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Large N solution – details for experts (2/3)

Auxiliary field action is non-local:

SE =
N

2
Tr ln

[
−∂2 + iζ

]
+ N

∫
ddx

ζ2

4λ
.

But for N → ∞, partition function can be solved using saddle-point
method:

Z =

∫
Dζe−SE =

∑
saddles

e−NSE√
NS ′′

E

.

Non-trivial to show: degenerate saddles for all constant auxiliary fields

ζ(x) = ζ0
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Large N solution – details for experts (3/3)

Large N approximation gives

Z =

∫
dζ0e

−NSE (ζ(x)=ζ0)+O(lnN)

Single remaining integral can again be evaluated for N ≫ 1:

Z = e−NSE (ζ0=ζ̄)+O(lnN)

where ζ̄ is solution of saddle point condition:

S ′
E (ζ̄) = 0

Note: often ζ̄ ∈ C, need Lefshetz-Picard for ζ0 integration
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If you got lost, don’t worry you’re not alone ;-)

Some more pedagogical introduction to new Large N approach:

“Quantum Field Theory in Large-N Wonderland: Three Lectures”
Lecture Notes, 63rd Cracow School in Theoretical Physics

arXiv:2310.00048
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The auxiliary field demystified
ζ is a composite field, here ϕ⃗ · ϕ⃗

For non-relativistic fermions with ψ4 interactions, ζ is a boson

For fermions, ζ ′(x) is the “Cooper” pair

For fermions, saddle ζ̄ ̸= 0 is the superconducting “gap” parameter

The auxiliary field is not (only) a mathematical trick, it has real physical
meaning!
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Scalars with λ > 0 in less than 4d:

Large N math is solid

Large N is quantitatively reliable down to N ∼ O(1)

Large N results for c2s ,
η
s for ALL λ ∈ [0,∞]
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Large N scalars in 4d

what happens if you apply large N machinery to 4d scalar field theory?

Main difference to lower dimensions: UV divergencies, requiring
renormalization

You cannot fix the coupling: it’s not even an observable!

[Stevenson, 2409.01228]
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Large N scalars in 4d in continuum

ϕ⃗4 model is renormalized non-perturbatively

1

λB
=

1

λR(µ̄)
− 1

4πε

In the continuum limit, running coupling is

λR(µ̄) =
(2π)2

ln
Λ2
MS

µ̄2

Non-vanishing coupling in the continuum. Theory is non-trivial!

Trick to avoiding triviality:

lim
µ→∞

λR(µ) = 0− ,

Theory has “UV-fixed point”, but bare coupling is negative
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Exact Running coupling in O(N) Model

[PR, 2305.05678]



Exact result for 4d ϕ4 theory at large N

Running coupling has analytic continuation for all µ̄ ∈ R
Coupling is negative in the UV

The high-energy potential for this theory is

V (ϕ⃗) = −g(ϕ⃗)2, g > 0

This is a PT -symmetric field theory!
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Properties of 4d ϕ4 theory at large N

Large N scalar theory can be analyzed using saddle point method

Theory is asymptotically free, as expected from N=1 studies:

[Symanzik, ’73; Bender, Milton, Savage ’00; Dvali, Gomez, Mukhanov ’11]

Theory is not quantum trivial

Find two saddles:

Perturbative saddle ζ̄ = 0, vanishing scalar mass, unstable (tachyon)

[Coleman, Jackiw, Politzer, PRD10, 1974]

Non-perturbative saddle ζ̄ ̸= 0, non-vanishing scalar mass, stable

[Linde, NPB125, 1975; Abbott et al. PRD13, 1976; PR 2211.15683]

Non-perturbative saddle has finite vacuum energy

[PR 2211.15683]

Can be non-perturbatively renormalized to NLO in large N

[PR 2401.06847]

Scattering amplitudes are well-behaved

[PR 2211.15683]
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4d ϕ4 theory at large N is the perfect QFT

asymptotically free

non-trivial in the continuum

Solvable non-perturbatively using systematic 1
N expansion

PT -symmetric

Emergent energy scale Λ (dimensional transmutation)

Low & high temperature phases separated by 1st-order phase
transition

Only downside: this is not a gauge theory, so most hep theorists don’t care!
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4d ϕ4 theory at large N – Why should you care?

Systematic & controlled non-perturbative expansion parameter 1
N

Solvable 4d quantum field theory with asymptotic freedom – THE
perfect place to test out approximations/ideas for QCD

Allows (semi-) analytic calculation of almost any non-perturbative
observable: scattering, transport, real-time dynamics, ...

Potential competitor to Higgs mechanism with one parameter less
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Large N Higgs Model – Abelian Case

Standard Version:

LE = (DµΦ)
† (DµΦ) +

1

4
FµνFµν + V (Φ) , V (Φ) = λ

(
Φ†Φ

)2
− µ2Φ†Φ .

Gauge invariant:

Aµ → Aµ + ∂µθ(x) , Φ → e ieθ(x)Φ

Perturbative expansion around tree-level minimum: Φ(x) = ϕ̄+Φ′(x)

Gives Higgs mass, gauge boson mass and Higgs VEV:

m2
H = 4µ2 , m2

A =
µ2e2

λ
, ⟨Φ⟩ = µ√

2λ

Problem 1: U(1) is continuous symmetry, cannot be spontaneously broken
(Elitzur’s theorem): there cannot be a scalar VEV!
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Problem 3: Treatment is classical, mH receives large radiative corrections,
yet mH ≪ mPlanck (hierarchy problem)
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unstable at > 98% cl [1307.3536]
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Large N Higgs Model – Abelian Case
Large N version: [PR, Su, Weller, 2405.00088]

LE =
(
Dµϕ⃗

)† (
Dµϕ⃗

)
+

1

4
FµνFµν + V (ϕ) , V (ϕ) =

λ

N

(
ϕ⃗2

)2

Non-perturbative expansion in 1
N

Gives Higgs mass & gauge boson mass via large N Coleman-Weinberg
mechanism

Features:

no tachyon term in potential µ2 = 0 (fewer parameters)

no scalar VEV: ⟨ϕ⃗⟩ = 0
Radiative corrections give mH , no hierarchy problem
Two saddle points: perturbative saddle (unstable) and
non-perturbative saddle (unconditionally stable at large N)
Predicts additional particle (Higgs-Higgs bound state from ζ ′)
Is PT -symmetric courtesy of effective potential V = −ϕ4
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Easy to implement using path-integral formulation

One direction is made periodic with period β = 1
T

Large N calculation goes through, but now operator has different
boundary conditions (S1 × R3 vs R4)

Let’s consider pure scalar model (no gauge fields) at finite
temperature
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Large N 4d scalar QFT at finite temperature
Same steps as before, find

Z =

∫
dζ0e

−Nβvol×V(
√
iζ0)

where the large N effective potential is

V(m) = − m4

16λB
− T

2

∑
n

∫
d3k

(2π)3
ln
(
ω2
n + k2 +m2

)

After renormalization

V(m) =
m4

64π2
ln

Λ2
MS

e
3
2

m2
+

m2T 2

2π2

∞∑
n=1

K2(nβm)

n2

[PR, 2211.15683]
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Last integral over ζ0 solved by saddle point method

At zero temperature there are two saddles: m = 0 (perturbative,
unstable) and m =

√
eΛMS (stable)

At small T > 0, situation qualitatively the same: two saddles
m1 ̸= 0,m2 > m1, m2 dominates

At a critical temperature Tc ≃ 0.616ΛMS, saddles become degenerate

For T > Tc , saddles are complex pair m1 = m∗
2, and V is complex

Spontaneously broken PT symmetry!
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What to do with complex saddles/complex potentials?

One possibility [2211.15683]: use ABS conjecture and set

V = Re (V (m1))

Gives second-order phase transition at T ≃ 0.616ΛMS

Remaining issues: m serves dual role as scalar pole mass because
scalar propagator is

G =
1

ω2 + k2 +m2

Since m1 = m∗
2, one of these saddles implies exponentially growing

mode

Spontaneously broken PT phase is unstable
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What to do with complex saddles/complex potentials?

There is another possibility

It could be that there is yet another phase with lower free energy

Simple check: allow for spontaneously broken O(N) symmetry

ϕ⃗(x) = ϕ⃗0 + ϕ⃗′(x)

Find: SSB is unstable for T = 0 but becomes stable for high
temperature

Find SSB phase has lowest free energy at large N for

T ≳ 0.523ΛMS
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Rich phase structure in 4d Large N Scalar QFT

[Su, Weller & PR, in prep]



Summary and Conclusions
Large N and PT -symmetric field theory nicely complement each
other for 4d scalar QFT

Large N provides non-perturbative framework

PT -symmetry provides physics justification for inverted potential

Leads to beautifully simple mass generation in Abelian Higgs model

Physics is qualitatively different from Higgs mechanism: no SSB at
low temperature, 1st order transition to SSB at high temperature?

Auxiliary field ζ ′ could be experimental handle for PT -symmetric
competitor to Higgs mechanism
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